
Elf: A Language for Logic Definition

and Verified Metaprogramming

Frank Pfenning

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

Internet: fp@cs.cmu.edu

Abstract

We describe Elf, a metalanguage for proof manipula-
tion environments that are independent of any partic-
ular logical system. Elf is intended for meta-programs
such as theorem provers, proof transformers, or type
inference programs for programming languages with
complex type systems. Elf unifies logic definition (in
the style of LF, the Edinburgh Logical Framework)
with logic programming (in the style of λProlog). It
achieves this unification by giving types an operational
interpretation, much the same way that Prolog gives
certain formulas (Horn-clauses) an operational inter-
pretation. Novel features of Elf include: (1) the Elf
search process automatically constructs terms that can
represent object-logic proofs, and thus a program need
not construct them explicitly, (2) the partial correct-
ness of meta-programs with respect to a given logic
can be expressed and proved in Elf itself, and (3) Elf
exploits Elliott’s unification algorithm for a λ-calculus
with dependent types.

This research was supported in part by the Office of Naval
Research under contract N00014-84-K-0415 and in part by the
Defense Advanced Research Projects Agency (DOD), ARPA Or-
der No. 5404, monitored by the Office of Naval Research under
the same contract.

To appear at the Fourth Annual Symposium on
Logic in Computer Science, Asilomar, California,
June 5-8, 1989.

1 Introduction

There is a wide variety of deductive systems consid-
ered in computer science today (for example Hoare
logics, type theories, type deduction systems, opera-
tional semantics specifications, first- and higher-order
intuitionistic and classical logics). Mechanized sup-
port for deduction in a variety of logics and type the-
ories has been the subject of much research (see, for
example, Automath [6], LCF [12], HOL [13], Calculus
of Constructions [5], Isabelle [25], NuPrl [3]).

In [15], Harper, Honsell, and Plotkin present LF (the
Edinburgh Logical Framework) as a general metathe-
ory for the definition of logics. LF provides a uni-
form way of encoding a logical language, its infer-
ence rules and its proofs. In [1], Avron, Honsell, and
Mason give a variety of examples for encoding logics
in LF. Griffin’s EFS (Environment for Formal Sys-
tems, see [14]) is an implementation that allows defi-
nition of logics and interactive theorem proving in LF.
EFS provides a nice syntactic environment, but lacks
meta-programming support, this is, it lacks a metalan-
guage for programming theorem proving, type infer-
ence, proof transformation, and similar tasks. We be-
lieve that good meta-programming support is essential
to obtain adequate theorem proving assistance in an
environment that is basically independent of any par-
ticular logical system. A signature that defines a logic
in LF simply does not contain enough information—it
specifies an inference system, but not a useful theorem
prover.

In this paper we describe Elf, a metalanguage in-
tended for theorem proving and proof manipulation
environments. Its range of applications therefore in-
clude the range of applications of such environments
(as indicated above). The basic idea behind Elf is to
unify logic definition (in the style of LF) with logic pro-

Elf 2

gramming (in the style of λProlog, see [22, 21, 24]). It
achieves this unification by giving types an operational
interpretation, much the same way that Prolog gives
certain formulas (Horn-clauses) an operational inter-
pretation.

Here are some of the salient characteristics of this
unified approach to logic definition and metaprogram-
ming. First of all, the Elf search process automati-
cally constructs terms that can represent object-logic
proofs, and thus a program need not construct them
explicitly. This is in contrast to logic programming
languages, where executing a logic program corre-
sponds to theorem proving in a meta-logic, but a meta-
proof is never constructed or used and it is solely
the programmers responsibility to construct object-
logic proofs. Secondly, Elf avoids the undesirable op-
erational behavior of meta-programs that sometimes
arises from encoding a logic in higher-order logic as
done in Isabelle [25] and by Felty and Miller in [11]
(see the example in Section 5.3). Finally, the partial
correctness of meta-programs with respect to a given
logic can be expressed and proved by Elf itself (see the
example in Section 5.2). This creates the possibility
of deriving verified meta-programs through theorem
proving in Elf (see Constable, Knoblock & Bates [4],
Knoblock & Constable [19] or Howe [17] for other ap-
proaches).

The base language λΠΣ for Elf is the LF type the-
ory (a simply typed λ-calculus extended to allow de-
pendent function types), enriched with strong sums
(which we prefer to call dependent products). Unlike
in λProlog, no restriction on goals or programs needs
to be made: the completeness theorem for our ab-
stract interpreter guarantees that goal-directed search
is complete. Thus, Elf is a language in the spirit of
Miller, Nadathur, Pfenning and Scedrov’s [21] def-
inition of an abstract logic programming language,
though it is not based on logic but on the λΠΣ type
theory.

The abstract interpreter, formulated as a transition
system, is described in Section 3. Transitions corre-
spond either to unification steps or steps in a goal-
directed search for a term of the given type. The uni-
fication steps are based on an extensions of Elliott’s
unification algorithm on terms in the LF type theory
(see [7] and [8]). The non-deterministic interpreter is
made practical by a commitment to depth-first search,
a distinction between open and closed judgments and
dynamic and static constants, and the addition of the
cut search directive familiar from Prolog (see Sec-
tion 4). The language environment includes a notion
of module and a term and type-inference algorithm

that makes it much more palatable as an implemen-
tation language. Experience with λProlog shows that
the commitment to depth-first search results in a use-
ful programming language, even though the underlying
unification problem is in general only semi-decidable.
In Section 5 we give excerpts from some example Elf
programs. An implementation of Elf in Common Lisp
is currently in progress in the framework of the Ergo
project at Carnegie Mellon University.

2 The base language λΠΣ

The base language for Elf, λΠΣ, is the type theory of
LF [15], λΠ, enriched by a Σ type constructor. The
motivation for extending the LF type theory by Σ are
discussed in Section 4.4. We are excluding the λ type
family constructor as a matter of convenience—in the
formulation of LF in [15], λ at the level of types does
not appear in normal forms of types and thus seems
essential only for the formulation of type inference al-
gorithms. To simplify the presentation we consider α-
convertible terms to be identical and also assume that
all constants in a signature and variables in a context
are distinct.

2.1 Syntax

There are five syntactic categories, just as in λΠ. In
order to be consistent with the notation in [15] we
overloaded the symbol Σ to stand for signatures and
also be used as a type constructor. It should always
be obvious which one is meant. We will use M and N
to stand for terms, A and B to stand for types, and K
to stand for kinds.

Signatures Σ ::= 〈〉 | Σ, c:K | Σ, c:A
Contexts Γ ::= 〈〉 | Γ, x:A
Kinds K ::= Type | Πx:A . K
Type Families A ::= c | AM | Πx:A . B | Σx:A . B
Terms M ::= c | x | λx:A . M |M N

| (M,N) | fstM | sndM

We will use the abbreviations A → B for Πx:A .
B when x is not free in B, and A × B for Σx:A .
B when x is not free in B. [M/x]N , [M/x]A, and
[M/x]K are our notation for substitution, renaming
bound variables if necessary to avoid name clashes.
Atomic types C are types that begin with neither a Π
nor a Σ.

2.2 Typing rules

We adopt the presentation from [15] and add the fol-
lowing rules for dependent products (strong sums):

Elf 3

Γ Σ̀ A ∈ Type Γ, x:A Σ̀ B ∈ Type
Γ Σ̀ Σx:A . B ∈ Type

Γ Σ̀ M ∈ A Γ Σ̀ N ∈ [M/x]B
Γ Σ̀ (M,N) ∈ Σx:A . B

Γ Σ̀ M ∈ Σx:A . B
Γ Σ̀ fstM ∈ A

Γ Σ̀ M ∈ Σx:A . B
Γ Σ̀ sndM ∈ [fstM/x]B

2.3 Conversion rules

When choosing a notion of conversion for λΠΣ there
is an unfortunate tradeoff. From a practical point
of view (both for the encoding of inference systems
in λΠΣ and for the implementation of Elf) one would
like βη-reduction and the rules for surjective pairing.
Unfortunately, the Church-Rosser property for well-
typed terms under this notion of reduction is still open,
though we conjecture that it holds. One can weaken
the notion of conversion and obtain the Church-Rosser
property by omitting η and π, but a complete abstract
interpreter for Elf using this weaker notion would
have to be unduly complex. For λΠ (without pair-
ing) these tradeoffs already exist and are discussed at
some length in [15]. Here are the reduction rules in
question:

β (λx:A . M)N −→β [N/x]M
π1 fst (M,N) −→π1 M
π2 snd (M,N) −→π2 N

η (λx:A . M x) −→η M if x not free in M
π (fstM, sndM) −→π M

A term is normal form if none of the reduction rules
above apply, and a term is strongly normalizing if every
sequence of reductions terminates. We use ≈ for
strong conversion, that is, all reductions may be used
an arbitrary number of times in either direction at any
location in a term, type, or kind. Weak conversion is
generated the same way, but only from β, π1, and π2.
In either case, a reinterpretation of the type and kind
conversion rules in the presentation of λΠ is required
to encompass a larger set of conversions.

2.4 Some properties of λΠΣ

λΠΣ inherits some, but not all of its properties from
LF.

Theorem 1 (Basic properties of λΠΣ under weak con-
version.)

1. All terms are Church-Rosser.

2. All well-typed terms are strongly normalizing.
3. Type-checking and kind-checking is decidable.

Proof sketch: The proof is an extension of the
one in [15]. Church-Rosser for this weak notion of
conversion can be proved as in [15], since it holds for
all, and not only for well-typed terms. To prove strong
normalization, we translate both types and terms from
λΠΣ into terms in a simply typed λ-calculus with prod-
ucts and explicit types. It follows from a the strong
normalization theorem by Troelstra [28] for a simply
typed λ-calculus (even including η and surjective pair-
ing) that such terms are strongly normalizing which in
turn implies this for the original terms with dependent
types.

Under strong conversion, only the proof of strong
normalization for well-typed terms can be extended
in a straightforward way, as indicated in the proof
sketch above. The Church-Rosser property now fails
in general, but we conjecture that it holds for well-
typed terms. For the remainder of this paper we will
use the notion of strong conversion, since it is desir-
able in practice and the basis for our implementation.
The theorems are therefore qualified by an assumption
about the Church-Rosser property for λΠΣ. The ab-
stract interpreters and theorems could be modified to
suit the notion of weak reduction, but the additional
complexity introduced seems unwarranted.

One of the properties that does not hold for λΠΣ

due to the presence of products is uniqueness of types,
that is, a given well-typed term M may have many
different types. This may seem like a basic flaw, but
it does not lead to problems in Elf where computation
originates from the structure of types rather than the
structure of terms.

3 An abstract interpreter

Before turning to the formal definition of the abstract
interpreter, let us outline why Elf is more than just a
theorem prover, but a programming language, similar
in many respects to logic programming languages.

The basic idea behind turning a logic into a logic
programming language is to identify two sets of for-
mulas: legal goals and legal programs. Many factors
may influence the choice of these sets, but we would
like to single out particularly important criterion (as
argued in [21]): a (non-deterministic) abstract inter-
preter should be able to perform goal-directed search
in such a way that every legal goal that is a theorem in
the underlying logic, will succeed. It is interesting to
note that this condition is independent of any notion

Elf 4

of unification and thus encompasses constraint logic
programming (see Jaffar & Lassez [18]).

Here we are in a similar situation, turning a type
theory into a programming language. The basic idea
is to give types an operational interpretation much in
the same way that formulas are given an operational
interpretation in a logic programming language.

Informally, this operational interpretation is as fol-
lows. A goal z ∈ Σx:A . B should succeed, if the goals
x ∈ A and y ∈ B both succeed, and z is the pair (x, y).
Note that xmay occur in B, and that therefore the two
subgoals may not be independent. Thus x may serve
as a “logical variable” except that it may also range
over proofs constructed by the interpreter, something
not possible in logic programming languages.

A goal z ∈ Πx:A . B should succeed, if the goal
y ∈ B succeeds under the assumption that x has type
A, and z is the abstraction λx:A . y (where x may
occur free in y, since x may occur free in B). This
does not correspond to any construct in a Horn-clause
logic, but the Π type construction serves the role of
the ∀ and ⊃ connectives in a hereditary Harrop logic
(see [24]).

The natural criterion for the choice of legal goal and
program types is slightly stronger here, since we would
also like to ensure that all terms of the given type can
be found using goal-directed search, interpreting Σ and
Π as outlined above. Actually we can only require that
for any term M of the given type A, we can find a
term N such that N ≈M . Surprisingly, this criterion
is satisfied if we admit all types of λΠΣ as goals and
programs. We will not formalize and prove this fact
as a separate theorem, since it follows rather directly
from the completeness of the abstract interpreter. In-
tuitively, this is due to the presence of strong sums,
while a (logical) existential quantifier is only a weak
sum.

3.1 A state logic

The inference system for type deduction in λΠΣ defines
a number of judgments, such as convertibility, or Γ Σ̀

M ∈ A. However, the structure of conclusions on the
right-hand of Σ̀ is not expressive enough to describe
the states of an abstract interpreter for Elf. In order
to gain this expressive power, we generalize λΠΣ by
introducing a new judgment Γ `̀Σ F with a much
richer language for conclusions F . We refer to the
conclusions F as formulas. We use the letter C to
stand for atomic types, which in λΠΣ have the form

cM1 . . .Mn.

F ::= M
.
= N ∈ A |M ∈ A | N ∈ A ⊃M ∈ C

| T | F1 ∧ F2 | ∀x:A . F | ∃x:A . F

The first line contains the formulas that are consid-
ered atomic. Except for atomic

.
= and ⊃ formulas,

this is very close to the unification logic introduced
in [26], and it is used in a very similar fashion. The
restricted form of implication is used to describe the
backchaining in the abstract interpreter. The inference
system in Figure 1 defines the judgment `̀Σ. Note that
these inference rules do not define a search process or
strategy, merely a judgment—it is the abstract inter-
preter in Section 3.2 which defines a complete (non-
deterministic) search procedure.

The basic property of the state logic is summarized
in the following theorem. Of course, the completeness
with respect to the atomic formulas that are also judg-
ments in λΠΣ is obvious.

Theorem 2 (Soundness of state logic)

1. If Γ `̀Σ M ∈ A then Γ Σ̀ M ∈ A.

2. If Γ `̀Σ M .
= N ∈ A then Γ Σ̀ M ∈ A, M ≈ N ,

and Γ Σ̀ N ∈ A.

The proof is by straightforward inductions on the
form of deductions of Γ `̀Σ F .

3.2 A first non-deterministic abstract inter-
preter

We now present the non-deterministic transition sys-
tem on formulas in the state logic that defines our first
abstract interpreter. The rewrites may be applied at
any occurrence in the state formula. Given implic-
itly is a signature Σ. The transition system is orga-
nized into classes of transitions, each class dealing with
different atomic formulas. Since some information is
needed by different components of the abstract inter-
preter, the state formula F will contain some seem-
ingly redundant information.

Goal transitionsG. These four transitions (see GΣ,
GΠ, G1

Atom, and G2
Atom in Figure 2) analyze formulas

of the form M ∈ A. Note that x may appear free in
the type B, and remember that C stands for an atomic
type.

Backchaining transitions D. The final two tran-
sitions in the previous group create implications which
are now further analyzed by the transitions DΠ, D1

Σ,
D2

Σ, and DAtom in Figure 2). In a Horn-clause logic

Elf 5

Γ `̀Σ T
Γ `̀Σ F1 Γ `̀Σ F2

Γ `̀Σ F1 ∧ F2

Γ Σ̀ M ∈ A
Γ `̀Σ M ∈ A

Γ Σ̀ M ∈ A M ≈ N Γ Σ̀ N ∈ A
Γ `̀Σ M

.
= N ∈ A

Γ `̀Σ M ∈ C ⊃M ∈ C
Γ `̀Σ N N0 ∈ [N0/x]B ⊃M ∈ C Γ `̀Σ N0 ∈ A

Γ `̀Σ N ∈ Πx:A . B ⊃M ∈ C
Γ `̀Σ fstN ∈ A ⊃M ∈ C

Γ `̀Σ N ∈ Σx:A . B ⊃M ∈ C
Γ `̀Σ sndN ∈ [fstN/x]B ⊃M ∈ C

Γ `̀Σ N ∈ Σx:A . B ⊃M ∈ C
Γ, x:A `̀Σ F

Γ `̀Σ ∀x:A . F

Γ `̀Σ [M/x]F Γ `̀Σ M ∈ A
Γ `̀Σ ∃x:A . F

Figure 1: Deduction rules for the state logic

they can be formulated more easily, since the neces-
sary subgoals are immediately available in the body
of a clause—here subgoals have to be constructed. Of
course, the actual implementation can be more effi-
cient. In DAtom, the types A1, . . . , An and A are
determined from the kind of c in the signature. Note
that Ai may contain Nj for j < i, and A may contain
all terms Ni.

Unification transitions U . Unfortunately, space
does not permit to include a presentation of the uni-
fication transitions, which are discussed in [7]. There
are two extensions to Elliott’s algorithm required here,
both of which have been described for the simply typed
λ-calculus and carry over to λΠΣ in a straightforward
way: (1) the dependency of universal and existen-
tial quantifiers must be taken into account without
Skolemization (see Miller [23]), and (2) the algorithm
must deal with products (see Elliott [8]).

We write =⇒∗ for the reflexive and transitive clo-
sure of the transition relation =⇒. At this point we
are ready to formulate a first preliminary soundness
and completeness theorems for the abstract interpreter
with respect to the state logic. We will later refine
=⇒∗, since the interpreter as stated so far is still too
non-deterministic. We are omitting here soundness
and completeness theorems for this first abstract in-
terpreter, since they are subsumed by Theorem 4.

3.3 Open and closed judgments

We now introduce the important concepts of open and
closed judgments. Judgments are represented in LF
(and Elf) as type families, so they are corresponding
notions of open and closed types. This step towards a
practical programming language is still fully justified

by the underlying type theory and does not introduce
any incompleteness. Intuitively, we are willing to tol-
erate free variables of open type in proofs, but no free
variables of closed type. In an encoding of first-order
logic as in [15], φ true would be a closed judgment,
while i (representing the domain of individuals) would
be an open judgment. It is the programmer’s respon-
sibility to annotate constants in the signature as open
or closed, but a convenient defaulting mechanism is
provided.

Definition 3 A state F is solved iff

1. there are no implicational atomic subformulas in
F ,

2. every atomic subformula M
.
= N ∈ A is in solved

form1, and
3. for every atomic subformula M ∈ A, M is an

existentially quantified variable and A is open.

We now restrict our abstract interpreter to account
for open and closed judgments by placing some of the
burden for completeness of the unification transitions.
Let =⇒U be the restriction of =⇒ by restricting uses
of transitions rules G1

Atom and G2
Atom to the case where

c is a closed type family. Let =⇒∗U be the reflexive and
transitive closure of =⇒U .

Theorem 4 Given a signature Σ with open type
constants O and a type A with free variables
y1:A1, . . . , yn:An. Under the assumption of the weak

1Pairs in solved form are guaranteed to have solutions. El-
liott’s unification algorithm uses the criterion that both M and
N are “flexible” (see [7]).

Elf 6

GΣ : M ∈ Σx:A . B =⇒ ∃x:A ∃y:B . M
.
= (x, y) ∈ Σx:A . B ∧ x ∈ A ∧ y ∈ B

GΠ : M ∈ Πx:A . B =⇒ ∀x:A ∃y:B . M x
.
= y ∈ B ∧ y ∈ B

G1
Atom : M ∈ C =⇒ x ∈ A ⊃M ∈ C where M ∈ C is in the scope of ∀x:A.

G2
Atom : M ∈ C =⇒ c0 ∈ A ⊃M ∈ C where c0:A in Σ.

DΠ : N ∈ Πx:A . B ⊃M ∈ C =⇒ ∃x:A . (N x ∈ B ⊃M ∈ C) ∧ x ∈ A
D1

Σ : N ∈ Σx:A . B ⊃M ∈ C =⇒ fstN ∈ A ⊃M ∈ C
D2

Σ : N ∈ Σx:A . B ⊃M ∈ C =⇒ sndN ∈ [fstN/x]B ⊃M ∈ C
DAtom : N ∈ cN1 . . .Nn ⊃M ∈ cM1 . . .Mn

=⇒ N1
.
= M1 ∈ A1 ∧ . . . ∧Nn

.
= Mn ∈ An ∧N

.
= M ∈ A

Figure 2: Transition of non-deterministic abstract interpreter

Church-Rosser property for λΠΣ under strong con-
version, `̀Σ ∃y1:A1 . . .∃yn:An ∃x:A . y1 ∈ A1 ∧
. . . ∧ yn ∈ An ∧ x ∈ A =⇒∗U `̀Σ F for some
solved F iff there are N1, . . . , Nn and M such that

Σ̀ M ∈ [N1/y1] . . . [Nn/yn]A and any free variable in
N1, . . . , Nn and M has open type.2

The proof is constructive, that is, gives explicit
transformations of transition sequences to deductions
in the state logic and vice versa. It also requires the
completeness of higher-order unification, since open
types are not analyzed as goals with respect to the
signature.

As discussed earlier, a different version of this theo-
rem for a modified interpreter can be given for λΠΣ un-
der weak conversion, but this modified theorem is not
practically motivated. Note that only completeness
depends on the Church-Rosser property, not sound-
ness.

4 The Elf language and interpreter

We now proceed to turn the abstract interpreter into
a practical interpreter, following the ideas underlying
λProlog. These commitments and extensions are moti-
vated by the experience with Prolog and λProlog, and
completeness is lost. This step leads to Elf as a true
programming language in which one can write theorem
proving programs, rather than a logic-independent
theorem prover (which we believe to be a problem too
difficult for a general, complete solution).

2The abstract interpreter satisfies a stronger condition: it
characterizes all terms M ∈ A. Stating a theorem to this effect
would require a discussion of higher-order preunification, which
is beyond the scope of this paper.

4.1 Depth-first search

Search through the program is committed to be depth-
first. This means that the interpreter goes through the
state formula from left to right until it encounters an
atomic formula F .

1. If F matches the left-hand side of GΣ or GΠ, that
rule is applied.

2. If F is of the formM ∈ C for atomic and closed C,
it applies G1

Atom to the innermost quantifier ∀x:A
such that A is closed and M ∈ C is in its scope.
On backtracking, the next further universal quan-
tifier is considered, etc., until all have been con-
sidered. Finally the current signature Σ (see Sec-
tion 4.2) is scanned from left to right, applying
G2

Atom to declarations c0 ∈ A for closed A.

3. If F is an implication, we apply rule DΠ if it
matches. If D1

Σ applies, we use it, and use D2
Σ

on backtracking. Finally we apply DAtom if both
atomic types begin with the same constant. Oth-
erwise we backtrack over previous choices.

4. If F is T , an equality in solved form, or M ∈ C
for open C, we pass over it, looking for the next
atomic formula. Thus, equalities in solved form
are constraints in the sense of Jaffar & Lassez [18].

5. If F is an equality not in solved form, we call the
unification algorithm on the whole state. Unifi-
cation may fail (upon which we backtrack), not
terminate, or replace the given equality by a con-
junction of solved equalities, with T representing
the empty conjunction. On backtracking, the uni-
fier will enumerate more solutions, which is nec-

Elf 7

essary since unique most general unifiers do not
exist for λΠΣ in general.

In the remainder of the paper, we will refer to the
program defined by cases 1 through 4 as the goal in-
terpreter, case 5 defines the unifier.

4.2 Dynamic and static constants

In the interpreter as given above we have used the
notion of current signature. Signatures are the basic
unit of programs, and they serve two purposes. They
are necessary for unification (which includes term- and
type-checking and inference, see Section 4.3) and for
the goal-directed search performed by the goal inter-
preter. If all constants were visible to the goal inter-
preter, this would lead to very undesirable behavior.
For example⊃E : ΠA:o . ΠB:o . `A ⊃ B → `A→ `B
would apply to any goal of the the form `C and lead
to very undirected search. However, the type of the
constant ⊃E must be available to the unifier. There-
fore term constants (such as ⊃E) may be declared as
dynamic or static. A dynamic constant will be used by
the interpreter when visible according to the module
visibility rules 3. A static constant will never be used
by the goal interpreter. The type of both dynamic and
static constants will be visible to the unifier.

4.3 Term and type inference

Using the LF type theory or λΠΣ without term and
type inference can be extremely cumbersome, since
much information would have to be given that could be
inferred. The basic mechanism for term inference in
λΠ is described in [7]. It is extremely important to note
that term inference, as defined by Elliott, does not re-
quire general theorem proving, since it leaves free vari-
ables of closed type uninstantiated, even though there
may not be any terms without free variables of such a
type. Instead, it relies entirely on unification on terms
in λΠΣ. Unfortunately, unification on λΠΣ (and λΠ) is
only semi-decidable, and the term-inference problem
is only semi-decidable as well. Therefore, a resource
bound is put on term inference, and it may return three
answers (yes, no, or maybe). In case of a “maybe” the
user can add more type information to his program.
Experience with higher-order unification suggests that
λΠΣ-unification should be able to handle most practi-
cal examples of term inference rather easily, so a small
resource bound should suffice. The additional com-
plexity of types over terms is small and term-inference

3similar to the ones in λProlog, see [20]. Another related
approach to structuring of theories may be found in [16].

can be extended easily to type inference. A more se-
rious practical problem is that of ambiguity: omitted
types and terms can often be restored in a number of
incompatible ways. Currently, we require more infor-
mation from the user in such a case.

Elf also offers convenient syntax to specify omitted
terms at the place where a constant is declared, rather
than where it is used (where one would use “ ”. For ex-
ample, one would declare ⊃I′′ : ΠA:o . ΠB:o . (`A →
`B) → `A ⊃ B. Then every occurrence of ⊃I will
be replaced by ⊃I′′ when the program is read. If,
for some reason, one would like to be more explicit
about the first two arguments to ⊃I, one can still use
constants ⊃I′ and ⊃I′′. An additional note on inferred
quantifiers. In logic programming languages, it is con-
venient to be able to omit explicit quantifiers over the
free variables in a clause. A new problem arises here if
we try to do the same: the order of the quantifiers may
depend on the term- and type-inference algorithm. In
such a case, the constant will always be replaced by an
application to omitted terms: the programmer loses
the ability to specify the inferred arguments explic-
itly.

4.4 Σ-types and queries

Let us return to the motivation for including depen-
dent products in the language. Firstly, Σ-types and
the ability to form pairs of terms are a matter of conve-
nience, in the same way conjunction in logic program-
ming is a matter of convenience, though not strictly
necessary (one could use nested implications). Sec-
ondly, products combined with polymorphism signifi-
cantly strengthen Elf as a representation and metapro-
gramming language to handle the common case of a
object languages with binding constructs of variable
arity (see [27]). For example, a natural encoding of
Hoare logic in LF as given in Section 4.10 of [1] must
be restricted to a fixed number of registers—a restric-
tion that can be dropped in λΠΣ with polymorphism.
Thirdly, Σ-types can introduce “constants” that are
local to a module as Σ-quantified variables, something
not possible in λProlog. Finally, products are impor-
tant in queries, where they can be used to hide infor-
mation (thinking of Σ as an existential quantifier) and
to express several goals to be satisfied simultaneously.

5 Examples

We give excerpts from some programs that highlight
some of the unique features of Elf that set it apart from
related languages such as λProlog. Some of the types
given in these examples could be inferred. A feature

Elf 8

used in the examples that has not yet been discussed
is a very weak form of equality in signatures, c = M ,
which is used exclusively for term and type inference.

5.1 A module defining a first-order logic

We give a condensed signature for a first-order logic in
the style of Elf below. It is very close to the LF en-
coding in [15], with the exception of some annotations.
We are now using A and B to stand for formulas, and
`A for the judgment that A is true.

static Module fol

open i : Type % type of terms.
open o : Type % type of propositions.

closed ` : o→ Type % type of proofs.

⊥ : o
¬ : o→ o

∧,∨,⊃ : o→ o→ o
∀, ∃ : (i→ o)→ o

⊥I ′ : ΠC . `⊥ → `C
¬I′ : ΠA . (`A→ `⊥)→ `¬A
¬E′ : ΠA . `¬A→ `A→ `⊥
∧I′′ : ΠA . ΠB . `A→ `B → `A ∧B
∧E′′l : ΠA . ΠB . `A ∧B → `A
∧E′′r : ΠA . ΠB . `A ∧B → `B
∨I′l : ΠA . ΠB . `A→ `A ∨B
∨I′r : ΠA . ΠB . `A→ `B ∨A
∨E′′′ : ΠC . ΠA . ΠB . `A ∨B →

(`A→ `C)→ (`A→ `C)→ `C
⊃I′′ : ΠA . ΠB . (`A→ `B) → `A ⊃ B
⊃E′′ : ΠA . ΠB . `A ⊃ B → `A→ `B
∀I′ : ΠA:i→ o . (Πx:i . `Ax)→ `∀A
∀E′ : ΠA:i→ o . `∀A→ (Πx:i . `Ax)
∃I′ : ΠA:i→ o . Πx:i . `Ax→ `∃A
∃E′′ : ΠC . ΠA:i→ o . (Πx:i . `Ax→ `C)

→ `∃A→ `C

5.2 Miniscoping

Minimizing the scope of quantifiers is an common pre-
processing step in theorem provers. This example il-
lustrates how a “clause” (a declaration dynamic c : A)
in Elf can be proved correct by giving a closed term
of type A. In practice, one would obtain the proof
of ∀push∧ by theorem proving in a programming en-
vironment (for example, in the style of Isabelle [25]),
an issue beyond the scope of this paper. The excerpt
contains two clauses, one that pushes a universal quan-
tifier over a conjunction, and one that pushes a univer-
sal quantifier over a disjunction, if the bound variable
does not appear free in the right disjunct.

∀push∧′′ : ΠA ΠB . `∀ (λx . Ax ∧B x)← `∀A ∧ ∀B
∀push∧′′ = λA . λB . λz:`∀A ∧ ∀B . ∀I′ (λx:i .
∧I′′ (Ax) (B x) (∀E′ (∧E′l z) x) (∀E′ (∧E′r z) x))

∀push∨l : `∀ (λx . Ax ∨B)← `∀A ∨B
∀push∨l = λz:`∀A ∨B . ∀I (λx:i . ∨Ez

(∨Il (λy1 . ∀E y1 x)) (∨Ir (∀A)))

5.3 Proof reduction and normalization

This next example is the implementation of proof re-
ductions for proofs in a first-order intuitionistic logic.
Felty showed in [9] how to implement the reductions
in λProlog, but at a very heavy price. Each of her
clauses contains a proof-checking subgoal that may be
very expensive to execute. If her reductions are com-
bined into a normalization procedure, each reduction
step must do proof-checking, something that can be
avoided in Elf. This is because Elliott’s unification
algorithm eliminates redundant type-checking (which
is proof-checking in an encoded logic) in many cases.
The following reductions rules are verified since the
type of reduce′ guarantees that its second and third
argument are proofs of the same theorem. The con-
stants in this example are anonymous and their names
will be generated by Elf.

reduce′ : ΠA . `A→ `A→ Type

reduce (¬E(¬IM)N) (MN)
reduce (∧El (∧IM N)) M
reduce (∧Er (∧IMN)) N
reduce (∨E(∨Il M)N1N2) (N1 M)
reduce (∨E(∨Ir M)N1 N2) (N2 M)
reduce (⊃E(⊃IM)N) (M N)
reduce (∀E (∀IM)T) (M T)
reduce (∃EN (∃IT M)) (N T M)

The commutative reductions can be formulated very
generally (and non-deterministically). The declaration
as static ensures that this is not used by the goal
interpreter, only by the type-checker.

static cred′′′ : ΠA ΠB ΠC ΠF :(`C → `C) .
ΠM :`A ∨B . ΠN1 . ΠN2 .

reduce′ (`C) (F (∨EM N1 N2))
(∨EM (λx . F (N1 x)) (λy . F (N2 y)))

We can then use specializations of this general rule
dynamically in the normalization program. The two
specializations listed below apply in the case of a ⊃E
directly preceded by an ∨E, either in the left or right
premise. The types of cr1 and cr2 are inferred by the
type inference algorithm. One can write similar spe-
cializations for ∨E followed by other elimination rules
that form a maximal segment. Note the conciseness of

Elf 9

this formulation over the many rules one must state in
λProlog, and all of which are instances of the general
transformation cred.

dynamic cr1 = cred (λx . (⊃E x))
dynamic cr2 = cred (λx . (⊃E x))

5.4 Other examples

Another important application is to mechanize type-
checking for programming languages with complex
type systems. The property of a program to be well-
typed in such a language can be formalized in Elf as
an inference system in the style of LF. This does not
immediately lead to a type-checking algorithm, unless
there is also a theorem prover for some of the more
complex relations (like subtypes). Often the search
space for such relations is linear and a decision proce-
dure can be given immediately, that is, the signature
itself may be used dynamically.

Natural deduction theorem provers such as Gentzen
(see Beeson [2]) or those proposed by Felty and
Miller [11] can also be expressed very naturally in Elf.
The extraction of programs from proofs is another ex-
ample of the kind of algorithm that can easily be im-
plemented in Elf. In many of these examples, the im-
plementations are related to λProlog implementations
of a similar flavor. The main added advantages of Elf
are (1) the program does not need to keep track of
proofs explicitly—that is done by the Elf interpreter
itself (without performance penalty, when proofs are
not used), (2) the partial correctness of many pro-
grams can be guaranteed by Elf, and (3) the oper-
ational behavior of Elf is much better when explicit
type-checking or proof-checking would be required in
λProlog (as is frequently necessary in the programs ob-
tained by translating LF signatures into λProlog pro-
grams as outlined by Felty in [11]).

6 Implementation and further work

An implementation of Elf in Common Lisp is in
progress in the framework of the Ergo project at
Carnegie Mellon University. Among the important op-
timizations not mentioned above are (1) signatures are
transformed and stored in a hash-table indexed by the
type families they define which allows fast backchain-
ing in the style of Prolog, and (2) term construction
can often be avoided if the constructed term would
not be used (which is frequently the case when a theo-
rem prover is called, since proofs are often irrelevant).
The implementation also contains a few extra-logical
primitives such as cut, read and write, and a module
system, similar to the one in λProlog.

Extensions we are considering concern polymor-
phism (which is included in the implementation, but
treated in an incomplete way), a stronger notion of
definitional equality including δ-reductions, and the
embedding of Elf in a general proof development and
transformation environment. We are also consider-
ing a sublanguage of Elf along the lines of Felty and
Miller’s Lλ [10] for which unification would be decid-
able.

Acknowledgments

I would like to thank Ken Cline, Conal Elliott, Amy
Felty, and Dale Miller for helpful discussions concern-
ing the subject of this paper.

References

References

[1] Arnon Avron, Furio A. Honsell, and Ian A. Ma-
son. Using Typed Lambda Calculus to Implement
Formal Systems on a Machine. Technical Re-
port ECS-LFCS-87-31, Laboratory for Founda-
tions of Computer Science, University of Edin-
burgh, Edinburgh, Scotland, June 1987.

[2] M. Beeson. Some applications of Gentzen’s proof
theory in automated deduction. 1988. Submit-
ted.

[3] Robert L. Constable et al. Implementing Math-
ematics with the Nuprl Proof Development Sys-
tem. Prentice-Hall, Englewood Cliffs, New Jersey,
1986.

[4] Robert L. Constable, Todd Knoblock, and
Joseph L. Bates. Writing programs that con-
struct proofs. Journal of Automated Reasoning,
1(3):285–326, 1984.

[5] Thierry Coquand and Gérard Huet. The calculus
of constructions. Information and Computation,
76(2/3):95–120, February/March 1988.

[6] N. G. de Bruijn. A survey of the project Au-
tomath. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, Aca-
demic Press, 1980.

[7] Conal Elliott. Higher-order unification with de-
pendent types. In Rewriting Techniques and Ap-
plications, Springer-Verlag LNCS, April 1989. To
appear.

Elf 10

[8] Conal Elliott. Some Extensions and Applications
of Higher-order Unification: A Thesis Proposal.
Ergo Report 88–061, Carnegie Mellon University,
Pittsburgh, June 1988. Thesis to appear June
1989.

[9] Amy Felty. Implementing Theorem Provers in
Logic Programming. Technical Report MS-CIS-
87-109, University of Pennsylvania, Philadelphia,
December 1987.

[10] Amy Felty and Dale Miller. A metalanguage
for type checking and inference. November 1988.
Manuscript.

[11] Amy Felty and Dale A. Miller. Specifying theo-
rem provers in a higher-order logic programming
language. In Ewing Lusk and Ross Overbeek,
editors, 9th International Conference on Auto-
mated Deduction, Argonne, Illinois, pages 61–80,
Springer-Verlag LNCS 310, Berlin, May 1988.

[12] Michael J. Gordon, Arthur J. Milner, and
Christopher P. Wadsworth. Edinburgh LCF.
Springer-Verlag LNCS 78, 1979.

[13] Mike Gordon. HOL: A Machine Oriented Formu-
lation of Higher-order Logic. Technical Report 68,
University of Cambridge, Computer Laboratory,
July 1985.

[14] Timothy G. Griffin. An Environment for Formal
Systems. Technical Report 87-846, Department
of Computer Science, Cornell University, Ithaca,
New York, June 1987.

[15] Robert Harper, Furio Honsell, and Gordon
Plotkin. A framework for defining logics. Jan-
uary 1989. Submitted to JACM. A preliminary
version appeared in Symposium on Logic in Com-
puter Science, pages 194–204, June 1987.

[16] Robert Harper, Donald Sannella, and Andrzej
Tarlecki. Structure and representation in the Ed-
inburgh logical framework. This volume.

[17] Douglas J. Howe. Computational metatheory
in Nuprl. In Ewing Lusk and Ross Overbeek,
editors, 9th International Conference on Auto-
mated Deduction, Argonne, Illinois, pages 238–
257, Springer-Verlag LNCS 310, Berlin, May
1988.

[18] Joxan Jaffar and Jean-Louis Lassez. Constraint
logic programming. In Proceedings of the Four-
teenth Annual ACM Symposium on Principles of

Programming Languages, Munich, pages 111–119,
ACM, January 1987.

[19] Todd B. Knoblock and Robert L. Constable. For-
malized metareasoning in type theory. In First
Annual Symposium on Logic in Computer Sci-
ence, Cambridge, Massachusetts, pages 237–248,
IEEE Computer Society Press, June 1986.

[20] Dale Miller. A logical analysis of modules for
logic programming. Journal of Logic Program-
ming, 1988. To appear.

[21] Dale Miller, Gopalan Nadathur, Frank Pfenning,
and Andre Scedrov. Uniform proofs as a founda-
tion for logic programming. Journal of Pure and
Applied Logic, 1988. To appear.

[22] Dale Miller, Gopalan Nadathur, and Andre Sce-
drov. Hereditary Harrop formulas and uniform
proof systems. In Second Annual Symposium on
Logic in Computer Science, pages 98–105, IEEE,
June 1987.

[23] Dale A. Miller. Unification under mixed prefixes.
1987. Unpublished manuscript.

[24] Gopalan Nadathur and Dale Miller. An overview
of λProlog. In Robert A. Kowalski and Ken-
neth A. Bowen, editors, Logic Programming: Pro-
ceedings of the Fifth International Conference
and Symposium, Volume 1, pages 810–827, MIT
Press, Cambridge, Massachusetts, August 1988.

[25] Lawrence C. Paulson. The Representation of Log-
ics in Higher-Order Logic. Technical Report 113,
University of Cambridge, Cambridge, England,
August 1987.

[26] Frank Pfenning. Partial polymorphic type infer-
ence and higher-order unification. In Proceedings
of the 1988 ACM Conference on Lisp and Func-
tional Programming, ACM Press, July 1988.

[27] Frank Pfenning and Conal Elliott. Higher-order
abstract syntax. In Proceedings of the SIGPLAN
’88 Symposium on Language Design and Im-
plementation, pages 199–208, ACM Press, June
1988. Available as Ergo Report 88–036.

[28] Anne S. Troelstra. Strong normalization for
typed terms with surjective pairing. Notre Dame
Journal of Formal Logic, 27(4):547–550, October
1986.

