A Declarative Alternative to
“assert” in Logic Programming

Scott Dietzen and Frank Pfenning
School of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890, USA
Internet: dietzen@cs.cmu.edu, fp@cs.cmu.edu

Abstract

The problem with the standard means by which Prolog programs are ex-
tended — assert — is that the construct is not semantically well-behaved.
A more elegant alternative (adopted, for example, in AProlog) is implication
with its intuitionistic meaning, but the assumptions so added to a logic pro-
gram are of limited applicability. We propose a new construct rule, which
combines the declarative semantics of implication with some of the power
of assert. Operationally, rule provides for the extension of the logic pro-
gram with results that deductively follow from that program. rule, used in
conjunction with higher-order programming techniques such as continuation-
passing style, allows the natural and declarative formulation of a whole class
of logic programs which previously required assert. Example applications
include memoization, partial evaluation combined with reflection, resolution,
ML type inference, and explanation-based learning.

1 Introduction

There are many features of logic programming languages like Prolog which
have very little to do with its logical foundation. The so-called ‘meta-logical’
predicates such as call, assert, retract, univ, or var form an interesting
class of Prolog constructs. They are concerned with the manipulation of
logic programs, including the currently running program itself. Even though
these constructs often operate at an intuitively different level (the meta-level)
than other predicates, this level distinction is not made explicit in Prolog.
This generates many well-known problems in logic program analysis and
compilation (see [10], for example).

There has been a recent surge of interest in giving a ‘logical’ or ‘formal’ ac-
count of these constructs in the context of logic programming. AProlog [16]
uses a fragment of intuitionistic higher-order logic and gives a logical foun-
dation for call (through higher-order predicates) and some uses of assert

(through embedded implication). HiLog [3] uses an even narrower fragment
of higher-order logic and can give a declarative account for many uses of univ
and call. The language Godel [2] follows a different approach by explicitly
separating the meta-level from the object-level.

In this paper we are concerned with giving a logical foundation to uses of
assert for which we have not found satisfactory account in the literature
(although the reader may also see [11, 19]). We propose the rule construct,
which can be viewed operationally as extending the logic program with con-
sequences of that program. The construct thereby introduces an element of
forward reasoning into logic programming, albeit in a very limited and tightly
controlled fashion. rule allows us to program in a natural and declarative
way many applications which previously had to rely on extra-logical features.
Examples are memoization, partial evaluation combined with reflection, res-
olution and many other typical applications of meta-programming in logic
programming.

Within [5, 4], we develop a closely related construct, rule_ebg, which simi-
larly extends a program by one of its consequences. The difference is how the
interpreter arrives at the consequence to be assumed: rule creates a general
consequence by universally quantifying over logic variables; rule_ebg, on
the other hand, additionally abstracts over constants and terms, so long as
their structure is irrelevant for the proof of the proposed assumption (in the
usual manner of explanation-based generalization).

Higher-order logic programming. The vehicle for this work is AProlog,
a logic programming language supporting higher-order functions and pred-
icates introduced by Nadathur & Miller [16]. AProlog extends Prolog in
several principle directions: It provides the simply-typed A-calculus as a
data type and incorporates higher-order unification. It also generalizes be-
yond higher-order Horn clauses by allowing so-called embedded implication
and universal quantification.

The primary aspects of AProlog relevant to the work reported herein are
embedded implication and higher-order programming — that is, the ability
to create goals and programs and pass them as arguments. Although the
constructs rule and rule_ebg are proposed and applied in the framework of
AProlog, the underlying ideas are general and, we believe, relevant to other
logic programming languages.

Logical preliminaries and notation. Within our examples, constants
are in boldface while variables are in italics. Juxtaposition denotes term
application, which associates to the left: abc is read as (ab)c, as in the
A-calculus. Thus the Prolog term p(a,b) is written as pab in AProlog.
Both = and < represent (intuitionistic) implication; the latter is equivalent

Co ?

to Prolog’s ‘:

Higher-order Horn clauses may be defined inductively as

G = true | A | G1,Gy | G1;G2 | Fz[:7].G
D := true| A| Dy,D; | D<G | Vx[:7].D

where G ranges over arbitrary goals, D over program clauses, 7 over simply
types, and A over atoms. (Atoms are propositional terms, or predicates,
that do not contain any logical operators at the top-level.) We omit types in
the sequel since they can be inferred through type reconstruction. Finally,
we use P to denote an arbitrary logic program (list of D’s), and E to stand
for an expression that must be both a legal program and goal.

The extension to allow embedded implication and embedded universal quan-
tification leads to the higher-order hereditary Harrop formulas — the basis
of AProlog:

G = true | A | G1,G2 | G1;G2 | Fz[:7].G | D=G | Ve [:7].G
D := true| A| Dy,D; | D<G | Vx[:7].D

We use P - G to mean that there exists an (intuitionistic) proof of G given
P; that is, G follows from P.! In order to speak about the interpretation
of AProlog, we use P = G to represent the problem of solving G given the
program P. If this succeeds with substitution 6, then we say that Pty G
holds. We denote the application of a substitution € to an expression M
(containing free variables) as OM, and we use ¥ for the composition of
substitutions ¢ o 6.

The ¢ relation can be formally defined as an inference system [4]. By induc-
tion over the construction of the derivation of P g G within that inference
system, one can show that 8P F 6G both for higher-order Horn logic and for
the richer logic with embedded implication and universal quantification.?
We will refer to this property as soundness of the interpreter. The proof is
not difficult and essentially contained in [13]. The dual theorem (complete-
ness of the interpreter) usually fails in logic programming: even if 0P + 0G,
the interpreter may fail to terminate and thus P ¥/¢ G.

2 Existing Approaches to Extending Logic Pro-
grams

2.1 Prolog’s “assert”

Prolog permits the modification of the current logic program through the
primitives assert and retract: assert D adds clause D to the program,

'For Horn logic and even higher-order Horn logic, intuitionistic and classical provability
coincide [13], so the by-word “intuitionistic” is only important for logics extended with
embedded implication and embedded universal quantification, such as AProlog.

*In our formulation of Horn logic, all assumptions are closed (explicitly quantifying
over free variables), and thus 8P = P. However, as we shall illustrate, this is not the case
for AProlog with its embedded implication.

while retract D removes D.? We are particularly interested in the following
applications of assert:

e Memoization — To avoid the re-computation of previously solved goals,
derived results are memoized, or cached, by applying assert to goals
deductively following from a program P. We call this a conservative
extension of the original program P. For example, the following defi-
nition of the Fibonacci function will not recompute values (unless the
user causes it to backtrack):

fib 0 1.
fib 1 1.
fib m n < m>1, mism—1, mgoism—2,
fib my no, asserta (fib ma ns),
fib my n;, asserta (fib my n1), nisn; + ns.

Memoization may be considered an example of forward reasoning —
a paradigm in which a knowledge-base (in this case, a logic program)
grows by computing and assimilating facts that follow deductively. Al-
though individual goals are derived through the standard back-chaining
of Prolog, their assimilation represents a forward reasoning step.

e Program reflection — Reflection is the mapping of the data structure
representing a program into an executable version of that program.
The need for reflection arises when we need to run a program con-
structed by another program: for example, executing the more spe-
cialized program resulting from a partial evaluation. Reflection allows
the derived program to be executed directly, thereby avoiding the in-
efficiency and complexity of interpreting the program data structure.

The results of partial evaluation (PE) represent one important ap-
plication for reflection. In the context of logic programming, partial
evaluation consists of deriving a sufficient condition G for a partic-
ular query F; that is, PE is a specialization of the logic program P
that captures the computation leading from E to G. Through use of
the resulting derived rule F < G, we avoid redoing the intervening
computation.*

Rules derived through peval could be assimilated with assert, as
within the top-level predicate peval_top:

peval_top E < peval F G, asserta (E < G).

3Prolog implementations typically offer both asserta and assertz: the former adds the
clause to the beginning of the program, while the latter does so at the end. For purposes
of general discussion, our use of assert encompasses both constructs.

“As a rudimentary example, from an appropriate logic program, the goal
grandparent = z might be partially evaluated to a subgoal (son z y, daughter y x). The
resulting derived rule F < G is then grandparent = z <= son z y, daughter y x.

In §3 we show how memoization and reflection can be achieved declaratively
with our proposed rule construct.

assert (in combination with retract) also supports other programming
mechanisms such as the mutation of global data, search control by hiding
and revealing clauses, or self-modifying code in the general sense. Programs
using assert in these ways are often stylistically questionable, and can fre-
quently be reformulated without assert in a manner no more complex and
no less efficient.

The principle drawback of assert is that it has no accessible declarative
meaning. Consequently, work on the semantics of logic programs typically
ignores it, and Prolog implementations behave inconsistently (see [10, p.22],
for example).

For this and other reasons, AProlog does not include assert, although some
of assert’s functionality is subsumed by another construct — embedded
implication. However, as we shall illustrate, embedded implication is not
powerful enough to support all of the above applications of assert. This
led us to explore the possibility of making logically motivated extensions to
AProlog that address some of these deficiencies, in particular the mechanisms
of memoization and reflection.

2.2 Embedded Implication

It has been argued in the literature [12, 8, 1] that implication (with its intu-
itionistic meaning) can be used in place of assert in many applications, and
can also be given a simple declarative semantics. The operational reading
of embedded implication is that when solving the goal D = G, assume D
while solving G. Thus, for example, without any program, the query

7— pl=puz

succeeds with the answer £ = 1. The implication’s assumption is in effect
exactly while solving the consequent, and thus

- (pl=pa), Py
will fail, though

7— (pl,p2)=pzx), z=2.
succeeds after some backtracking.

Implication is of particular importance when we wish to make an assumption
for a particular computation and then ‘forget’ it. Consider a reformulation
of peval_top:

pevaltop F K <« peval EG, (E<G)= K.

The revised peval_top takes two arguments: the goal E to be partially
evaluated, and a second goal K representing the context for which the as-
sumption E < G will be valid. (‘K’ is for continuation.’) The rationale
behind peval_top is that the client has some computation (captured in K)
for which a particular specialization of the program (E < @) is applicable,
yet he does not desire to make that optimization permanent (since, perhaps,
it impairs performance in the general case).

At first, it might appear that the following definition would behave identi-
cally:

peval top F K < peval E G, asserta (E < G), K, retract (F < G).

However, the above is not equivalent to the preceding version: Suppose
that the computation associated with K also makes extensions to the logic
program. Should one of these assumptions unify with £ < G, retract will
leave P in an inconsistent state. Such potentially conflicting side-effects
illustrate the difficulty in reasoning about programs that use assert.

In fact, assert and retract are not sufficient to encode implication in gen-
eral: the problem with

(D= G) <« assertaD, G, retract D.

(besides that of conflicting side-effects) is that should the interpreter initially
successfully apply this clause but then later backtrack, the assumption D
is unavailable for subsequent solutions of G' (as backtracking over retract
does not reinvoke assert).

2.3 Universal Quantification in Assumptions

In a Horn logic, all assumptions are closed: whatever apparently free vari-
ables occur in a clause D are in fact universally quantified. Moreover, in a
Horn logic, the program cannot change during its execution. This is not the
case for logics extended with embedded implication: assumptions added to
‘P may therein contain logic variables that are not copied when that clause is
used. Instead, since these logical variables may also occur in goals, the pro-
gram may actually change (through variable instantiation) in the course of
solving a goal. As a consequence, we must distinguish between the assump-
tions p and Vz.p . This is no great inconvenience: a clause occurring at

®The realization of continuation-passing style (CPS) [17] (as familiar from functional
programming) within a logic programming language requires predicates be given an ad-
ditional argument K (a goal). This goal is intended to represent the remainder of the
computation, and rather than returning control upon success, clauses invoke this ‘goal
continuation.” In this way, accumulated assumptions are made available to extended com-
putations. An example of CPS in AProlog may be found in [4].

the top-level in a program is still considered to be universally quantified over
its free variables, but no such convention exists for embedded implications.

This points out a way in which implication is less powerful than assert:
the assumption which is therein added to the program is not universally
generalized. For example,

?— asserta(pz), pl, p2.
succeeds in Prolog, while
?—px=(pl, p2).

fails in AProlog: as one can see, there is no x such that p z implies both
p 1l and p 2. Operationally, what happens is that resolving p 1 with the
assumption p x instantiates z to 1, and the now instantiated assumption
p 1 does not unify with the second subgoal p 2. On the other hand, the
following clearly succeeds:

7— (Vzpz)=(pl, p2).

It should be remarked here that this behavior of embedded implication is
not a design mistake, but has its applications and, moreover, is entailed by
the desire to make only logically sound extensions to basic Horn logic (for a
further discussion see [12]).

This limitation of implication points out a problem in our implicational defi-
nition of peval_top: a clause derived by partial evaluation and then assumed
can only be used with one substitution for its logical variables. Hence neither
implication nor assert is the proper mechanism for this situation.

2.4 Embedded Implication and “assert”

We have seen that assert and retract are insufficient to program implica-
tion, in part due to the lack of proper scoping. Conversely, there are as-
pects of assert which are difficult to model with embedded implication [4].
Of these, the most problematic is the universal generalization of assumed
clauses, because there is often no way to program around the problem short
of completely reformulating the data representation.® It is universal gener-
alization which is addressed by our proposed rule construct.

This is essentially the solution advocated by Burt et al. [2].

3 Conservatively Extending Logic Programs

Let us now return to the peval_top example introduced in §2.2. Recall that
the problem with

pevaltop F K <« peval EG, (E<G)= K.

is that the free variables of £ < G (such as z, y, & z in grandparent = z <
son z y, daughter y) are not universally generalized, thereby restricting
the applicability of the assumption.

Operationally, what we would like to achieve is

1. Solve peval E G. If this succeeds with a substitution 6, 0F and 0G
may contain logic variables. Let)} be those logic variables which do
not occur free in any current assumption.

2. Assume VY.(6F < 0G) while solving 0K.

Why is this a sound way of establishing 0 K7 We need to make three crucial
observations:

1. Since we quantify only over those variables which are not free in a
current assumption, we know that V). peval 0F 6G is a logical con-
sequence of the program for peval (simply apply the principle of uni-
versal generalization).

2. We also know that, for any £ and G, if peval F G, then F < G.

3. Hence, using a simple forward reasoning step, we conclude that the
derived rule VY.(0E < 6G) is true and can thus be safely assumed
before solving 0K

Trying to abstract from this particular example, we can see that we need
two pieces of information in order to carry out the operations described
above: the original goal to be solved — peval £ G, and the general rule
establishing the connection between this goal and the assumption we would
like to make — VE.VG.((E < G) < peval E G). In order to properly scope
assumptions, we also need to pass a goal continuation K as an argument.
This line of reasoning is embodied within our new construct rule. For peval,
the rule invocation is

peval_top E K < rule (peval FE G)
(VM NG.peval E G = (E < G))
K.

3.1 The “rule” Construct

The general form of rule is
rule G (VX.Gx = Dx) K

for goals G, Gy, K, and clause Dy, where X is a (perhaps empty) subset of
the variables free in Dy or Gy. To simplify the discussion, we assume that
the variables in X do not occur elsewhere.

The operational interpretation of
Pt rule G (VX Gy = Dx) K
is as follows:

1. Find a minimal substitution oy such that dom(cx) C X and cxGx = G.
The existence of oy guarantees that the forward-chaining step is ap-
plicable. Should oy not exist, fail and issue a diagnostic message.

2. Solve P+ G. If this fails, fail. Otherwise, it succeeds with some sub-
stitution 6.

3. Let Y = free(0G) — free(6P).
4. Let X' = X —dom(oy).

5. Solve

{VX/V)) ea'xDx} U GP H— GK

The proper declarative reading for
rule G (VX.Gx = Dx) K
is simply
G, VWX.Gx=Dyx)=K

which makes no mention of universal generalization whatsoever.

The above operational definition ensures that rule will succeed only if its cor-
responding declarative interpretation is (intuitionistically) true. This may
be proved by induction on the definition of the t relation; the proof may be
found in [4].

The difference between the operational and declarative readings illustrates
the savings provided by rule: Under the declarative interpretation, multiple
instances of the same general goal G must be solved in order to establish
instances of G’s consequent D. Operationally, however, we need solve G
only once, universally generalize, and then assume the universal closure of
its consequent D.”

That it is the free variables of GG, rather than those of D, which are univer-
sally generalized is essential to the correctness of this declarative reading:
consider that

?— rule true (true = pz) (pl,p2).
fails. The following variation, on the other hand, should (and does) succeed:
?— rule true (Vz.true=pz) (p1,p2).

Note that VX. Gy = Dy, though true, is never used in the back-chaining
search of the interpreter; only the result of the forward step VX' VY. ox0D x
is assumed. This is essential as the clause one typically uses for this forward-
chaining step is often hopelessly inefficient, or else quickly leads to non-
termination if used in the reverse direction. We have already given as an
example the step associated with peval_top: (£ < G) < peval F G.

3.2 Example: “lemma”

In applications such as memoization, the goal we would like to solve and
the (generalized) assumption we would like to make coincide. Sterling &
Shapiro [18, p.181] suggest lemma as a good way to achieve memoization
in Prolog:

lemma E <« E, asserta (£ <!).

A version of lemma that restricts the scope of the assumption to a goal
continuation K, but otherwise behaves identically, can easily be programmed
with rule:

lemmaE K <« rule E (VE.(E<!)<E) K.

lemma cannot be effectively implemented without rule in AProlog, since
there is no means to universally generalize over free variables.

"The declarative reading of rule is not, however, equivalent to its operational definition,
as the declarative version may succeed where the operational fails. This is because rule’s
assumption VX' VY. cx0Dx is typically less general than VX. Gx = 0D, and thus K
may follow from the latter, but not from the former. But this is, of course, the whole
purpose of rule: to focus search by making use of a selected consequence (VX' VY. cx0Dx)
of the general assumption, which, by itself, may be too powerful to be computationally
useful.

rtp <« rule (infer R)
(VR. clause R < infer R)
(R = false; rtp).

infer ¥ <« clause P, clause @, resolve P Q R,
simpl R R, (R’ = false; keep? R’).

resolve (P;Q) S (P;R) <« resolve QSR.
resolve (P;Q) S (Q; R) <« resolve PSR.
resolve S (P;Q) (P;R) <« resolve QSR.
resolve S (P;Q) (Q;R) <« resolve PSR.
resolve P (not P) false.

resolve (not P) P false.

keep? R <« write R, write_string “Keep? :”, read AG. G.

Figure 1: Rudimentary resolution theorem prover.

3.3 Example: Resolution

Consider rtp, a rudimentary resolution theorem prover, given in Figure 1.
The predicate clause enumerates disjunctive expressions to be resolved, such
as

clause (p z y; not (q y)).
clause (q a z).

resolve blindly resolves its first two arguments, yielding a resolvent R, which
is then simplified by simpl (whose clauses we omit). To illustrate,

?— resolve (pz y; not (qy x)) (qa z) R, simpl R R’.

instantiates R’ = p x a. To avoid infinitely rederiving the same clause, the
user is queried by the predicate keep? to determine whether R’ should be
used or discarded.® rtp succeeds if it is able to derive a contradiction
(R = false). rtp first invokes infer, which produces a resolvent of two
clauses. If either R’ = false or keep? R’ succeeds (i.e., the user enters true),
infer R succeeds. rtp then makes the forward step infer R = clause R,
and assumes the universally closure of clause R before the recursive call to
rtp.

Due to the lack of assert, even this rather simple program could not have
been expressed in AProlog.

8Within AProlog’s input predicate read A\z.Gz, the variable z is bound to the entered
term before execution of read’s body Gz.

typeof (ifEFH) A < typeof E bool, typeof F' A, typeof H A.
typeof (lam F) (A— B) <« Vz.typeof z A= typeof (Fz) B.

typeof (applF E) B < typeof F (A — B), typeof E A.

typeof (let E F) B < typeof E A, typeof (FE) B.

typeof (fix F) A < Vaz.typeof z A = typeof (Fz) A.

Figure 2: ML Type Inference

3.4 Example: ML-style Type Inference

As a further application of rule, consider the example of programming ML-
style type inference [14], as implemented by Hannan & Miller [9].° Some
of the more interesting rules for type inference are included within Figure 2.
We are particularly interested in type inference over the ML let construct.
We represent (let x = F' in Hx) within AProlog as let F' H, where H is a
A-abstraction. (This reverses the order of arguments used within Hannan &
Miller’s representation.) Type inference for this construct can be captured
by the following AProlog clause [9]:

typeof (let F H) B < typeof F A, typeof (HF) B.

The problem with the above formulation is that the type of F' is computed
once (to insure that it is indeed typable), and then thrown away. Instances
of F' are then re-typed at each occurrence of x within Az.Hz.'® This is
necessary because the type of F', namely A, could be polymorphic — i.e.,
contain variables such as the C' — C' typing of the identity lam (Az.x).
Without this re-computation, a polymorphic F' can only be assigned one
typing (e.g., int — int), since in the course of deriving that type, the logical
variable C' would be instantiated to int thus preventing it from matching,
say, bool — bool later.

Now consider another formulation

typeof (let F H) B < Vz. typeof F A,
(VA. typeof x A < typeof F' A)
= typeof (H z) B.

As above, the initial typeof F' A insures that F' has some typing (which is
necessary in the case that the argument = does not occur in the body F).
Now, however, rather than type HF', we type Hz using the additional rule

VA.typeof ©z A < typeof F A.

9We regret that for readers unfamiliar with AProlog, this example may be inscrutable.
We include it, nevertheless, because of rule’s relevance to the problem. Space considera-
tions preclude a fully treatment; see Hannan & Miller [9] instead.

0(HF) is AProlog notation for the result of substituting F' for occurrences of = in Hzx.

This formulation simply separates the re-computation of F’s type from that
of typing H. Just as before, different occurrences of x may be given different
types, and, just as before, the type of z (and hence the type of E) is re-
computed from scratch at every occurrence.

Once the re-computation has been separated, it can be avoided entirely
using the limited amount of forward reasoning and universal generalization
afforded by rule:

typeof (let F H) B < Vz.rule (typeof F A)
(VA. typeof z A < typeof F A)
(typeof (H z) B).

This makes an assumption of the form V).typeof = Ay while inferring the
type of the body Hx. Y includes exactly those type variables in Ay which
are not free in any assumption, thus directly expressing the restriction on
the ML inference rule for let. Here, we do not lose any solutions (and thus
have completeness), since ML has the principal type property, and therefore
all solutions to typeof F' C are instances of V) .typeof F' Ay.

4 Conclusion

The implementation of rule (and rule_ebg) as an extension of the eLP
implementation of AProlog [6] is largely completed, and the examples in this
paper have been run. The issue of efficient compilation of rule is tied to the
very difficult general question of efficient compilation of AProlog (see [15])
and is beyond the scope of this paper.

However, one might ponder the more immediately tractable question whether
rule could be added to Prolog as a declarative alternative to assert and re-
tract. Assuming the necessary syntax to express variable binding (for the
second argument of rule), rule could directly be incorporated into Pro-
log. Implementation would be substantially easier than in AProlog, since
programs are always closed and thus we can simply quantify over all logic
variables in the manner of assert without having to check any current as-
sumptions. The implementation problems posed by rule in this context
are thus very similar to those associated with assert, and variations on the
techniques proposed by Lindholm & O’Keefe [10] are applicable.

There are a few examples closely related to the ones we have given here for
which rule does not appear to be powerful enough. The problem is that it is
not possible to translate the universal quantifiers of the logic programming
language introduced during the universal generalization step into explicit
quantifiers at the object level. Preliminary investigation indicates that it
will be possible to add this through a generalization of rule, but we have
not yet arrived at a declaratively and operationally satisfactory solution.

Interesting is also to consider the proof-theoretic view of the extension we
propose here. Usually, the execution of a logic program produces what is
known as a cut-free or normal proof of the query (actually, they belong to the
even more restrictive class of uniform proofs [13]). Can we characterize the
class of deductions which can be found by programs involving rule? Is there
a way to extend rule so even more general deductions can be found without
destroying the basic character of logic program execution as goal-directed
search?

Finin, et al. consider a more complete integration of forward and backward
chaining [7]. Their approach supports extended computations in both di-
rections by allowing the programmer to write both forward and backward
chaining Horn clauses. We do not see, however, a way to express the inter-
play between forward and backward reasoning required by rule within their
language. It would be interesting to consider whether their approach to for-
ward reasoning could be fruitfully combined with the higher-order constructs
and scoping available in AProlog.

Acknowledgments. The existing implementation depends upon eL.P, the
implementation of A\Prolog developed by Conal Elliott and Frank Pfenning
in the framework of the Ergo project at Carnegie Mellon University [6].
We thank Nevin Heintze, Spiro Michaylov, and Dale Miller for thoughtful
discussions and comments. This research was supported in part by the
Office of Naval Research under contract N00014-84-K-0415 and in part by the
Defense Advanced Research Projects Agency (DOD), ARPA Order No. 5404,
monitored by the Office of Naval Research under the same contract.

References

[1] Anthony J. Bonner, L. Thorne McCarty, and Kumar Vadaparty. Expressing
database queries with intuitionistic logic. In Ewing Lusk and Ross Overbeek,
editors, Proceedings of the North American Conference on Logic Programming,
pages 831-850, Cambridge, Massachusetts, 1989. MIT Press.

[2] A.D.Burt, P.M. Hill, and J.W. Lloyd. Preliminary report on the logic program-
ming language Godel. Technical Report TR-90-02, Department of Computer
Science, University of Bristol, March 1990.

[3] Widong Chen, Michael Kifer, and David S. Warren. HiLog: A first-order
semantics for higher-order logic programming constructs. In Ewing L. Lusk
and Ross A. Overbeek, editors, Logic Programming: Proceedings of the North
American Conference, 1989, Volume 2, Cambridge, Massachusetts, 1989. MIT
Press.

[4] Scott Dietzen. A Language for Higher-Order Explanation-Based Learning. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1991. To
appear.

[5]
[6]

Scott Dietzen and Frank Pfenning. Higher-order and modal logic as a frame-
work for explanation-based generalization. Machine Learning, 1991. To appear.

Conal Elliott and Frank Pfenning. eLP: A Common Lisp implementation of
AProlog in the Ergo Support System. Available via ftp over the Internet,
October 1989. Send mail to elp-request@cs.cmu.edu on the Internet for further
information.

Tim Finin, Rich Fritzson, and Dave Matuszek. Adding forward chaining and
truth maintenance to Prolog. In IEEE Conference on Artificial Intelligence
Applications, March 1989. Also available as Paoli Research Center technical
report PRC-LBS-8802.

D. M. Gabbay and U. Reyle. N-prolog: an extension of Prolog with hypothet-
ical implications I. Journal of Logic Programming, 1(4):319-355, 1985.

John Hannan and Dale Miller. Enriching a meta-language with higher-order
features. In John Lloyd, editor, Proceedings of the Workshop on Meta-
Programming in Logic Programming, Bristol, England, June 1988. University
of Bristol.

Timothy G. Lindhold and Richard A. O’Keefe. Efficient implementation of a
defensible semantics for dynamic Prolog code. In Jean-Louis Lassez, editor,
Proceedings of the International Conference on Logic Programming, pages 21—
39. MIT Press, 1987.

Sanjay Manchanda and David Warren. A logic-based language for database
updates. In Foundations of Deductive Dattabases and Logic Programming,
1987.

Dale Miller. A logical analysis of modules in logic programming. Journal of
Logic Programming, 6(1-2):57-77, January 1989.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Journal of Pure and Applied
Logic, 1989.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, Cambridge, Massachusetts, 1990.

Gopalan Nadathur and Bharat Jayaraman. Towards a WAM model for lambda
Prolog. In Proceedings of the 1989 North American Conference on Logic Pro-
gramming, pages 1180-1198. MIT Press, October 1989.

Gopalan Nadathur and Dale Miller. An overview of AProlog. In Robert A.
Kowalski and Kenneth A. Bowen, editors, Logic Programming: Proceedings of

the Fifth International Conference and Symposium, Volume 1, pages 810-827,
Cambridge, Massachusetts, August 1988. MIT Press.

John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Proceedings of the 25th ACM National Conference, pages 717-740,
New York, 1972. ACM.

Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Programming
Techniques. MIT Press, 1986.

D. S. Warren. Database updates in pure prolog. In Jean-Louis Lassez, editor,
Proceedings of the 1984 International Conference on Fifth Generation Com-
puter Systems. North-Holland, 1984.

