Check for
updates

R DIGITAL associnicn
acvgel® 155 ARy ., @mopen}

£ Latest updates: https://dl.acm.org/doi/10.1145/3764116

RESEARCH-ARTICLE
Structural Information Flow: A Fresh Look at Types for
Non-interference

HEMANT GOUNI, Carnegie Mellon University, Pittsburgh, PA, United
States

FRANK PFENNING, Carnegie Mellon University, Pittsburgh, PA, United
States

JONATHAN ALDRICH, Carnegie Mellon University, Pittsburgh, PA,
United States

Open Access Support provided by:

Carnegie Mellon University

PDF Download
),Q 3764116.pdf
. 26 December 2025

Total Citations: 0

Total Downloads: 238
Published: 09 October 2025
Accepted: 12 August 2025

Received: 25 March 2025

Citation in BibTeX format

Proceedings of the ACM on Programming Languages, Volume 9, Issue OOPSLA2 (October 2025)

https://doi.org/10.1145/3764116

EISSN: 2475-1421

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3764116
https://dl.acm.org/doi/10.1145/3764116
https://dl.acm.org/doi/10.1145/contrib-99659895872
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/contrib-81100157780
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/contrib-81100454133
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/institution-60027950
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3764116&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3764116&domain=pdf&date_stamp=2025-10-09

Structural Information Flow: A Fresh Look at Types for
Non-interference

HEMANT GOUNI, Carnegie Mellon University, USA
FRANK PFENNING, Carnegie Mellon University, USA
JONATHAN ALDRICH, Carnegie Mellon University, USA

Information flow control is a long-studied approach for establishing non-interference properties of programs.
For instance, it can be used to prove that a secret does not interfere with some computation, thereby establishing
that the former does not leak through the latter. Despite their potential as a holy grail for security reasoning
and their maturity within the literature, information flow type systems have seen limited adoption. In practice,
information flow specifications tend to be excessively complex and can easily spiral out of control even
for simple programs. Additionally, while non-interference is well-behaved in an idealized setting where
information leakage never occurs, most practical programs must violate non-interference in order to fulfill
their purpose. Useful information flow type systems in prior work must therefore contend with a definition of
non-interference extended with declassification, which often offers weaker modular reasoning properties.

We introduce structural information flow, which both illuminates and addresses these issues from a logical
viewpoint. In particular, we draw on established insights from the modal logic literature to argue that
information flow reasoning arises from hybrid logic, rather than conventional modal logic as previously
imagined. We show with a range of examples that structural information flow specifications are straightforward
to write and easy to visually parse. Uniquely in the structural setting, we demonstrate that declassification
emerges not as an aberration to non-interference, but as a natural and unavoidable consequence of sufficiently
general machinery for information flow. This flavor of declassification features excellent local reasoning and
enables our approach to account for real-world information flow needs without compromising its theoretical
elegance. Finally, we establish non-interference via a logical relations approach, showing off its simplicity in
the face of the expressive power captured.

CCS Concepts: « Security and privacy — Information flow control; « Theory of computation — Modal
and temporal logics; Proof theory; » Software and its engineering — Polymorphism.

Additional Key Words and Phrases: information flow, security types, confidentiality, polarity, fine-grained,
coarse-grained, dependency tracking, modal logic, polymorphism, declassification, existential quantification

ACM Reference Format:

Hemant Gouni, Frank Pfenning, and Jonathan Aldrich. 2025. Structural Information Flow: A Fresh Look at
Types for Non-interference. Proc. ACM Program. Lang. 9, OOPSLA2, Article 414 (October 2025), 27 pages.
https://doi.org/10.1145/3764116

1 Introduction

Information flow control has long captured the interest of security researchers everywhere for
its unique ability to establish non-interference [Goguen and Meseguer 1982], a powerful property
which states that programs satisfying it cannot be manipulated to reveal sensitive information
to untrusted parties. For instance, an e-mail notification system should never disclose password

Authors’ Contact Information: Hemant Gouni, Carnegie Mellon University, Pittsburgh, USA, hsgouni@cs.cmu.edu; Frank
Pfenning, Carnegie Mellon University, Pittsburgh, USA, fp@cs.cmu.edu; Jonathan Aldrich, Carnegie Mellon University,
Pittsburgh, USA, jonathan.aldrich@cs.cmu.edu.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART414

https://doi.org/lo.l145/37641 16

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

https://orcid.org/0009-0009-3888-8440
https://orcid.org/0000-0002-8279-5817
https://orcid.org/0000-0003-0631-5591
https://doi.org/10.1145/3764116
https://orcid.org/0009-0009-3888-8440
https://orcid.org/0000-0002-8279-5817
https://orcid.org/0000-0002-8279-5817
https://orcid.org/0000-0003-0631-5591
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3764116
https://www.acm.org/publications/policies/artifact-review-and-badging-current

414:2 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

data, so password processing should not interfere with the execution of the former. Types are
the dominant mechanism for enforcing non-interference owing to its status as a hyperproperty
[McLean 1996]—a question about a program that can only be answered by comparing multiple
traces of its evaluation. Due to their innate ability to reason simultaneously over all possible
program executions, type systems might be expected to offer a straightforward path to discharging
non-interference invariants.

However, even in the face of their potential to stem the avalanche of security compromises faced
by the computer industry, existing information flow systems have seen limited adoption. Current
approaches to information flow reasoning burden programmers with complex specifications and
inadequately modular mechanics. In this paper, we argue that the reasons for these deficiencies
can be both explained and remedied with time-tested intuitions from the literature on modal logic,
within which information flow has previously been couched [Miyamoto and Igarashi 2004]. The
system crafted from this process, which we call structural information flow, is simpler and easier to
use both for metatheory and for program reasoning despite being expressive enough to support
practical programs. We start this paper with a brief introduction to information flow, requiring
only some familiarity with statically typed functional programming as a prerequisite.

1.1 An Opinionated Crash Course in Information Flow

Programmers often express information flow properties—without any access to purpose-built
systems for doing so—by leveraging parametric polymorphism [Reynolds 1984].! A simple example
is the polymorphic identity function. The typing id : @ -> « specifies that the return value must
depend only on the data given as input. Likewise, the typing second : « -> f§ => [§ expresses that
its return value must depend only on its second argument. For a more interesting example, consider
the typing of the standard map function on lists given here. The polymorphic components are the

let map : (a -> f) -> list a -> list f§

list elements, so this type communicates that the elements of the input list are permitted to flow
into the higher-order argument, and that the elements of the output list depend on the return
value of that argument. All three of these types express information flow properties: for a given
computation, they relate its inputs to its outputs. However, these types also express data abstraction
properties: id : « —> « expresses that the function should be able to be given an input at any type
and return data at that same type. Both properties are consequences of parametricity, which states
that not only does the argument flow to the return value, but that exactly the argument is returned.

Parametricity is quite useful, but its sheer strength greatly limits the range of programs we can
write under it. What if we want to continue tracking information flow, but do not want to keep data
abstract? For instance, we might like to write a function that takes as argument an integer, adds
one to it, and returns it. We cannot, however, add one to data at type « because it is not known
to be a number. Our first core intuition is that parametric polymorphism offers two distinct
features, both (1) providing data abstraction and (2) enforcing information flow properties.
We want to isolate the second, so let us try tagging types with dependency variables like o, rather
than having o be the type. Under this proposal, we might type the successor function on integers
as @ int -> «a int. The « no longer has any role in data abstraction, but merely tracks the identity
of the data—that is, on which data it depends. Note that this is distinct from the « in 1ist «, which
permits the list to be generic over the type of its contents.

We are better off now than we were before—we can do interesting computation with data whose
information flow content is being tracked—but are not quite there yet. For instance, try to write

1As distinguished from ad hoc polymorphism; the distinction is detailed in Strachey [2000].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:3

down the information flow type of the addition function. We would like to be able to state that it
takes two integers as arguments and returns an integer dependent on both. We can start out by
writing add : « int -> f int -> . What should go in the ? Our current syntax is constrained
to mention a single dependency per type, so we seem to be stuck. We can fix this by generalizing
our type-level dependency variables to being sets of dependency variables. This is the other core
intuition behind our system. We set|? |=[« f] int, which can be read as “this int depends on
data from sources @ and . The resulting typing for addition is shown by add. The dependency

let add : [« Jint -=> [f 1 int > [a f] int

variables on the arguments have also been turned into dependency sets for consistency. Keep in
mind that these type signatures are polymorphic: now that we have generalized beyond single
variables to sets of variables within our types, each variable in the set can be instantiated to another
set of variables. Just as the @ in @ -> « can be instantiated to int to obtain int -> int, the « in add
can be instantiated to [secret1 secret2], representing data depending on some secrets. add1
shows the resulting typing, taking as a first argument an an integer dependent on concrete sources
secret1 and secret2. It returns an integer dependent on secret1, secret2, and p.

let addl : [secretl secret2] int -> [f] int -> [secretl secret2 f] int

We haven’t yet performed any meaningful information flow reasoning—what might a specifica-
tion for preventing secret leakage look like in this setting? We consider below a simple password
checker. We start by declaring some password data pass, which is a string tagged with pwd to
indicate it contains password data. We assume pwd is in scope but defer detailing the mechanisms
used to introduce it. Our checking function check takes a string—a password attempt—at any
dependencies and returns a bool tagged with those dependencies and pwd, indicating whether the
attempt was correct. This all seems to be as expected: the return value of check is dependent on

let pass : [pwd] string = "katya"
let check : [«] string -> [« pwd] bool = fun attempt -> attempt == pass

both its argument and pass, being the result of comparing them, so the type of the return value
states exactly the same. If our purpose is to usefully detect whether password data is at risk of
leaking, though, this seems too conservative: it is necessary to the function of the password checker
that its boolean return value is permitted to leak.

Of course, it is intuitively a violation of non-interference to leak an arbitrary bool dependent on
password data: consider the case where a function of the same type as check returns the nth bit
of the password as a boolean value, where n is the length of the argument string. Unexpectedly,
we will be able to give check—that is, this and only this implementation of check—the type
[«] string -> [«] bool. Section 4 will reveal precisely how. For a final example, consider the
function f. What must | ? | be?

let f : [a]bool—>[]boolz
The punchline of this paper, to be delivered in full in Section 5, will be that f must be constant
in its argument. This is due to recovering non-interference as a flavor of parametricity over
dependency variables. In fact, any function where the input dependency set is not a subset of

the output must be the constant function. And with that, we conclude our introduction: the basic

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:4 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

notions we have introduced are all that will be needed for the structural information flow setting.
The rest of this paper will elucidate the seemingly straightforward choices we have just made,
grounding and justifying them via well-understood logical foundations and showing that the system
created by these choices is expressive enough to capture information flow issues arising in the
wild. In particular, the aforementioned desirable typing of check will turn out not to require any
extensions. This is not the case with other approaches, which call this behavior declassification and
add constructs to allow violations of non-interference. This often obstructs modular reasoning.

1.2 A Preview of the Rest

Section 2 will reveal that the language we have set up is a variant of hybrid logic. We have just
discussed how to arrive at this language from parametric polymorphism, but it is also possible
to find the way there by drawing on logical intuitions. We describe how to arrive at our setting
beginning from prior work grounding information flow in conventional modal logic. Section 3
explores a number of further examples, touching on several subtle details of our system that
significantly aid the straightforward and succint nature of our information flow specifications. This
is detailed by comparing to equivalent programs written in systems without our insights. Section 4
introduces declassification by example, solving our issue with check above. Section 5 discusses
the typing rules, comparing to those for hybrid logic and discussing the simple logical relations
argument with which non-interference can be validated in our setting. Section 6 compares to other
work investigating either declassification or the foundations of information flow. We conclude in
Section 7. Our contributions are the following:

(1) We clarify and re-cast the foundations of information flow in the light of hybrid logic
[Prior 1968], a well-studied generalization of modal logic designed around concerns we will
show throughout this paper to be fundamental to information flow reasoning.

(2) We show that the design intuition imparted by hybrid logic has the potential to simplify
information flow specifications. We extoll the virtues of performing information flow
reasoning in terms of dependency sets, inspired by hybrid logic’s world paths. We touch on
the important role played by the proof-theoretic concept of polarity in determining the
granularity of dependency tracking.

(3) Remarkably, the quantification machinery suggested by hybrid logic realizes declassifica-
tion fully internally to the system. That is, our theory neither makes any explicit mention
of declassification nor needs to be extended to support it. We remark on the nature of this as
computationally relevant information flow policies.

(4) Our metatheory and proof of non-interference inherit the elegance and simplicity of the
programmer-facing side of our system. Namely, we show how our logical relation inherently
supports non-interference reasoning in the presence of declassification, automatically
ignoring disequalities resulting from declassification by writ of quantification.

By the end of this paper, we will have taken the initial steps towards bringing to bear the full-
throated no-concessions-made variant of non-interference as a practical—even desirable—regime
under which to write secure programs.

2 Background, Logic, and Typing

Having introduced one way of arriving at the structural approach to information flow starting from
ordinary functional programming, we will now reveal another starting from constructive modal
logic. It will turn out that hybrid logic [Prior 1968], a generalization of modal logic, provides a more
robust foundation for information flow reasoning than the standard modal setting in which most
prior work has been cast. In particular, we will show that hybrid logic has been designed around a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:5

number of considerations critical to information flow reasoning. We start by reviewing programs
written under a more standard theory of information flow, then elaborate its logical structure in
the subsections that follow.

2.1 Introduction: Round Two

Let us revisit the examples from the introduction within a conventional theory of information flow
in order to build intuition. In particular, our examples are lightly inspired by the syntax of Flow
Caml [Pottier and Simonet 2002], an information flow system for OCaml. Figure 1 compares the
typing of the identity function on integers between our approach and a standard one.

let id : [«] int => [a] int (* Ours *)
let id' : « int -> « int (*x Theirs *)

Fig. 1. Similar-looking types...

They look pretty similar. In fact, the standard typing looks much like ours did before we general-
ized from singular variables to sets of variables. How, then, might we type addition?

letadd : [o Jint > [1 int > [a f] int (* Ours *)
let add' : « int -> f int -> § int with «, f <= § (x Theirs =)

Fig. 2. A first sighting of lattice constraints

Here, we catch our first sighting of the lattice constraints which ordinarily comprise information
flow specifications [Denning 1976]. At the point in our prior exploration where we chose to
generalize to sets of dependency variables rather than individual dependency variables for typing
add, two roads diverged—and we took the one less traveled by. The other option was to add
additional structure to the variables themselves, transforming them into elements from a semilattice
rather than leaving them inert. This is the more common option, so we review it here.

A semilattice has one primitive operation: join, written LI. We can join two dependency variables o
and f by writing « LI f, returning another dependency variable. The returned variable is interpreted
to be greater than or equal to both « and f—specifically the least such variable. That is, LI generates
a partial ordering C over the carrier set of dependency variables. « E means that & can be joined
with other variables to produce f—in other words, § represents information from «. o E S allows
us to compare two dependency variables & and S to check if data from « is permitted to flow to f.

We use both operators in the type for add, writing LI syntactically as a comma °,” and writing C
syntactically as <=. So we can parse the contents of the with clause as (« U ff) E §, or in natural
language, “both « and ff must be able to flow to §.” The dependency variable for the return value
is 9, and flows to the return value can be specified by way of partial orderings which place §
above other variables representing input information. When this function is called, the caller must
instantiate «, f§, and d—just as we previously set « = [secretl secret2] in our typing for add1
in Section 1.1—with concrete variables such that the two former variables are both ordered less
than the latter one. This will satisfy the type constraints because Ll is guaranteed to yield the least
variable higher than both operands—so no higher than the instantiation of §. As an aside, note that
all this constraint information must be digested by programmers to appreciate the type of add',
rather than relying on existing intuitions surrounding parametric polymorphism as in Section 1.1.
The argument for the simplicity of the latter is already taking shape. Note that lattice-based systems
ordinarily deploy simplification algorithms which attempt to elide constraints from types. We hold
off on applying these until the next section to avoid obscuring the fundamental mechanics.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:6 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

While picking through the above definitions, you may have noticed something curious. Our sets
of dependency variables also have semilattice structure! Join is given by set union, which induces
the partial order given by subset inclusion. When two sets are unioned, another set is produced
which has exactly the elements needed to be the superset of both, and no more. This structure is
known as the free semilattice in algebra. Free indicates that it is the simplest possible way to arrive
at a semilattice starting with some carrier set—of dependency variables, in our case. We simply
make each element of the set of variables into a singleton set to create the smallest elements of
our semilattice, and apply set union to generate more elements until we reach closure. This is
analogous to taking the power set of the carrier. Where before we used a; <= @, to denote that data
from source «; flowed to destination a,, we now have [« f] to mean that data from sources [«]
and [f J—subsets of the former—flowed into that destination.

Sharing the same algebraic structure does not collapse the two approaches into one, however—
far from it. As we will show in Section 3 and Section 4, the choice to use the free semilattice in
our setting has made all the difference. But we are not yet prepared to discuss why. For now, let us
review a final example from the prior section under a conventional information flow system. The
retyped password checker is shown in Figure 3.

let pass : [pwd] string = "katya" (x Ours *)
let check : [a 1 string -> [« pwd] bool =

fun attempt -> attempt == pass
let pass' : pwd string = "katya" (* Theirs x%)
let check' : « string -> f bool with «, pwd <= f =

fun attempt -> attempt == pass

Fig. 3. Comparing Our Password Checkers

The situation is much the same as in Figure 2. We must somehow betray in the return type of
check' that it depends on pwd data. We can achieve this by specifying that the variable annotating
the return type must be ordered greater than pwd. The flow from the argument « is accounted for
exactly as before. We look now to the mechanics underlying both flavors of information flow.

2.2 Reconstructing Information Flow via Hybrid Logic

The standard approach to information flow can be recovered from constructive modal logic [Pfen-
ning and Davies 2001] by way of partial necessity [Nanevski 2004], which provides an account
of indexed O (modal necessity) connectives. Miyamoto and Igarashi [2004] follow this approach,
indexing the O operator with elements ¢ from a semilattice. It is common [Abadi et al. 1999;
Choudhury et al. 2022; Liu et al. 2024; Shikuma and Igarashi 2008; Tse and Zdancewic 2004] to
furthermore eliminate the necessity semantics and transition to a lax modality [Fairtlough and
Mendler 1997] by admitting extra axioms on O,. The O, connective is kept around, because it is
indexed with information flow machinery ¢, but retains none of its original purpose within modal
logic. We cannot provide the full story here—it is provided in Gouni et al. [2025, Appendix A] for
the interested reader—but alternative, cleaner logical foundations are possible.

We will describe how to arrive at the structural approach starting at constructive modal logic as
before. Modal logic was originally designed around reasoning about the possible states of affair,
or configurations of reality, that can be reached from our current one. These states are known
as worlds. O A can be read as “in all reachable worlds, the proposition A will be true”. In usual
presentations of modal logic, reachability of worlds is defined by a relation—which in our case will
be a partial order T—on worlds ¢, where £; C ¢, means that ¢, is reachable from #;. This is called a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:7

Kripke semantics and is separate from the syntax of modal logic, underlying it. Partial necessity
as previously mentioned can be deployed to pull—or internalize—worlds into the syntax of the
logic by indexing 0O with worlds ¢: each world-indexed necessitation O, identifies the world ¢ at
whose accessible worlds it is true. In other words, in order to access some information at world
?, the current world ¢’ must have accounted for ¢ as a dependency—¢’ must be reachable from ¢
in the semantics. The first core insight here is that information flow variables denote worlds.
Worlds hold a special place at the heart of modal reasoning, though, and partial necessity offers
little insight about them—it is oblivious to the fact that it is working with world indices.

This is a job for hybrid logic [Prior 1968], an alternative approach to generalizing standard modal
logic designed around internal reasoning about worlds. Hybrid logic reifies worlds as a first-class
syntactic construct rather than leaving them implicit in the semantic realm or judgemental structure,
or relegating them to an index into an existing connective. It does this via a satisfaction operator
@,,A read as “at world w, proposition A should be true” The usual introduction and elimination
rules for @,,A are given in red in Figure 4. The form of the typing judgementis '+ M : A [¢$] and
can be read "Under assumptions I', expression M has type A at world ¢."

@l CE @E-NEW
I'rM:A[¢] F'FM:@uA[¢'] I'FM:@4A[¢']
T+ M: @A [¢] T+M:A[g] TrM:A[$*¢]
T+M:A[¢] T'rM:A[g]
T'FM:@A[¢'] “ T'FM:@A[¢'] “ FT'-M:A[¢] PCT P
CE QE-NEW Sus
TrM:A[g] TrM:A[p*d] THM:A[p+¢]

Fig. 4. Satisfaction in Hybrid Logic and its Soundness

This setup is adapted from Reed [2009]. Rather than abstract world variables ¢, the worlds in
these rules consist of elements ¢ of a free commutative monoid generated from a set of atomic world
variables a1, g, . .., a,. That is, ¢ = oy * ap * ... * @;. This is quite close to a semilattice, which is
what we need for information flow. It is lacking only idempotency, or the property that « * « = «,
so we add it to turn each ¢ into an element of a free semilattice. The join operation LI is given by
set union U as described in Section 2.1. There are variants of hybrid logic which do not represent
the structure of worlds using a free monoid or semilattice, but the guiding intuition behind hybrid
logic is to pull as much of this structure as possible into the syntax. Elements from a parameterized
semilattice £ and ¢’ have no meaning except that provided externally, outside the syntax, but join
in a free semilattice (« %) U § = « * f§ = § is immediate from the notation of each element. The
next section will show that this choice simplifies specifications; the section after will place it at the
heart of a sound and compositional declassification mechanism.

We are not quite at a system suitable for information flow yet. We would like to be able to state
that M has dependencies ¢ at type A—something akin to O,A—by saying @A, but it turns out this
will not quite suffice. The problem is the @E rule, which wholesale replaces the current world ¢’
with the ¢ inside the satisfaction operator. For information flow, we need to keep track of the old
world, as well. We must not forget the ambient security level! Our second core insight comes from
Pfenning and Davies [2001], who suggest a solution in the form of world paths. World paths keep
track of the history of your traversals through worlds, or the sequence of worlds you have
‘walked through’. We update the elimination rule to @E-NEw, which now preserves the old world
path ¢’ and joins it with the world path ¢ obtained by eliminating the satisfaction operator. Each

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:8 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

dependency « in the judgemental ¢ is a world previously traversed and so recorded on the path. For
subtle reasons elucidated in Gouni et al. [2025, Appendix A] and by Nanevski [2004], no notion of
necessity exists in this connective. In short, indexing the necessity connective with modal worlds,
as with other approaches, precludes its removal. By instead using hybrid logic to syntactically reify
worlds, the core machinery for information flow emerges as a matter of satisfaction.”

Note that @E-NEW is no longer symmetric to @L This appears to break local soundness, as shown
in the second row of Figure 4. The issue is that reducing away pairs of introductory and eliminatory
rule applications should not change the type A or world ¢ in a way that is unachievable through the
other rules of the logic—that is, introduction followed by elimination does not let us prove anything
we could not before. This obviously holds for @I and @E, as evidenced by the leftmost derivation,
but not when the latter is replaced with @E-new, producing an extra ¢’ in the conclusion. Local
soundness is retained via a subsumption rule SuB which permits the M : A [¢] at the top of each of
the first two derivations to be used directly to prove M : A [¢ = ¢’]. A different solution arises from
exploiting the proof-theoretic concept of polarity. This is the strategy we will adopt when setting
up our type system in Section 5.1. But in either case, local soundness is retained.

pass: [pwd] string € ... attempt : [a] string e ...
VAR - - VAR
...k pass: [pwd] string [«] ...+ attempt : [a] string [pwd]
@E-NEW - - @E-NEW
...k pass:string [a * pwd] ...+ attempt : string [« * pwd]

- - EouaLs
pass : [pwd] string, attempt : [«] string + pass == attempt : bool [a * pwd]

pass : [pwd] string, attempt : [a] string r pass == attempt : [« pwd] bool [¢]
Fig. 5. Derivation for the Body of check

Hybrid logic will offer one more fundamental insight, but before that, we have roughly all the
tools we need to work through the body of check from Figure 3, shown in Figure 5. We will assume
a typing for a comparison operator which requires both of its arguments to be at the same world
path, and a variable rule which permits variables to be typed at any world. The syntax [§ f] A is
interpreted as a satisfaction operator, namely @s,3A. We use € for the empty world path following
Reed [2009]. Reading from the bottom of the derivation, we start by applying @l—reading the rule
itself bottom-up—to extract the bool from the satisfaction operator. We then apply our imagined
equality rule, producing a goal for each operand. For the left goal, we continue bottom-up by
applying @E-new to give us pass at type [pwd] string, drawing pwd from the world path in its
conclusion. We finish with the variable rule. The right operand is analogous.

What is the final affordance of the hybrid setting? From the logic perspective, one of the primary
motivations for hybrid logic is in its explicit treatment of quantification over worlds. From the
information flow side, observe in the examples we have seen the prevalence of quantification—or
polymorphism—over dependencies. We have not yet written a single program that does not rely
on dependency polymorphism, even in introductory cases, and the rest of this paper will not
contain any. Generic programming is broadly useful, but in the information flow setting it becomes
absolutely essential. An information flow system without polymorphism cannot express useful
programs without significant amounts of duplication. You may need to rewrite the same function
for almost every single call site, because each usage will likely differ in its information dependencies.

2Satisfaction here is at a lax modality [Fairtlough and Mendler 1997; Moggi 1989], due to @E-NEW structuring the judgemental
¢ as an effect [Katsumata 2014]. The latter is connected to possibility [Benton et al. 1998], which becomes lax in the absence
of necessity [Nanevski 2004, §4.1.1]. Section 5.1 treats this effectful structure via polarity.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:9

This is our third and last core insight: quantification over dependencies is essential and must
be a first-class concern. Hybrid logic will be of assistance one last time, deploying its inbuilt
ability to quantify over the worlds in its syntax. The setup for quantification will be both simple
yet general enough to let declassification emerge as a consequence.

Observe the parallels between the core insights from the preceding story and those from Sec-
tion 1.1. Our earlier introduction of dependency sets corresponds to world paths here, and polymor-
phism (or quantification) shows up fundamentally in both. As promised there, the affordances of our
setup—the combination of world paths/dependency sets and quantification/polymorphism—will
turn out to be the key to performing declassification in a modular, elegant way. We hold off on
discussing these points until Section 4 and Section 5. The next section builds more intuition through
a number of examples.

3 More Examples and Subtleties

In this section we review a few potentially subtle details that make the structural approach to
information flow easier to use in practice. These do not emerge as ad-hoc heuristics, but are
motivated by fundamental affordances bubbled up from the logical and type-theoretic foundations
of our system. We start not with a feature we have, but with one we lack.

3.1 Uniformity, or Absence of Policies

In standard theories of information flow working in terms of an arbitrary semilattice, it is common
to tweak the structure of the lattice to model information flow policies. For instance, imagine
that Alice trusts Bob. We could have a two element semilattice where alice LI bob = bob and so
alice <= bob. Why is this useful? Functions like in Figure 6 become typable.

policy alice <= bob

let expected : bob string = "nemmerle"
let msg_bob : alice string -> « string -> f string with «, bob <= f§ =
fun alice_secret msg_str ->
if alice_secret == expected then msg_str else panic

Fig. 6. Declaring a Custom Dependency Ordering

This program allows Alice to message Bob by passing msg_bob strings, which Bob can then
read. Alice must provide the correct secret to msg_bob so Bob knows it is the right person. There
is something odd going on here. We pass data at levels alice and « as the first two arguments
to msg_bob. The computation of the function body is certainly dependent on both arguments:
alice_secret is used in a conditional guard, and msg_str is returned from one of its branches.
However, the constraints on the return dependency f indicate that it only contains data from « and
bob. This is because the alice dependency induced by comparing against alice_secret in the
conditional guard is subsumed by the bob dependency induced by the expected variable against
which it is compared. The policy declares that alice can flow into bob, so it does.

This can be expressed structurally, but not in this way. In particular, it is not possible in our setting
to simply declare a partial ordering on dependencies [«] and [f], because our dependencies are
inert. They have no implicit structure, being determined by their syntax. [«] can only be partially
ordered less than a dependency set that contains it, like [« f 1. This means that two dependency
sets can be compared for partial ordering at a glance, without having to keep declared policies in
working memory. Our experience is that the usage of orderings which violate the one given

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:10 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

structurally are the exception rather than the norm, so should not be applied pervasively
for the whole program. Section 4.4 will show a local, computationally relevant alternative to the
above, leveraging the same machinery as for declassification. We still have not made a strong case
for the simplicity of our approach yet. We look to Figure 7 to make it.

let alc : a int -> « int
with alice <= «

let bob : « int -> « int let alc : [a] int > [« alice] int
with bob <= « let bob : [« 1 int -> [« bob] int
let both : o int -> f int * § int let both : [«] int ->
with bob <= § [a alice] int * [« bob] int
and alice <= f let both x = (alc x, bob x)

and o <= f, §
let both x = (alc x, bob x)

Fig. 7. Alice and Bob Sharing a Computation

This program moderates flows between Alice and Bob, who want to perform computation
together but do not want their information to be intermingled or revealed to the other. Looking first
to the program on the left, alc and bob are the functions that represent their computations. Each
takes as argument an int and mixes either alice’s or bob’s data into it. This is indicated by the
alice and bob dependencies lower bounding the « dependency in their return types. Note that
we are applying simplification algorithms in this example. We might have typed alc as given for
alc' below. Instead the simplification algorithm recognizes that whatever the dependency level of

let alc' : « int -> f int
with alice, a <= f

the argument passed to alc, it can be raised until it is above alice, which loses no generality and
preserves the soundness of dependency tracking. Next, the function both operationally invokes
alc and bob in each projection of a pair and returns the pair. That this computation respects the
desired separation property is not easy to determine from the type, however. We must instead
confront a bag of constraints which, once analyzed, will hopefully say what we want.

Looking to the conjoining program on the right, the terms are exactly the same. The types of
alc and bob again state that the return type of each depends on its input and on data from alice
and bob. The indication of this fact with [« alice] is arguably already more direct. We need no
simplification algorithms to arrive at this type—it is the only one that accounts for the flows from
the argument « and alice. The biggest difference is in the type of both, which states that data «
from its argument flows to each element of the returned pair, and data from alice and bob flows
separately to each projection. From this we immediately know that the separation property we
wanted is preserved by both. If data from Alice had been passed to Bob, or vice versa, we would
see a set [alice bob ...] containing dependencies from both. At a glance, we see nothing of the
sort. It is of course possible to use both to violate the separation property, but this would again
be obvious at the callsite; this is in line with prior work [Pottier and Simonet 2002]. Next, we
reconsider the heuristic of making fine-grained dependency tracking pervasive.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:11

let const : [a«] int -=> [] int
let const _ 10

let alice : alice] int

L
let alice = 0

let result : int

let result = const alice

Fig. 8. The Constant Function

3.2 The Benefits of Explicit Satisfaction

We have so far carried an implicit assumption—mirrored by other information flow systems [Pottier
and Simonet 2002]—that all dependencies are tracked granularly. That is, all values carry their
dependencies with them through being passed into and returned from functions. As an illustration,
look to Figure 8. What dependency set should the | ? |be? The empty set [] of course! When we
evaluate the call const alice, o gets instantiated to [alice]. « does not appear in the return
type, so this has no effect. For the constant function, we want precise tracking. However, most
functions are not the constant function: they have at least some arguments upon which the return
value is guaranteed to depend. For instance, consider the type for add given in Section 1.1. Need it
have any information flow content at all, since its return value will always depend on both of its
arguments? The clean logical foundations of our system help us answer this.

3.2.1 Polarity. A tool from proof theory, polarity, suggests that we need not. Polarity classifies
types into positive—defined by their constructors—or negative—defined by their behavior when
used. Booleans and lists are positive because we think of them by the form of their inhabitants,
like True and Cons(...). Functions are negative because they are characterized by their behavior
when we apply them to arguments, not by their implementation. Positive types are connected to
values, and negative types to computations [Levy 1999]. Remember that the goal of information
flow is to map the inputs of a computation to its outputs. Polarity implies that positive types
need not have interesting information flow specifications, because they do not pertain to com-
putations, but negatives must. In particular, positive types should not granularly track—that is,
encapsulate—information flows, but negative types should. For instance, lists are a positive type, so
the dependencies of its elements are not tracked separately but propagated to the dependency set
for the entire list. Meanwhile, function types should not leak information dependencies contained
in their bodies until they are called, so these dependencies must be captured in their return type.
Not so for their arguments, which should be determined by the polarity of each argument type.
Luckily, polarity does not force a predetermined coarseness of tracking on us, besides as a per-type
default, but permits us to choose. The connective [@] A—which is the satisfaction operator from
Section 2.2—is of negative type. If granular information flow tracking is desired within positive
types, a satisfaction operator can be introduced to do so.

Our view on polarity in information flow provides the following: the granularity of depen-
dency tracking should be type driven, rather than using a heuristic of maximally pre-
cise tracking everywhere. This will allow us to simplify types, writing the type of add as
int -> int -> int. int is a positive type, so does not encapsulate any dependencies, and because
this eliminates all dependencies on the arguments the return value need not encapsulate any either.
The ambient world path—or security context—¢ from the typing judgement in Figure 4 is given
programmatic meaning now: it tracks dependencies not encapsulated inside the type. Though

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:12 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

we did not provide syntax for introducing and eliminating satisfaction in that section, we might
imagine that the syntax #e introduces it, internalizing the current ambient dependencies into the
type. Thus if x has type int and the ambient security context is «, the expression #x will have type
[«] int. Similarly, we use !e to eliminate satisfaction and move the dependencies annotated in
the type of an expression from the type to the ambient security context. Putting these together,
the expression #(add !alice !alice) would have type [alice] int as before. alice is tracked
ambiently after !alice until #(...).

Practically, we should be able to let the language infer satisfaction for us. An algorithm to do
this seems straightforward enough: if we have an e : A but need an expression of type [@ 1 A,
then attempt to apply satisfaction introduction. Analogously for the reverse direction. We leave the
formulation of this algorithm as future work, assuming it for the time being for convenience. The
important point is that we can exploit polarity to inform and control the granularity of dependency
tracking. Prior work has pursued expressivity results [Rajani and Garg 2018] regarding different
degrees of granularity, but has not identified the connection to polarity which informs when
dependencies should be tracked.

3.2.2 Dependency Elision. Based on the ideas above, our system supports an interesting and useful
type simplification pattern. The type for map1 in Figure 9, specialized to lists of integers, precisely
characterizes information flow for this function, and is comparable (even slightly better, due to the
benefits noted in Section 3.1) to the types given for map by other information flow systems.

letmapl : [o 1 (L 1 int > [6] int) > [o] list ([f 1 int) ->

[« 0] list ([§ 1 int)
let map2 : ([f 1 int > [§ 1 int) -> list ([f] int) -> list ([§] int)
let map3 : (A -> B) -> list A -> list B

Fig. 9. Finding Simplifications in Map

Reading from left-to-right, we first annotate the function argument given to map1 with « so
that when it is used inside the body it can induce an @ dependency. The function itself takes a
[f 1 int as argument, which is the type of the contents of the list, and returns a [¢] int, the
type of the contents of the returned list. This does not suffice to describe the dependencies of
either the argument or the returned lists, though, because while f and describe the dependencies
of their contents, the structure of the list may itself have dependencies. For instance, the length
of a list may betray information about the number of bits in a cryptographic key. Since lists are
positive types, it would not ordinarily be allowed to treat these distinctly, but we manually do so by
using a satisfaction type for the elements. So we introduce a o dependency for the argument list to
represent the structure information. The structure of the returned list is dependent on both ¢ and
@, because the dependencies from the higher-order argument must be captured in the return value.

Precision can be useful, but this type is more complicated than we might like. Looking at the
type of map1 more carefully, we see that @ and ¢ both occur in outermost satisfaction types in the
argument types and on the return value. When such a pattern arises, the corresponding variables
can be removed entirely without losing any precision, which we call dependency-elision. The
unmentioned dependencies on the arguments will then be propagated ambiently to the whole
application expression. The resulting type is given for map2. This simplification is not possible
in systems which do not follow the directive given by polarity and instead track dependencies
maximally granularly everywhere [Liu et al. 2024; Pottier and Simonet 2002], for instance forcing
positive types like 1ist to always hold their structural dependencies. A further simplification can
be made in this case: the standard polymorphic type of map, reproduced in map3, now captures

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:13

that of map2. So it can be used to track information flow with no loss in precision from map1. For
simplicity and clarity the formal system in Section 5 focuses on dependency polymorphism; we
leave an extension of the system that supports type polymorphism to future work.

4 Declassification

The essence of declassification, as hinted, is quantification and dependency sets (i.e. world paths from
hybrid logic). We rely on the same fundamental machinery used to ensure modularity across most
modern typed languages. In that respect it should be uncontroversial. The core of the technique
can be subtle for those unfamiliar with existentials from prior work on type abstraction [Mitchell
and Plotkin 1985], but we will use simple examples to make the ideas more accessible.

4.1 Explicit, Higher-Rank Quantification and Dependency Sets

When we typed the identity function as with id_implicit in Figure 10, we omitted the bindings of
the « variables. We now give a more explicit version as id_explicit, matching the formal system
to be described in Section 5. The difference is the forall « sitting in front of the type signature,
called a quantifier. This construct acts as a binder for «: where let binds term-level variables,
forall binds type-level variables.

let pass : [pwd] string = "katya"

let id_implicit : [«] int -=> [o] int
let id_explicit : forall ¢« . [«] int -> [«] int

let v1 : [pwd] int = id_implicit pass
let v2 : [pwd] int -> [pwd] int = id_explicit [pwd]
let v2' : [pwd] int = v2 pass

Fig. 10. Exposing the Type of the Identity Function

v1 shows the function id_implicit being applied as we have done so far, simply passing it an
argument with dependencies [pwd] and expecting that the « in its type will change to reflect these
dependencies. v2 shows the plumbing: we first instantiate id_implicit to [pwd], whereupon
the type system substitutes away the « for that set of dependencies. The type that results is a
function with nearly the same input and output types, but which is no longer polymorphic in «. In
v2' we apply v2 to the same argument pass as before—which matches the expected dependency
set [pwd J—yielding the same type as in v1. foralls are usually handled transparently when
polymorphism is in use, but declassification will require us to explicate them.

4.2 ‘Where’ Declassification: Disappearing Dependencies with Quantification

We now illustrate declassification in our system, using the what-where-when-who framework of
Sabelfeld and Sands [2009] to structure our discussion. We start by asking where can quantifers go?
They have so far appeared exclusively and implicitly in prefix position, or at the beginning of the
function signature. Consider the type higher_rank in Figure 11. The forall-quantified j here is
no longer in prefix position, because it has been moved inside the higher-order function. This is
called higher-ranked quantification.

Here our goal is to allow a function defined by client code to compute with a secret number
without being able to reveal it to the outside world until the computation is done. When the
computation finishes, the final answer is revealed. Observe that numin client has type [f] int.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:14 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich
type higher_rank = (forall g . [] int -> [f] int) —> int
let impl : higher_rank = fun compute -> compute [] 7

let client : int = impl (fun num -> num + 123)

Fig. 11. Higher-Rank Quantification

We add 123 to it, and then return it as the result of the higher-order function. The whole function
is passed to impl, which gives us back an int. Inspecting impl we see that it sets num to 7. So
the higher order function passed to it by client will add 123 to 7. The sum 130 is returned to
client as the result of the computation. This is dependent on the initial value of num, which has
dependency f, but does not occur in the type of client! Indeed, j is not in scope there. The
reason [} disappears is because client is polymorphic in . This means that its logic must be written
without knowing what f actually is—as though f could be anything. impl takes advantage of this
by instantiating /5 to [1. Inside the higher-order function in the body of client, the dependency
must be treated like any other. However, when 130 is sent to impl, where f is set to [], it returns
a [] int. We implicitly unwrap the now-unnecessary satisfaction operator to yield just [] int.
In Sabelfeld and Sands’s framework, we bound where the disappearance—or declassification—
occurs to the lexical scope for f. Observe that this is not declassification in the typical [Sabelfeld
and Sands 2009] sense of violating the faithfulness of dependency tracking. Rather, we simply
exploit the internal knowledge of f’s emptiness to eventually elide it. This work demonstrates that
declassification in the usual sense is not needed to expose the programming facilities offered by it.

4.3 ‘What’ Declassification: Revisiting Password Checking

We can now solve the problem with check from the introduction, which will involve controlling
what information can be declassified. Our solution is laid out in Figure 12. We start by generalizing
the schema of higher-ranked quantification, represented by the passwd_checker type. There is
now a quantified variable & which allows us to return data at any dependencies. Importantly, o
cannot mention 7 because it is scoped outside of it. In fact, the x is not universally quantified
anymore—another name for forall—but existentially quantified. The ability to encode existential
quantification by leveraging universal quantification as shown is discussed in Girard et al. [1989,
§11.3.5]. Existentials allow us to realize declassification fully generally.

7 plays the same role as pwd from our first attempt in Section 1.1. As in the preceding section
we use a higher-order function to allow the client to compute on a secret value, then declassify
the final result. This time, however, we provide the client with a secret value pass along with
methods that can manipulate it: check and hash. To describe an interface exposing these elements
we use the F () notation, which is a template that takes a dependency variable as an argument and
splices in a record containing methods typed at that variable. impl works on the same principle as
before, instantiating the existential dependency 7 to the empty set of dependencies. It lives up to
its namesake, providing implementations of each of the exposed methods. The clients are more
interesting. client1 exhibits a standard usage, instantiating « to [] and using check. client1 is
of type bool, as was promised in Section 1.1. So we have successfully declassified exactly the bool
resulting from the password check. client2 attempts to instantiate o with [7] so it can try to
do the password check without going through check, but existential quantification bars it from
doing so. 7 is not in scope at the point of instantiation! client3 instantiates « to [], but again
accesses password data through imports. pass. This induces a 7 dependency—since the template
was called with 7 as an argument—which will not check against the empty set.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:15

F(r) = {
pass : [7] string,
check : forall p . [f 1] string -> [f] bool,
hash : forall g . [= p 1 string -> [f] string

type passwd_checker = forall « . (forall = . F(n) -> [@] bool) -> [a] bool

let impl : passwd_checker = fun compute -> compute [1 {
pass = "katya",
check = fun attempt -> attempt == pass,
hash = fun pass_str -> sha256sum pass_str,

let client1 : bool
let client2 : bool
let client3 : bool

impl [1 (fun imports -> imports.check "arren")
impl [7] (fun imports -> "arren" == imports.pass) A
impl [1 (fun imports -> "arren" == imports.pass) A

Fig. 12. A Fancier Password Checker

There is one point left to illuminate. Look to hash, which permits password-dependent strings’
hashes to be leaked. From a client’s perspective, such a function is possible when specified using
world paths / dependency sets, but is not possible under an arbitrary semilattice-based theory of
information flow. When calling hash, the information flow content of the data passed to hash’s
first argument must be able to be uniquely decomposed into the dependencies which comprise it.
This allows hash to ‘match’ on dependencies in its input type and remove them, as it does with 7.
Joining in arbitrary lattices does not necessarily preserve information about the inputs, preventing
the client from performing this decomposition, but the same in a free semilattice does.

Scaling the existential approach to practical programs necessitates being able to express declassi-
fiers like hash. Otherwise, one is relegated to declassifying only by virtue of exported methods
which do not induce some dependency, like check, rather than being able to actively remove that
dependency in the style of hash. For instance, you may wish to perform some string processing on
password data—say, padding it with a nonce—before hashing it. If we could not express functions
like hash which remove dependencies from a given computation, this would require a specialized
function in the style of check which does the desired padding, followed by hashing, to be exported
from the password checker interface. In the general case, each individual use-case would require
specialized support from the password checker itself. This is neither modular nor scalable.

The general problem here is highlighted by Cruz and Tanter [2019], who import the the machinery
of faceted types to address it. It is remedied here without the need for specialized modifications to the
type system. At an intuitive level, declassifying functions like hash can be seen as a computationally
relevant ordering on dependency sets which may violate the one given structurally. Specifically,
hash can be read as an ordering [7 §] £ [6 J—note that the left hand side is not a subset of
the right—that must be manually applied wherever it is used, transforming expressions at [7 §]
into those at [§]. So this allows us to preserve the uniform structure of our information flow
specifications while, in effect, introducing information flow policies on them. Let us review the
example in Section 3.1 where we confronted policy declarations to see if we can capture them now.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:16 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

open Alice with [bob] importing
alice,
reveal_alice : [alice] string -> [bob] string

let expected : [bob] string = "nemmerle"
let msg_bob : [alice] string -> [«] string -> [a bob] string =
fun alice_secret msg_str ->
if reveal_alice alice_secret == expected then msg_str else panic

Fig. 13. Declaring a Custom Dependency Ordering, Computation-Relevantly

4.4 ‘Who’ Declassification: Alice talks to Bob

The program in Figure 13 uses a slightly higher-level syntax for existential dependencies, closer
to what programmers would see while employing our approach to declassification. In particular,
we might imagine that Alice is defined as follows, where « is used to propagate the output

type Alice = forall o f§ .
(forall alice . F(alice, f) > [a] A) >[alA

dependencies as before and alice is existentially quantified. with instantiates with [bob 1, which
propagates it to the interface template F(. . .). The importing clause brings into scope the existential
variable alice and a function reveal_alice from the instantiated interface F(alice, bob). bob is
assumed to be in-scope. Functionally, this program revisits Figure 6, showing how our system can
model an information flow policy that allows Alice’s data to be sent to Bob. This corresponds to
the who dimension of declassification from Sabelfeld and Sands [2009].

Looking to the client machinery, assume « is instantiated as needed for the eventual return
dependencies of the program in Figure 13, and similarly that A is as needed for the program’s
eventual return type since our core system lacks polymorphism over types. The purpose of the
reveal_alice function is to declassify alice data to Bob by relabeling it as bob data. As in the
prior two examples, the reveal_alice function can be implemented by the Alice module because
the latter has internally instantiated alice to a convenient dependency set—perhaps [] or [bob J.
The only difference compared to Figure 6 is that reveal _alice must be called explicitly, rather than
the flow being permitted implicitly. As a result, reveal _alice can transform Alice’s data arbitrarily
before revealing it to Bob, such as by redacting certain information or cryptographically signing it.
This is what is meant by computationally relevant: policies and declassification inherently have
computational content in our system. In our view, information flow policies and declassifiers
are one and the same; there should be no distinction between the two. The setup of both within
our system makes this apparent. This is particularly desirable in the context of, say, revealing
secrets: it is rare that a secret value should be leaked fully intact rather than after some redacting
computation. The computational irrelevance of ordinary policy declarations makes them unfit to
serve as a declassification mechanism, so computational relevance can be seen as unifying the two.

We could extend this example by introducing another existential module Bob which permits mes-
sages tagged with bob to be read without inducing a dependency, effectively declassifying messages
after processing them. Only when declassification remains of the major flavors of declassification
[Sabelfeld and Sands 2009]. This is easy enough: simply integrate the ordering constraints into the
function type which performs declassification. For instance, to declassify bids only after an auction
has closed, require the auction to run to completion before running a callback to declassification.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:17

Dependency ¢ Type A,B Expre,vo Dependency Vars a1, a,,... € A Vars xy,x,... €T

Dependencies ¢ == o | §; «
Types A :==unit | [A- @] | A1 — Az | V(2. A)
Expressions e,v := () | x | #e | le | A(x.e) | ap(es;e2) | A(a.e) | e[¢]

T-UnNi1T T-Var T-CONSUME T-PRODUCE

ATre:Al¢ ATre:[A-d1] | 2
A;TH() sunit|o AT, x:Arx:Alo ATr#e:[A-@] | o ATHle:AlgrUg,

T-Lam T-Ap
A;F,X:A1F€!A2|O A+ A A;Tl—e:A1—>A2|¢ A;FF€11A1|¢1
A;FFA(X.6)2A1—>A2|O A;I‘I—ap(e;el):A2|q§|_|¢1
T-DepLam T-DePAP T-Sus
Aa;Tre:Alo AT re:V(aA) | ¢ Ar¢ ATre:Ar| ¢ A; Ca Ay
AT+ A(ace) : Y(a.A) | o AT +el[p]: [d/a]A]| ¢ ATre:A | ¢

Fig. 14. TS/SCI: Type System for the Structural Calculus of Indistinguishability (Core Rules)

5 Metatheory

We have surveyed a zoo of interesting examples ranging beyond those in Section 1.1, but have
not introduced any new primitive notions! Even existential quantification as revealed in the last
section is simply re-using the same machinery introduced initially for polymorphism. This makes
our job in this section relatively straightforward.

5.1 Syntax and Typing: A Hybrid Type System

The core syntax and typing rules of our system, the Structural Calculus of Indistinguishability,
are shown in Figure 14. Our typing judgment is A;T + e : A | ¢ and can be read “Under in-scope
dependency variables A and in-scope term variables I' the expression e has type A with set of
dependencies ¢.” Dependencies ¢ play the same role as in Section 2.2, reifying the ambient security
level from Section 3.2.1. The type [A - §#] corresponds to a satisfaction operator @A and uses
the syntax #e and !e for introduction and elimination. The corresponding rules T-CoNsUME and
T-Propuck look familiar, nearly mirroring @I and @E-new modulo syntax. The biggest difference is
that T-CoNsUME concludes at the empty dependency set o, which will be important.

Starting simple, the introduction rule for unit states that a unit expression () incurs no de-
pendencies. The variable typing rule shows the structure of the typing context I', which contains
variables at a particular type. Unlike other information flow systems, we do not annotate variables
in the context with security levels. They may carry dependency information in their type—using
[A - ¢]—if needed, but the entries in the context themselves are not annotated. This is in line with
the interpretation of the ¢ in the typing judgment as an effect. Only computations should have
effects; variables, being connected in a call-by-value language to values, should not [Levy 1999].

Moving on to functions, T-Lawm is relatively standard. Strangely, however, it requires that its body
have no dependencies. This is a way of forcing its body to consume all its dependencies—that is,
represent them within its type A; using T-CoNsumE—before a lambda is allowed to form around
it. Forcing dependencies into function types is in line with the intuitions about granular tracking

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:18 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

and polarity from Section 3.2.1. There is also a premise A + A;, which we will return to shortly.
The application rule T-AP propagates the function and argument’s dependencies to the application
expression in the conclusion, but is otherwise as usual. T-DEPLAM is the introduction rule for the
quantifier type V(a.A). It again requires the dependencies in its body to be consumed. Its premise
introduces an « into A, the environment responsible for tracking the in-scope information flow
variables. This can be thought of analogously to the introduction rule for type abstraction in System
F [Girard 1986]. The elimination rule T-DEPAP for quantifiers is instantiation, substituting the
instantiated ¢ into the inner type of the quantifier. This is analogous to type application in System
F. The type of id in Figure 1 under this syntax might be V(«.[int - @] — [int - «]), using int as a
base type. A term under this type is A(a.A(x.x)), but more are possible by using !x to extract out
the underlying int and compute with it as in A(a.A(x.#(!x + !x))).

The premise A + ¢ appearing in T-DEPAP is toward the same end as A + A; from T-Lam. Its
purpose is to ensure the well-scopedness of all elements of the typing judgement within any
derivation. We want to be sure that whenever we have a valid type derivation, all dependencies «
in the expression e, type A, and dependency set ¢ in the typing judgement are contained within A.
We also want to ensure that any term variables x in e are contained in I'. Regularity establishes
this rigid lexical scoping. A + A can be read as “all dependencies o mentioned in A are members of
A”; analogously for the other three scoping judgements.

Theorem 5.1 (Regularity). If A;T +e: A| ¢ and A v A; for each assumption x; : A; inT, then A+ e
andT Feand A+ AandA v ¢.

Proor. By induction on a derivation of A;T Fe: A | ¢. O

Observe that all introduction rules for the connectives

so far introduced, namely [A - ¢], A; — Aj, and V(a.A), ATre:Al¢

conclude at the empty set of dependencies o. This is because ATr#e:[A-¢]|o T-CoNsUME
they are negative connectives. In line with the reasoning in ’ : T-PRODUCE
Section 3.2.1, all negative connectives must consume AT #e: Al

their dependencies. This also provides a solution to the
local soundness issue noted with the satisfaction rules in Section 2.2, because T-CoNsUME (unlike
@I) does not create a spurious ¢’ in its conclusion. The derivation is reproduced here.

Finally, T-SuB allows subsumption, which enables us to raise the security levels of programs’
types. Reading from the top, if one has e at type A; and a proof that A; is a subtype of A, then
T-SuB provides e at type A,. We have [A; - 1] Ep [Az - ¢2] when ¢ C ¢ and A + ¢ and A; Tp As.
This permits the security levels of expressions to be raised—that is, it permits them to add extra
dependencies to themselves. Beyond for [A - ¢] the subtyping judgment is standard so we elide its
definition. We also omit the operational semantics, which are as usual but for the syntax #e and !e
for [A - ¢]. These act respectively as thunking and forcing thunks. Removing the syntactic forms
for these—and therefore the thunking semantics—presents no formal obstacle. We have found it
pedagogically easier to give them explicit syntax, since they can then be mentioned explicitly if
needed. The thunking semantics for their syntax simply aligns with the negative polarity [Levy
1999] of the satisfaction connective, discussed in Section 3.2.1. We look now to the positives.

5.1.1 Positive Connectives. Our system supports two positive connectives: positive products and
sums. T-INJL is one of two introduction rules for sums, the other being T-INJR. Observe that
the dependencies ¢ of the expression e are propagated straightforwardly in both rules to their
conclusion. The type of the injection not witnessed is checked for scoping, to ensure regularity.
T-Cask largely works as usual, but now accounts for the indirect flows from the expression e being
branched on, adding its dependencies ¢ in the conclusion to those coming from e; or e,. We require

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:19

TypesA:::...|A1+A2|A1®A2
Expressionse,0 i= ...|l-e|r-e|casee{l-x; <> e |r-x;, —e}
| {e1,ez) | split ey into {x1,x2) in ey
T-INjL T-PAIR
ATre:Ar| ¢ Ar A, AT ket A | dy AT re:Ay| o
A;FF1'82A1+A2|¢ A;FF<€1,€2>!A1®A2|¢1U¢2
T-InjR T-SpLiT
A;FF82A2|¢ A+ A A;FF61A1®A2|¢ A;F,XIZAI,XgiAzFeltAngS’
ATrr-e:Aj+As | ¢ A;T + split e into (x;,x2) ine; : AU’

T-CaAsE
ATre:Ai+Ay | ¢ AT, x;:Ajbe 1Al ¢ AT, x3: Agb ey 1 Al ¢

A;Trcasee{l-x; e |r-xp—>e }:AldUg’

Fig. 15. Positive Connectives for the Structural Calculus of Indistinguishability

e; and e; to have the same dependency level. Introducing positive products works similarly with
respect to the flow of dependencies, with the introduction rule T-PAIR propagating the dependencies
@1, 2 from each of its subexpressions to the conclusion of the rule at ¢; L ¢,. T-SpLIT works the
same way as T-CAsE from an information flow perspective.

We see that the introduction rules for positives act transparently with respect to the judge-
mental dependencies ¢, instead of being forced to encapsulate them and conclude at the empty
set. An alternative formulation of the introduction rule for products forces e; and e; to consume
their dependencies into their types; this would then be a negative product. Stemming from the
choice to have a separate type connective [A - §] for tagging types with dependencies—rather
than tagging each type with dependency information individually—the design of such a rule is
predetermined by polarity. Observe that negative (or lazy) products would track dependencies more
granularly than positive products, as expected from Section 3.2.1: each projection’s dependencies
can be distinguished from the other’s. Not so for positive products, which blend both projections’
dependencies ¢, and ¢, together. Positive products can be viewed as more general than negative
products in our setting, since we can simply use satisfaction for one or both elements of the pair.
As a rule, introduction forms for positive types will be transparent to dependency information,
while those for negative types will be opaque. This is in line with the interpretation of the former
as connected to values, and the latter to computations [Levy 1999].

5.2 Non-interference

We prove non-interference via a binary logical relation. We show that it satisfies a number of
desirable properties. We then show the fundamental theorem, which relates well-typed programs
to membership in the logical relation. Non-interference is captured with a corollary stating that
any function whose argument dependencies are not represented in its return dependencies must
be constant in its argument, fufilling our promise from Section 1.1. The proof treats declassification
without additional machinery beyond that for handling quantifiers. The definition of the logical

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:20 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

e<~e €Al &1 [P2] [A] £ 1 Ea ¢z orovval, o' val, e —™ 0, & —" 0/,

v~0 €Al [g][A]

(O~ () €unit| ¢ [§] [A] = true
l-o~1-0' €A +Ay | ¢1[¢2] [A] 20 <0 €A | ¢y [ha] [A]
r-o~r-o €A +A; | ¢y [¢2] [Al 20 <0 €Ay | ¢y [ha] [A]

[¢2] [A]

1>

(01,02) ~ (01,05) € A1 ® Az | $1 [$2] [A] 2 01 ~ 0] € Ay | 1 [¢2] [AL
vz ~ vy € Ay | ¢1 [$2] [A]

o~ 10" € A| U [¢2] [A]

¥Ygy Ca ¢2, A+ @7, vy val, o] val .

o~ 0] €Ayl ¢y [gy] [A] =

ap(v;01) ~ ap(v';07) € Az | 41 U ¢r [45] [A]
v~ eV(aA) | 1 [¢a] [A] 2 A ¢ = o[g] ~ 0[] € [p/a]A | ¢1 [¢2] [A]

13

v~ € [A-B] | ¢ [¢2] [A]
v~0v €A > Ay | ¢ [¢2] [A]

1>

Fig. 16. Semantic Equality for the Structural Calculus of Indistinguishability

relation is given in Figure 16. Full proofs of all theorems referenced in this section can be found in
the accompanying artifact [Gouni et al. 2025, Appendix C].

The starred relation e ~ e’ € A | ¢; [$2] [A] can be read as “e relates to e’ at type A with secu-
rity level ¢; and observer level ¢, under in-scope dependency variables A” Here e, e’ are closed
expressions, containing no variables. We introduce a notion of an observer level [Kozyri et al. 2022]
which determines whether an “observer” of a program who is permitted to see certain dependencies
should be allowed to see the outputs of the program in question. If the security level—which plays
the same role as the ¢ in the typing judgment—is a subset of the observer level, then the answer is
yes. Otherwise, the answer is no. The ¢; Za ¢, in the definition of the starred relation codifies this,
and is called the non-interference condition. If the security level ¢; of some related expressions is
not a subset of the current observer level ¢,, then to that observer, the expressions are equal. From
their perspective, no discriminating information can be gleaned. This is why non-interference is a
hyperproperty [McLean 1996], or inherently a matter of two or more related traces of evaluation: it
reasons about the observable differences between them.

If the non-interference condition in e ~ ¢’ € A | ¢; [¢2] [A] is not triggered then the equality
must ultimately be established according to the type A. First, e and ¢’ must evaluate to values
v val and o” val. And v,v” must be related at v ~ v’ € A | #1 [¢p2] [A], the non-starred relation. The
definition of e ~ ¢’ by evaluation immediately gives us the following two properties.

Lemma 5.2 (Closed —). Ife ~ e’ € A| ¢; [$2] [A] and e —* ey thene; ~ e’ € A| ¢y [$2] [A].
PROOF. By use of evaluation in e <~ ¢’ € A | ¢; [¢2] [A] and determinicity of evaluation. O

Lemma 5.3 (Closed «—). Ife ~ e’ € A| ¢; [$2] [A] and e —>* e thene; ~ e’ € A| ¢y [$2] [A].
PRrOOF. By use of evaluation in e ~ ¢’ € A | ¢; [¢2] [A] and transitivity of evaluation. O

These two lemmas show that the logical relation is preserved by evaluation in both directions.
Lemma 5.3 is the critical one: if expressions e, e’ are logically related, then anything that evaluates

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:21

to them is also in the logical relation. This means that there are many expressions which are related
by the logical relation, but are not well-typed.

The relation v ~ v’ is mutually recursive with the starred relation and is defined inductively on
types in a standard way. For positive types it ensures that both sides have the expected canonical
forms, and that the insides of the canonical forms are related at the appropriate type. For negative
types it ensures they behave correctly under elimination. Within each case it recurses back onto
e ~ ¢’ to check the equality of the inner or eliminated expressions. This is important when the
security level is raised as in the cases for [A - ¢] and A; — Aj, because a higher security level,
or larger set, may satisfy the non-interference condition. Note that while the security level ¢; is
monotonic with respect to non-interference, the observer level ¢, is anti-monotonic.

Lemma 5.4 (Monotone). Ife ~ ¢’ € A | ¢y [¢2] [A] and ¢1 Cp @] thene leeAl| ¢1 [$2] [A].
Proor. By straightforward induction on A. O

Lemma 5.5 (Anti-monotone). Ife ~ ¢’ € A | ¢y [¢2] [A] and @, Ca ¢, thene e eA|d [¢] [A]
Proor. By straightforward induction on A. O

Intuitively, ¢; Za ¢2 is preserved by either adding elements to the left side, or removing
elements from the right. The former raises the security level, and the latter means the observer
drops permissions for viewing certain dependencies. That the dependency elision heuristic from
Section 3.2.2 preserves non-interference, and is therefore sound, can be justified via monotonicity:
it always produces equally as many or more dependencies into the ambient security level than the
non-elided variant, because argument dependencies get propagated ambiently to the application
expression. As mentioned, we leave the elision algorithm and its completeness for future work. We
next show that our logical relation satisfies certain properties of equivalence relations.

Lemma 5.6 (Symmetry). Ife; ~e; € A| ¢ [¢'] [A] thene, ~e; € A| ¢ [¢'] [A].
Proor. By straightforward induction on A. O

Lemma 5.7 (Transitivity). Ife; ~e; € A| ¢ [¢'] [A] ande, ~ es € A| ¢ [¢'] [A] then
er~es€A|g[¢][A]

Proor. By induction on A and Lemma 5.6 in the A; — A; case to handle contravariance. m]

Importantly, the logical relation does not satisfy reflexivity. For instance, the expression ()
cannot be self-equated at any type other than unit, and in general related expressions must behave
appropriately for their declared type. Thus our logical relation is a partial equivalence relation,
satisfying symmetry and transitivity but not reflexivity. Finally, the fundamental theorem translates
well-typedness to membership in the logical relation. However, recall that while the typing rules
work with open expressions, the logical relation only works on closed expressions. We must
generalize the logical relation to account for open expressions. We begin by defining closing
substitutions which replace free dependency variables and term variables with appropriate forms.

(1) Define § € A ~» A’ as a map from each « € A to a dependency environment A’ + ¢.
(2) Define:
(a) y € T [A’] as a map from x € T to an expression e closed under term variables s.t. A’ + e
(b)Y y~y €T |¢[¢'] [A~> A’] tomean thatif A’ - ¢’ and § € A > A’ then we have
v,y €T [A]sty(x) ~y(x) € g(A) | @[] [A] forallx: AeTl
(3) Define AT >>i: e~ e €A| ¢ tomean that for all A’ - ¢y if 3a, 3b, and 3c then 3d.
(@ A" k¢’

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:22 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

(b) 5 € A~ N
(©y~y erl] ¢y [¢'] [A ~ A’] (instantiated to 3a and 3b)
(d) 5(7(e)) ~ 8(y' () € 5(A) | 5(¢) U ¢y [¢'] [A']

d replaces dependency variables a with dependency sets ¢ closed under A’. y, y’ replace term
variables x with closed expressions related at the type of the variable. The type itself is closed using
8. The security level ¢ represents the cumulative dependencies of all information contained in I'. 5
and Y apply the mappings in § and y simultaneously to all open variables in their arguments. The
generalized logical relation in item 3 is defined by using 8 and ¥ on its expressions e, e’ and S on its
type A and security level ¢. We invoke the starred relation on the substituted forms.

Theorem 5.8 (Fundamental Theorem). IfAg, A;T Fe: A| ¢ then AT >>i; e~ecAld.

Proor. By induction on a derivation of Ag, A;T Fe: A | ¢.]

The statement of the fundamental theorem splits up the information flow variable environment
from the typing judgment into A¢ and A. Ay denotes the observer’s dependency environment. The
definition of equality of open expressions requires that Ay + ¢’ where ¢’ is the observer level. A,
provides an environment for a closing substitution on dependency variables « to be closed under,
because all dependencies considered in the logical relation must be meaningful to the observer.
That the open and closed logical relations are relativized to a base Ay representing the observer’s
environment is key to the formal treatment of declassification. The constant function property we
desired in Section 1.1 emerges as a straightforward corollary of the fundamental theorem.

Corollary 5.9 (Constant Function). If we have A;T +e: [A1 - ¢1] — [Az - ¢2] | 0 and ¢ val and
¢1 Zp Po theno T >>A e~ A(x.ap(e;c)) € [Ay - dp1] = [Az - ¢o] | o.

Proor. Follows directly from Theorem 5.8. We sketch the proof here.

(1) Assume ¢, and A + ¢, and appropriate 6 and y, y’

(2) To show [A; - ¢1] — [Az- ¢2] assume v1 ~ 0] € [Ar - ¢1] | ¢] [¢;] [A] where ¢ Ta ¢o.
(3) Suffices to show ap(y(e); v1) < ap(A(x.ap(y’ (6),0)),01) € [Az - da] | 7 L ¢y [95] [A]
(4) We have ¢; Za ¢; by properties of set inclusion.

(5) Obtain !v; ~ lc € Ay | ¢y [¢5] [A] by non-interference, so v; ScelA -] |o [¢7] [A]
(6) By Lemma 5.4 we have v; ~ ¢ € [A; - ¢1] | ¢1 [45] [A].

(7) Use Theorem 5.8 on the typing assumption for e and instantiate with item 1 to get

() ~y'(e) € [Ar- $1] = [As - §2] | ¢y [2] [A]
(8) If ¢, Za ¢ then we have ¢, Zx ¢; and the goal is immediate. Otherwise:
(a) 7(e) —* vy, 7' (&) —>* v,, vz val, v} val
(b) v ~v; € [A1 - ¢1] — [Az - 2] | ¢y [¢2] [A
(9) Apply item 8b to item 6 to obtain ap(vs;0v1) ~ ap(vg; c) € [Az- ¢2] | ¢1 U @y [95] [A]
(10) Have ap(y(e);v;) —>" ap(va;01), ap(A(x.ap(y’(e);c));v]) =" ap(y’(e);c) —* ap(vy;c).
(11) The result follows by applying Lemma 5.3 twice to item 9 and each evaluation in item 10. O

The constant function property states that a function whose argument dependencies are not
a subset of those in its return value is observationally the constant function. Particularly, such a
function is observationally equivalent to a function which has its argument stubbed out with some
constant ¢. From the perspective of the observer both the original function and that which ignores
its argument behave the same way. Observe that the final example from Section 1.1 falls under the
constant function theorem because o; a Za o. For completeness’ sake, we have unit +unit = bool.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:23

Note that the correspondence of our logical relation with observational equivalence is apparent
from the fact that it does not introspect on the syntax of expressions under evaluation and from its
synchronization with polarity. We (1) do not examine the structure of negatively typed computations,
only observing their behavior under elimination, and (2) explicitly examine the canonical forms
of positive values. This is all done modulo an observer level, which can be seen as internalizing
observational equivalence. We have not yet made a point of declassification; we do so now.

5.3 Metatheoretic Mechanics of Declassification

Note that Corollary 5.9 only forces the function to be constant from the observer’s perspective.
Assume we have ¢ Z ¢, as before, observing at ¢,. We might implement a function typed at
[A1-¢1] = [[A1-P1]- P2] as A(x.#x). However, eliminating the inner satisfaction at ¢; immediately
satisfies the non-interference condition and therefore the logical relation. The observer level ¢
denotes our perspective: it says we cannot observe information at ¢; so we may trivially equate
programs at level ¢;. That equality is subject to observability is central to non-interference.

Accounting for declassification requires us to generalize this idea. Instead of conditioning equality
merely on which dependencies can be observed, it is additionally conditioned on which dependencies
were available to observe. This is the role of the A which indexes the logical relation in Figure 16,
and accordingly A in Theorem 5.8. All dependencies which appear in the closed logical relation
must be scoped under A. The closing map § and the logical relation’s handling of the quantifier
type V(a.A) are the foremost machinery which act to ensure this. As a consequence of fixing the
scope of dependency variables, we can choose whether to reason about existential dependencies
according to whether we wish to reason about declassification. We can explicate this in terms of
the schema for existential quantification from Figure 12.

Unobslerved ‘
Declassification... < V(a. Ala))— Ala))
Cheerd ‘

Fig. 17. Reasoning (or not) about declassification

Figure 17 shows the schema, annotated. We write A(«) to mean that the type A may contain «.
Recall that f is an existential dependency, and that « cannot mention it. F(f) is an interface offering
declassifying functions like check and hash, as before. The schema for existential quantification
gives rise to two perspectives: (1) where any declassifying behavior is completely unobserved
because /3 is not in scope, and (2) where the functions in F(j) are to conserve equalities,
and the use of this interface to produce a type A(«) is checked to be in the logical relation.

Starting with the first perspective, we imagine observing a program from outside the existential
schema, without f in scope. This corresponds to working with an instance of the closed logical
relation at some A which does not include 5. We call this ‘unobserved’ because f will never
arise in any form while reasoning with the logical relation; it can never be used to trigger non-
interference. That any declassification is happening is entirely invisible from this perspective. We
can demonstrate this by sketching using the logical relation to show equality for some arbitrary
program at the type in Figure 17, and observing the goal it reduces to.

(1) We want to show ... € Y(a.Y(S.F(f) — A(a)) = A(a)) | ... [A].

(2) Assume A + ¢ and substitute it for « to get ... € V(S.F(f) — A(¢)) — A(¢) | ... [A].
(3) Assume ... e V(S.F(p) — A(¢)) | ... [A].

(4) Suffices to show ... € A(¢) | ... [A].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:24 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

Observe that we never introduce f in this process, and A(¢) does not contain /5. The critical step is
in item 2, where we instantiate «—and therefore the output type A(«) of the program—witha A + ¢
where f ¢ A. So reasoning about the behavior of some program which declassifies, if our perspective
is from outside the existential, does not permit us to observe the effect of any declassifications. Put
another way, declassification in our setting is modular. Client code downstream of some program
using declassification, but which does not expose the associated existential dependency variables
in its types, must reason about the program without regard to any declassifying behavior. But what
if existential variables do appear in types?

We move now to the second perspective, which regards the inside of the existential—specifically
the higher-order function where f is in scope. Accordingly, f can now occur within the logical
relation, with the latter being indexed at A, . This presents a problem. To illustrate, imagine our
observer level does not include f and that there is a function at type [string - f] — string in F(f),
akin to hash from Figure 12. We want to use the logical relation to see what happens when it is
applied. We can use non-interference to obtain related expressions at [string - /] and pass them
to the function. Then the application forms are equated at string, but not by non-interference.
Note the equated outputs of the function depend on its non-equated inputs! This disconnect can be
explained by walking through the inner part of the existential via the logical relation.

(1) We want to show ... € F(ff) — A(¢) | ... [A, F].

(2)

(3) Suffices to show ... € A(¢) | ... [A, f].

The critical step is item 2, where we assume our declassifying functions to be in the logical
relation, and therefore to preserve equalities. We then must show in item 3 that the computation
that uses them itself establishes an equality. Importantly, the act of assuming declassifiers preserve
equalities, or ignoring any disequalities induced—due to observable results depending on non-
observable inputs—privileges them. The logical relation will only permit these assumed declassifiers
to perform declassification in item 3. Membership in the logical relation will not be able to be
shown for expressions which attempt a non-permitted (non-assumed) declassification because a
disequality will result. So it is checked that any declassification which occurs is as a consequence
of operations from F(f).

6 Related and Future Work
6.1 Declassification via Type Abstraction

The first paper to recognize the relationship between declassification and type abstraction was
Nanevski et al. [2013], working in a verification logic embedded in a dependent type theory. Unlike
in our setting, their language works directly in terms of abstract types exporting equality predicates
for non-interference reasoning. Due to being coalesced with functional correctness reasoning, their
specifications are quite complex. We target a type system intended to be used outside a verification
setting, in general-purpose languages. Frumin et al. [2021] also use a relational logic, integrated
with a simpler type system, to reason about declassification. Due to the expressivess of the logic,
their ability to verify the safety of declassification according to e.g. the concrete values taken on
by a variable surpasses ours. We suspect extending our system to account for type-level value
dependency may permit a similar degree of expressivity.

Ngo et al. [2020] recovers noninterference with declassification via existential quantification
over types. Such quantification, however, comes with the issues noted in Section 1.1: interesting
computation cannot be done on abstract types, so their approach does not permit computing with
secrets until they have been declassified. A follow-up paper [Cruz and Tanter 2019] approaches
from a similar angle, again existentially quantiying over types. They adapt faceted types from

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:25

the information flow setting to make computations on secrets possible. The approach presented
there is attractive, but combining quantification over dependencies and free semilattices seems to
accomplish the same goals more directly and with better-understood logical foundations.

6.2 Foundations for Information Flow

Miyamoto and Igarashi [2004] discuss modal logic as the logical basis for information flow, working
in a partial modal logic setting. While they do not strictly make the connection to partial modal
logic or hybrid logic, it is observed that their information flow tracking connective may decompose
as @ OA. They do not make the further step to lax logic to notice that the necessity semantics is
vestigial. Many of the hybrid intuitions we relied on here emerged later from Reed [2009].

Other work [Askarov et al. 2008; Halpern and O’Neill 2008] grounds information flow in epistemic
logic, a flavor of modal logic which contends naturally with principals in information flow systems
such as Jif [Myers 1999]. Like Jif’s model, our approach is decentralized [Myers and Liskov 2000] in
that it is not based on a single trusted principal or a fixed lattice structure. Our approach differs in
that our types make no statements about policy or the allowed readers and writers of data governed
by such policy; this allows us to focus exclusively on information flow itself, simplifying our system.
Future work could explore whether the mechanisms in Jif could be built on this foundation, and
whether the intuitions from our setting might transfer to a principal-based approach.

Sterling and Harper [2022] establish a sheaf model for non-interference, using the topos-theoretic
sealing and transparency modalities to selectively obscure information. We suspect that our satis-
faction connective [A - @] is related to the transparency modality, exhibiting similar behavior and
being of the same polarity. We are actively investigating the categorical semantics of our language
and expect to shine further light on any connections here.

Finally, a fragment of the structural approach to information flow appears to be related to
Algebraic Subtyping [Dolan 2017; Parreaux 2020]. In particular, one might imagine encapsulating
every type T in a wrapper type IFC[T, I] playing a similar role to the satisfaction connective.
Information flow dependencies can then be expressed as unions of types representing dependencies,
for instance IFC[int, PWD | 'a | 'b]. We leave a full development of this idea to future work;
this may serve as a lightweight way to port our style of information flow reasoning to existing
languages. It is unclear to what extent current Algebraic Subtyping systems provide support for
higher-ranked quantification, though there is ongoing work [Parreaux et al. 2024] to do so.

7 Conclusion

We have provided here the Structural Calculus of Indistinguishability. We have described a logically
motivated approach to information flow which simultaneously unlocks interesting opportunities to
simplify information flow specifications and offers a modular, sound approach to declassification.
We have shown that the latter captures useful programming patterns from the literature and that
the treatment of non-interference for it can reuse, unchanged, the machinery for hybrid-style
quantification over worlds.

8 Data Availability Statement

Referenced appendices, auxiliary definitions, and full proofs are available at Gouni et al. [2025].

Acknowledgements

We thank the anonymous reviewers for their helpful feedback; any remaining oversights or errors
are ours. We would also like to thank Corinthia Aberlé, Harrison Grodin, Lionel Parreaux, and
Tesla Zhang for insightful discussions. This research was supported by the Department of Defense
and the National Science Foundation under Grant Nos. H98230-23-C-0275 and CCF-1901033.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

414:26 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

References

Martin Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. “A core calculus of dependency.” In: Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL °99). Association for
Computing Machinery, San Antonio, Texas, USA, 147-160. 1SBN: 1581130953. doi:10.1145/292540.292555.

Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. 2008. “Termination-insensitive noninterference leaks
more than just a bit” In: Computer Security-ESORICS 2008: 13th European Symposium on Research in Computer Security,
Malaga, Spain, October 6-8, 2008. Proceedings 13. Springer, 333-348. doi:10.1007/978-3-540-88313-5_22.

Peter Nicholas Benton, Gavin M. Bierman, and Valeria Correa Vaz de Paiva. 1998. “Computational types from a logical
perspective” Journal of Functional Programming, 8, 2, 177-193. d0i:10.1017/50956796898002998.

Pritam Choudhury, Harley Eades III, and Stephanie Weirich. 2022. “A Dependent Dependency Calculus.” In: European
Symposium on Programming. Springer International Publishing Cham, 403-430. doi:10.1007/978-3-030-99336-8_15.
Raimil Cruz and Eric Tanter. 2019. “Existential Types for Relaxed Noninterference.” en. In: Programming Languages and
Systems. Ed. by Anthony Widjaja Lin. Springer International Publishing, Cham, 73-92. 1sBN: 9783030341756. doi:10.1007

/978-3-030-34175-6_5.

Dorothy E Denning. 1976. “A lattice model of secure information flow.” Communications of the ACM, 19, 5, 236-243.
doi:10.1145/360051.360056.

Stephen Dolan. 2017. Algebraic subtyping. BCS, The Chartered Institute for IT. 1SBN: 9781780174150.

Matt Fairtlough and Michael Mendler. 1997. “Propositional lax logic.” Information and Computation, 137, 1, 1-33. doi:10.1006
/inco0.1997.2627.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. “Compositional Non-Interference for Fine-Grained Concurrent
Programs.” In: 2021 IEEE Symposium on Security and Privacy (SP), 1416-1433. doi:10.1109/SP40001.2021.00003.

Jean-Yves Girard. 1986. “The system F of variable types, fifteen years later” Theoretical computer science, 45, 159-192.
doi:10.1016/0304-3975(86)90044-7.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and types. Vol. 7. Cambridge university press Cambridge. 1SBN:
9780521371810.

Joseph A Goguen and José Meseguer. 1982. “Security policies and security models.” In: 1982 IEEE Symposium on Security and
Privacy. IEEE, 11-11. do0i:10.1109/SP.1982.10014.

Hemant Gouni, Frank Pfenning, and Jonathan Aldrich. 2025. Appendices, Definitions, and Proofs for Article ‘Structural
Information Flow: A Fresh Look at Types for Non-interference’. Zenodo. (2025). doi:10.5281/zenodo.17013074.

Joseph Y Halpern and Kevin R O’Neill. 2008. “Secrecy in multiagent systems.” ACM Transactions on Information and System
Security (TISSEC), 12, 1, 1-47. doi:10.1145/1410234.1410239.

Shin-ya Katsumata. 2014. “Parametric effect monads and semantics of effect systems.” In: Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). Association for Computing Machinery,
San Diego, California, USA, 633-645. 1SBN: 9781450325448. doi:10.1145/2535838.2535846.

Elisavet Kozyri, Stephen Chong, Andrew C Myers, et al.. 2022. “Expressing information flow properties.” Foundations and
Trends® in Privacy and Security, 3, 1, 1-102. d0i:10.1561/3300000008.

Paul Blain Levy. 1999. “Call-by-push-value: A subsuming paradigm.” In: International Conference on Typed Lambda Calculi
and Applications. Springer, 228-243. doi:10.1007/3-540-48959-2_17.

Yiyun Liu, Jonathan Chan, Jessica Shi, and Stephanie Weirich. 2024. “Internalizing Indistinguishability with Dependent
Types.” Proceedings of the ACM on Programming Languages, 8, POPL, 1298-1325. doi:10.1145/3632886.

John McLean. 1996. “A general theory of composition for a class of" possibilistic" properties.” IEEE Transactions on Software
Engineering, 22, 1, 53-67. d0i:10.1109/32.481534.

John C. Mitchell and Gordon D. Plotkin. 1985. “Abstract types have existential types.” In: Proceedings of the 12th ACM
SIGACT-SIGPLAN symposium on Principles of Programming Languages - POPL ’85. Association for Computing Machinery,
37-51. doi:10.1145/318593.318606.

Kenji Miyamoto and Atsushi Igarashi. 2004. “A modal foundation for secure information flow.” In: Workshop on Foundations
of Computer Security, 187-203.

E. Moggi. 1989. “Computational lambda-calculus and monads.” In: [1989] Proceedings. Fourth Annual Symposium on Logic in
Computer Science, 14-23. doi:10.1109/LICS.1989.39155.

Andrew C Myers. 1999. “Mostly-static decentralized information flow control” Ph.D. Dissertation. Massachusetts Institute
of Technology. doi:1721.1/16717.

Andrew C Myers and Barbara Liskov. 2000. “Protecting privacy using the decentralized label model.” ACM Transactions on
Software Engineering and Methodology (TOSEM), 9, 4, 410-442. doi:10.1145/363516.363526.

Aleksandar Nanevski. 2004. Functional programming with names and necessity. Carnegie Mellon University.

Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2013. “Dependent type theory for verification of information
flow and access control policies” ACM Transactions on Programming Languages and Systems (TOPLAS), 35, 2, 1-41.
doi:10.1145/2491522.2491523.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

https://doi.org/10.1145/292540.292555
https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1017/S0956796898002998
https://doi.org/10.1007/978-3-030-99336-8_15
https://doi.org/10.1007/978-3-030-34175-6_5
https://doi.org/10.1007/978-3-030-34175-6_5
https://doi.org/10.1145/360051.360056
https://doi.org/10.1006/inco.1997.2627
https://doi.org/10.1006/inco.1997.2627
https://doi.org/10.1109/SP40001.2021.00003
https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.5281/zenodo.17013074
https://doi.org/10.1145/1410234.1410239
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1561/3300000008
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1145/3632886
https://doi.org/10.1109/32.481534
https://doi.org/10.1145/318593.318606
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/1721.1/16717
https://doi.org/10.1145/363516.363526
https://doi.org/10.1145/2491522.2491523

Structural Information Flow: A Fresh Look at Types for Non-interference 414:27

Minh Ngo, David A Naumann, and Tamara Rezk. 2020. “Type-Based Declassification for Free.” In: Formal Methods and
Software Engineering: 22nd International Conference on Formal Engineering Methods, ICFEM 2020, Singapore, Singapore,
March 1-3, 2021, Proceedings 22. Springer, 181-197. doi:10.1007/978-3-030-63406-3_11.

Lionel Parreaux. Aug. 2020. “The simple essence of algebraic subtyping: principal type inference with subtyping made easy
(functional pearl).” Proc. ACM Program. Lang., 4, ICFP, Article 124, (Aug. 2020), 28 pages. d0i:10.1145/3409006.

Lionel Parreaux, Aleksander Boruch-Gruszecki, Andong Fan, and Chun Yin Chau. 2024. “When Subtyping Constraints
Liberate: A Novel Type Inference Approach for First-Class Polymorphism.” Proceedings of the ACM on Programming
Languages, 8, POPL, 1418-1450.

Frank Pfenning and Rowan Davies. 2001. “A judgmental reconstruction of modal logic.” Mathematical structures in computer
science, 11, 4, 511-540. doi:10.1017/S0960129501003322.

Francois Pottier and Vincent Simonet. 2002. “Information flow inference for ML.” In: Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’02). Association for Computing Machinery, Portland,
Oregon, 319-330. 1sBN: 1581134509. doi:10.1145/503272.503302.

A. N. Prior. 1968. “"Now"” Noils, 2, 2, 101-119. doi:10.2307/2214699.

Vineet Rajani and Deepak Garg. 2018. “Types for Information Flow Control: Labeling Granularity and Semantic Models.” In:
2018 IEEE 31st Computer Security Foundations Symposium (CSF), 233-246. doi:10.1109/CSF.2018.00024.

Jason Reed. 2009. A hybrid logical framework. Carnegie Mellon University.

John C. Reynolds. 1984. “Types, Abstraction, and Parametric Polymorphism.” In: Information Processing 83: Proceedings of the
IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983. Ed. by R. E. A Mason. Elsevier Science Publishers
B. V. (North-Holland), Amsterdam, 513-523.

Andrei Sabelfeld and David Sands. 2009. “Declassification: Dimensions and principles.” Journal of Computer Security, 17, 5,
517-548. doi:10.3233/JCS-2009-0352.

Naokata Shikuma and Atsushi Igarashi. 2008. “Proving noninterference by a fully complete translation to the simply typed
lambda-calculus.” Logical Methods in Computer Science, 4. doi:10.1007/978-3-540-77505-8_24.

Jonathan Sterling and Robert Harper. 2022. “Sheaf Semantics of Termination-Insensitive Noninterference.” In: 7th Interna-
tional Conference on Formal Structures for Computation and Deduction (FSCD 2022) (Leibniz International Proceedings
in Informatics (LIPIcs)). Ed. by Amy P. Felty. Vol. 228. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl,
Germany, 5:1-5:19. ISBN: 978-3-95977-233-4. doi:10.4230/LIPIcs.FSCD.2022.5.

Christopher Strachey. 2000. “Fundamental concepts in programming languages.” Higher-order and symbolic computation, 13,
11-49. doi:10.1023/A:1010000313106.

Stephen Tse and Steve Zdancewic. 2004. “Translating dependency into parametricity.” In: Proceedings of the Ninth ACM
SIGPLAN International Conference on Functional Programming (ICFP 04). Association for Computing Machinery, Snow
Bird, UT, USA, 115-125. 1SBN: 1581139055. d0i:10.1145/1016850.1016868.

Received 2025-03-25; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 414. Publication date: October 2025.

https://doi.org/10.1007/978-3-030-63406-3_11
https://doi.org/10.1145/3409006
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1145/503272.503302
https://doi.org/10.2307/2214699
https://doi.org/10.1109/CSF.2018.00024
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.1007/978-3-540-77505-8_24
https://doi.org/10.4230/LIPIcs.FSCD.2022.5
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1145/1016850.1016868

	Abstract
	1 Introduction
	1.1 An Opinionated Crash Course in Information Flow
	1.2 A Preview of the Rest

	2 Background, Logic, and Typing
	2.1 Introduction: Round Two
	2.2 Reconstructing Information Flow via Hybrid Logic

	3 More Examples and Subtleties
	3.1 Uniformity, or Absence of Policies
	3.2 The Benefits of Explicit Satisfaction

	4 Declassification
	4.1 Explicit, Higher-Rank Quantification and Dependency Sets
	4.2 `Where' Declassification: Disappearing Dependencies with Quantification
	4.3 `What' Declassification: Revisiting Password Checking
	4.4 `Who' Declassification: Alice talks to Bob

	5 Metatheory
	5.1 Syntax and Typing: A Hybrid Type System
	5.2 Non-interference
	5.3 Metatheoretic Mechanics of Declassification

	6 Related and Future Work
	6.1 Declassification via Type Abstraction
	6.2 Foundations for Information Flow

	7 Conclusion
	8 Data Availability Statement

