
Manifest Deadlock-Freedom for
Shared Session Types?

Stephanie Balzer1, Bernardo Toninho2, and Frank Pfenning1

1 Carnegie Mellon University, USA
2 NOVA LINCS, Universidade Nova de Lisboa, Portugal

Abstract. Shared session types generalize the Curry-Howard correspon-
dence between intuitionistic linear logic and the session-typed π-calculus
with adjoint modalities that mediate between linear and shared session
types, giving rise to a programming model where shared channels must
be used according to a locking discipline of acquire-release. While this
generalization greatly increases the range of programs that can be writ-
ten, the gain in expressiveness comes at the cost of deadlock-freedom, a
property which holds for many linear session type systems. In this paper,
we develop a type system for logically-shared sessions in which types cap-
ture not only the interactive behavior of processes but also constrain the
order of resources (i.e., shared processes) they may acquire. This type-
level information is then used to rule out cyclic dependencies among
acquires and synchronization points, resulting in a system that ensures
deadlock-free communication for well-typed processes in the presence of
shared sessions, higher-order channel passing, and recursive processes.
We illustrate our approach on a series of examples, showing that it rules
out deadlocks in circular networks of both shared and linear recursive
processes, while still being permissive enough to type concurrent imple-
mentations of shared imperative data structures as processes.

Keywords: Linear and Shared Session Types · Deadlock-Freedom

1 Introduction

Session types [25,26,27] naturally describe the interaction protocols that arise
amongst concurrent processes that communicate via message-passing. This typ-
ing discipline has been integrated (with varying static safety guarantees) into
several mainstream language such as Java [28,29], F# [43], Scala [50,49], Go [11]
and Rust [33]. Session types moreover enjoy a logical correspondence between lin-
ear logic and the session-typed π-calculus [8,9,55,51]. Languages building on this
correspondence [52,55,24] not only guarantee session fidelity (i.e., type preserva-
tion) but also deadlock-freedom (i.e., global progress). The latter is guaranteed
even in the presence of interleaved sessions, which are often excluded from the
deadlock-free fragments of traditional session-typed frameworks [53,26,27,20].

? Supported by NSF Grant No. CCF-1718267: “Enriching Session Types for Practical
Concurrent Programming” and NOVA LINCS (Ref. UID/CEC/04516/2019).

2 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

These logical session types, however, exclude programming scenarios that de-
mand sharing of mutable resources (e.g., shared databases or shared output
devices) instead of functional resource replication.

To increase their practicality, logical session types have been extended with
manifest sharing [2]. In the resulting language, linear and shared sessions coex-
ist, but the type system enforces that clients of shared sessions run in mutual
exclusion of each other. This separation is achieved by enforcing an acquire-
release policy, where a client of a shared session must first acquire the session
before it can participate in it along a private linear channel. Conversely, when a
client releases a session, it gives up its linear channel and only retains a shared
reference to the session. Thus, sessions in the presence of manifest sharing can
change, or shift, between shared and linear execution modes. At the type-level,
the acquire-release policy manifests in a stratification of session types into linear
and shared with adjoint modalities [5,48,47], connecting the two strata. Opera-
tionally, the modality shifting up from the linear to the shared layer translates
into an acquire and the one shifting down from shared to linear into a release.

Manifest sharing greatly increases the range of programs that can be written
because it recovers the expressiveness of the untyped asynchronous π-calculus [3]
while maintaining session fidelity. As in the π-calculus, however, the gain in ex-
pressiveness comes at the cost of deadlock-freedom. An illustrative example is an
implementation of the classical dining philosophers problem, shown in Figure 1,
using the language SILLS [2] that supports manifest sharing (in this setting we
often equate a process with the session it offers along a distinguished channel).
The code shows the process fork proc, implementing a session of type sfork, and
the processes thinking and eating , implementing sessions of type philosopher.
We defer the details of the typing and the definition of the session types sfork
and philosopher to Section 2 and focus on the programmatic working of the pro-
cesses for now. For ease of reading, we typeset shared session types and variables
denoting shared channel references in red.

A fork proc process represents a fork that can be perpetually acquired and
released. The actions accept and detach are the duals of acquire and release, re-
spectively, allowing a process to accept an acquire by a client and to initiate a
release by a client, respectively. Process thinking has two shared channel refer-
ences as arguments, for the forks to the left and right of the philosopher, which
the process tries to acquire. If the acquire succeeds, the process recurs as an
eating philosopher with two (now) linear channel references of type lfork. Once a
philosopher is done eating, it releases both forks and recurs as a thinking philoso-
pher. Let’s set a table for three philosopher that share three forks, all spawned
as processes executing in parallel:

f0 ← fork proc ; f1 ← fork proc ; f2 ← fork proc ;
p0 ← thinking ← f0 , f1 ; p1 ← thinking ← f1 , f2 ; p2 ← thinking ← f2 , f0 ;

Infamously, this configuration may deadlock because of the circular dependency
between the acquires. We can break this cycle by changing the last line to p2 ←
thinking ← f0 , f2 , ensuring that forks are acquired in increasing order.

Manifest Deadlock-Freedom for Shared Session Types 3

fork proc : {sfork}
c ← fork proc =
c′ ← accept c ;
c ← detach c′ ;
c ← fork proc

thinking : {phil← sfork, sfork}
c← thinking ← left , right =

left ′ ← acquire left ;
right ′ ← acquire right ;
c← eating ← left ′, right ′ ;

eating : {phil← lfork, lfork}
c← eating ← left ′, right ′ =

right ← release right ′ ;
left ← release left ′ ;
c← thinking ← left , right

Fig. 1: Dining philosophers in SILLS [2].

Perhaps surprisingly, cyclic dependencies between acquire requests are not
the only source of deadlocks. Figure 2 gives an example, defining the processes
owner and contester , which both have a shared channel reference to a com-
mon resource that can be perpetually acquired and released. Both processes
acquire the shared resource, but additionally exchange the message ping. More
precisely, process owner spawns the process contester , acquires the shared re-
source, and only releases the resource after having received the message ping from
the contester . Process contester , on the other hand, first attempts to acquire the
resource and then sends the message ping to the owner. The program deadlocks
if process owner acquires the resource first. In that case, process owner waits
for process contester to send the message ping while process contester waits to
acquire the resource held by process owner . We note that this deadlock arises
in both synchronous and asynchronous semantics.

owner : {1← sres}
o← owner ← sr =
c← contester ← sr ;
lr ← acquire sr ;
case c of
| ping→ wait c ;

sr ← release lr ; close o

contester : {⊕{ping : 1} ← sres}
c← contester ← sr =

lr ← acquire sr ;
c.ping ;
sr ← release lr ;
close c

Fig. 2: Circular dependencies among acquire and synchronization actions.

In this paper, we develop a type system for manifest sharing that rules out
cycles between acquire requests and interdependencies between acquire requests
and synchronization actions, detecting the two kinds of deadlocks explained
above. In our type system, session types not only prescribe when resources must
be acquired and released, but also the range of resources that may be acquired.
To this end, we equip the type system with the notion of a world, an abstract
value at which a process resides, and type processes relative to an acyclic or-
dering on worlds, akin to the partial-order based approaches of [34,37]. The
contributions of this paper are:

– a characterization of the possible forms of deadlocks that can arise in shared
session types;

4 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

– the introduction of manifest deadlock-freedom, where resource dependencies
are manifest in the type structure via world modalities;

– its elaboration in the programming language SILLS+ , resulting in a type
system, a synchronous operational semantics, and proofs of session fidelity
(preservation) and a strong form of progress that excludes all deadlocks;

– the novel abstraction of green and red arrows to reason about the interde-
pendencies between processes;

– an illustration of the concepts on various examples, including an extensive
comparison with related work.

This paper is structured as follows: Section 2 provides a short introduction
to manifest sharing. Section 3 develops the type system and dynamics of the
language SILLS+ . Section 4 illustrates the introduced concepts on an extended
example. Section 5 discusses the meta-theoretical properties of SILLS+ , empha-
sizing progress. Section 6 compares with examples of related work and identifies
future work. Section 7 discusses related work, and Section 8 concludes this paper.

2 Manifest Sharing

In the previous section, we have already explored the programmatic workings of
manifest sharing [2], which enforces an acquire-release policy on shared channel
references. In this section, we clarify the typing of shared processes.

A key contribution of manifest sharing is not only to support acquire-release
as a programming primitive but also to make it manifest in the type system.
Generalizing the idea of type stratification [47,5,48], session types are partitioned
into a linear and shared layer with two adjoint modalities connecting the layers:

AS , ↑SLAL

AL,BL , AL ⊗ BL | ⊕{l : AL} | N{l : AL} | AL (BL | ∃x :AS.BL | Πx :AS.BL | 1 | ↓SLAS

In the linear layer, we get the standard connectives of intuitionistic linear logic
(AL⊗BL, AL (BL, ⊕{l : AL}, N{l : AL}, and 1). These connectives are extended
with the modal operator ↓SLAS, shifting down from the shared to the linear layer.
Similarly, in the shared layer, we have the operator ↑SLAL, shifting up from the
linear to the shared layer. The former translates into a release (and, dually,
detach), the latter into an acquire (and, dually, accept). As a result, we obtain
a system in which session types prescribe all forms of communication, including
the acquisition and release of shared processes.

Table 1 provides an overview of SILLS’s session types and their operational
reading. Since SILLS is based on an intuitionistic interpretation of linear logic
session types [8], types are expressed from the point of view of the providing pro-
cess with the channel along which the process provides the session behavior being
characterized by its session type. This choice avoids the explicit duality opera-
tion present in original presentations of session types [25,26] and in those based
on classical linear logic [55]. Table 1 lists the points of view of the provider and
client of a given connective in the first and second lines, respectively. Moreover,

Manifest Deadlock-Freedom for Shared Session Types 5

Table 1: Session types in SILLS and their operational meaning.

Session type Process term
current cont current cont Description

cL : ⊕{l : AL} cL : ALh cL.lh ;P P sends label lh along cL
case cL of l⇒ Q Qh receives label lh along cL

cL : N{l : AL} cL : ALh case cL of l⇒ P Ph receives label lh along c
cL.lh ;Q Q sends label lh along cL

cL : AL ⊗BL cL : BL send cL dL ;P P sends channel dL : AL along cL
yL ← recv cL ;QyL [dL/yL]QyL receives channel dL : AL along cL

cL : AL (BL cL : BL yL ← recv cL ;PyL [dL/yL]PyL receives channel dL : AL along cL
send cL dL ;Q Q sends channel dL : AL along cL

cL : Πx :AS.BL cL : BL send cL dS ;P P sends channel dS : AS along cL
yS ← recv cL ;QyS [dS/yS]QyS receives channel dS : AS along cL

cL : ∃x :AS.BL cL : BL yS ← recv cL ;PyS [dS/yS]PyS receives channel dS : AS along cL
send cL dS ;Q Q sends channel dS : AS along cL

cL : 1 - close cL - sends “end” along cL
wait cL ;Q Q receives “end” along cL

cL : ↓SLAS cS : AS cS ← detach cL ;PxS [cS/xS]PxS sends “detach cS” along cL
xS ← release cL ;QxS [cS/xS]QxS receives “detach cS” along cL

cS : ↑SLAL cL : AL cL ← acquire cS ;QxL [cL/xL]QxL sends “acquire cL” along cS
xL ← accept cS ;PxL [cL/xL]PxL receives “acquire cL” along cS

Table 1 gives for each connective its session type before and after the message
exchange, along with their respective process terms. We can see that the process
terms of a provider and a client for a given connective come in matching pairs,
indicating that the participants’ views of the session change consistently. We
use the subscripts L and S to distinguish between linear and shared channels,
respectively.

We are now able to give the session types of the processes fork proc, thinking ,
and eating defined in the previous section:

lfork = ↓SL sfork
sfork = ↑SL lfork
phil = 1

The mutually recursive session types lfork and sfork represent a fork that can per-
petually be acquired and released. We adopt an equi-recursive [14] interpretation
for recursive session types, silently equating a recursive type with its unfolding
and requiring types to be contractive [19].

We briefly discuss the typing and the dynamics of acquire-release. The typing
and the dynamics of the residual linear connectives are standard, and we detail
them in the context of SILLS+ (see Section 3). As is usual for an intuitionistic
interpretation, each connective gives rise to a left and a right rule, denoting the
use and provision, respectively, of a session of the given type:

6 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

(T-↑SLR)
Γ ; · ` PxL :: (xL : AL)

Γ ` xL ← acceptxS;PxL :: (xS : ↑SLAL)

(T-↑SLL)
Γ, xS : ↑SLAL;∆,xL : AL ` QxL :: (zL : CL)

Γ, xS : ↑SLAL;∆ ` xL ← acquire xS;QxL :: (zL : CL)

(T-↓SLR)
Γ ` PxS :: (xS : AS)

Γ ; · ` xS ← detachxL;PxS :: (xL : ↓SLAS)

(T-↓SLL)
Γ, xS : AS;∆ ` QxS :: (zL : CL)

Γ ;∆,xL : ↓SLAS ` xS ← releasexL;QxS :: (zL : CL)

The typing judgments Γ ` P :: (xS : AS) and Γ ;∆ ` P :: (xL : AL) indicate that
process P provides a session of type A along channel x, given the typing of the
channels specified in typing contexts Γ (and ∆). Γ and ∆ consist of hypotheses
on the typing of shared and linear channels, respectively, where Γ is a structural
and ∆ a linear context. To allow for recursive process definitions, the typing
judgment depends on a signature Σ that is populated with all process defini-
tions prior to type-checking. The adjoint formulation precludes shared processes
from depending on linear channel references [2,47], a restriction motivated from
logic referred to as the independence principle [47]. Thus, when a shared session
accepts an acquire and shifts to linear, it starts with an empty linear context.

Operationally, the dynamics of SILLS is captured by multiset rewriting rules [12],
which denote computation in terms of state transitions between configurations
of processes. Multiset rewriting rules are local in that they only mention the
parts of a configuration they rewrite. For acquire-release we have the following:

(D-↑SL)
proc(aS, xL ← accept aS ; PxL), proc(cL, xL ← acquire aS ; QxL)
−→ proc(aL, [aL/xL] PxL), proc(cL, [aL/xL] QxL), unavail(aS)

(D-↓SL)
proc(aL, xS ← detach aL ; PxS), proc(cL, xS ← release aL ; QxS), unavail(aS)
−→ proc(aS, [aS/xS] PxS), proc(cL, [aS/xS] QxS)

Configuration states are defined by the predicates proc(cm , P) and unavail(aS).
The former denotes a running process with process term P providing along
channel cm , the latter acts as a placeholder for a shared process providing along
channel aS that is currently not available. The above rule exploits the invariant
that a process’ providing channel a can appear at one of two modes, a linear
one, aL, and a shared one, aS. While the process (i.e. the session) is linear, it
provides along aL, while it is shared, along aS. When a process shifts between
modes, it switches between the two modes of its offering channel. The channel at
the appropriate mode is substituted for the variables occurring in process terms.

3 Manifest Deadlock-Freedom

In this section, we introduce our language SILLS+ , a session-typed language that
supports sharing without deadlock. We focus on SILLS+ ’s type system and dy-
namics in this section and discuss its meta-theoretical properties in Section 5.

Manifest Deadlock-Freedom for Shared Session Types 7

3.1 Competition and Collaboration

The introduction of acquire-release, to ensure that the multiple clients of a shared
process interact with the process in mutual exclusion from each other, gives rise
to an obvious source of deadlocks, as acquire-release effectively amounts to a
locking discipline. The typical approach to prevent deadlocks in that case is
to impose a partial order on the resources and to “lock-up”, i.e., to lock the
resources in ascending order. We adopted this strategy in Section 1 (Figure 1)
to break the cyclic dependencies among the acquires in the dining philosophers.

In Section 1, however, we also considered another example (Figure 2) and
discovered that cyclic acquisitions are not the only source of deadlocks, but
deadlocks can also arise from interdependent acquisitions and synchronizations.
In that example, we can prevent the deadlock by moving the acquire past the syn-
chronization, in either of the two processes. Whereas in a purely linear session-
typed system the sequencing of actions within a process do not affect other pro-
cesses, the relative placement of acquire requests and synchronizations become
relevant in a shared session-typed system.

Based on this observation, we can divide the processes in a shared-session
discipline into competitors and collaborators. The former compete for a set of
resources, whereas the latter do not overlap in the set of resources they acquire.
For example, in the dining philosophers (Figure 1), the philosophers p0 , p1 , and
p2 compete with each other for the set of forks f0 , f1 , and f2 , whereas the process
that spawns the philosophers and the forks collaborates with either of them.

Transferring this idea to the process graph that emerges at run-time, we note
that competitors are siblings whereas collaborators stand in a parent-descendant
relationship. We illustrate this outcome on Figure 3 that shows a possible run-
time process graph for the dining philosophers. Linear processes are depicted as
solid black circles with a white identifier and shared processes are depicted as
dotted filled violet circles with a black identifier. Linear channels are depicted as
black lines, shared channel references as dotted violet lines with the arrow head
pointing to the shared process being acquired3. The identifiers P0, P1, and P2

stand for the three philosophers, F0, F1, and F2 for the three forks, and T for
the process that sets the table. The current run-time graph depicts the scenario
in which P1 is eating, while the other two philosophers are still thinking.

Embedded in the graph is a tree that arises from the linear processes and the
linear channels connecting them. For any two nodes in this tree, the parent node
denotes the client process and the child node the providing process. We note
that the independence principle (see Section 2), which precludes shared processes
from depending on linear channel references, guarantees that there exists exactly
one tree in the process graph, with the linear main process as its root. The shape
of the tree changes when new processes are spawned, linear channels exchanged
(through ⊗ and(), or shared processes acquired. For example, process P2 could
acquire the shared fork F0, which then becomes a linear child process of P2,
should the acquire succeed. As indicated by the shared channel references, the

3 We have made sure to make the different concepts distinguishable in greyscale mode.

8 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

P0 P1 P2

T

F1 F2
F0

Legend:

linear process (child: provider, parent: client)

shared process

linear channel

shared channel reference

Fig. 3: Run-time process graph for dining philosophers (see Figure 1).

sibling nodes P0, P1, and P2 compete with each other for the nodes F0, F1, and
F2, whereas the node T does not compete for any of the resources acquired by
its descendants (including F1 and F2). Our type system enforces this paradigm,
as we discuss in the next section.

3.2 Type System

Invariants Having identified the notions of collaborators and competitors, our
type system must guarantee: (i) that collaborators acquire mutually disjoint sets
of resources; (ii) that competitors employ a locking-up strategy for the resources
they share; and, (iii) that competitors have released all acquired resources when
synchronizing with other competitors. Invariant (ii) rules out cyclic acquisitions
and invariants (i) and (iii) combined rule out interdependent acquisitions and
synchronizations.

To express the high-level invariants above in our type system, we introduce
the notion of a world – an abstract value that is equipped with a partial order –
and associate such a world with every process. Programmers can create worlds,
indicate the world at which a process resides at spawn time, and define an order
on worlds. Moreover, we associate with each process a range of worlds that
indicates the worlds of resources that the process may acquire. As a result, we
obtain the following typing judgments:

Ψ ; Γ ` P :: (xS : AS[ωklωn
ωl

]) (where Ψ+ irreflexive)

Ψ ; Γ ; Φ; ∆ ` P :: (xL : AL[ωklωn
ωl

]) (where Ψ+ irreflexive)

The typing judgments reveal that we impose worlds at the judgmental level, re-
sulting in a hybrid system, in which the adjoint modalities for acquire-release are
complemented with world modalities that occur as syntactic objects in propo-
sitions [7]. We use the notation xm : Am[ωk lωn

ωl
] (where m stands for S or L)

to associate worlds ωk, ωl, and ωn with a process that offers a session of type

Manifest Deadlock-Freedom for Shared Session Types 9

Am along channel x. World ωk denotes the world at which the process resides.
We refer to this world as the self world. Worlds ωl and ωn indicate the range of
worlds of resources that the process may acquire, with ωl denoting the minimal
(min) world in this range and ωn the maximal (max) one.

Process terms are typed relative to the order specified in Ψ and the contexts
Γ , Φ, and ∆. As in Section 2, Γ is a structural context consisting of hypotheses
on the typing of variables bound to shared channel references, augmented with
world annotations. We find it necessary to split the linear context “∆” from
Section 2 into the two disjoint contexts Φ and ∆, allowing us to separate channels
that are possibly aliased (due to sharing) from those that are not, respectively.
Both Φ and ∆ consist of hypotheses on the typing of variables that are bound
to linear channels, augmented with world annotations. Ψ is presupposed to be
acyclic and defined as: Ψ , · | Ψ ′, ωk < ωl | Ψ ′, ωo , where ω stands for a
concrete world w or a world variable δ. We allow Ψ to contain single worlds,
to support singletons as well as to accommodate world creation prior to order
declaration. We define the transitive closure Ψ+, yielding a strict partial order,
and the reflexive transitive closure Ψ∗, yielding a partial order.

The high-level invariants (i), (ii), and (iii) identified earlier naturally tran-
scribe into the following invariants, which we impose on the typing judgments
above. We use the notation 〈xm〉;P to denote a process term that currently
executes an action along channel xm.

1. min(parent) ≤ self(acquired child) ≤ max(parent):
∀yL : BL[ωolωr

ωp
] ∈ Φ : Ψ∗ ` ωl ≤ ωo ≤ ωn

2. max(parent) < min(child):
∀yL : BL[ωolωr

ωp
] ∈ ∆ ∪ Φ : Ψ+ ` ωn < ωp

3. If Ψ ; Γ, xS : A[ωt lωv
ωu

]; Φ; ∆ ` xL ← acquire xS; QxS
:: (zL : CL[ωk lωn

ωl
]), then

∀yL : BL[ωolωr
ωp

] ∈ Φ : Ψ+ ` ωo < ωt.
4. If Ψ ; Γ ; Φ; ∆ ` 〈xm〉;P :: (xL : AL[ωklωn

ωl
]), then Φ = (·).

Invariants 1 and 2 ensure that, for any node in the tree, the acquired resources
reside at smaller worlds than those acquired by any descendant. As a result, the
two invariants guarantee high-level invariant (i). Invariant 3, on the other hand,
imposes a lock-up strategy on acquires and thus guarantees high-level invariant
(ii). To guarantee high-level invariant (iii), we impose Invariant 4, which forces a
process to release any acquired resources before communicating along its offering
channel. Since sibling nodes cannot be directly connected by a linear channel,
the only way for them to synchronize is through a common parent. Finally, to
guarantee that world annotations are internally consistent, we require for each
annotation [ωklωn

ωl
] that ωk < ωl ≤ ωn.

Rules We now present select process typing rules, a complete listing is provided
in the companion technical report [4]. The only new rules with respect to the
language SILLS [2] are those pertaining to world creation and order determina-
tion. These are extra-logical judgmental rules. We allow both linear and shared
processes to create and relate worlds. Rules (T-NewL) and (T-NewS) create a
new world w and make it available to the continuation Qw. Rules (T-OrdL) and
(T-OrdS) relate two existing worlds, while preserving acyclicity of the order.

10 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

Ψ,w; Γ ; Φ; ∆ ` Qw :: (xL : AL[ωmlωv
ωu

])

Ψ ; Γ ; Φ; ∆ ` w← new world; Qw :: (xL : AL[ωmlωv
ωu

])
(T-NewL)

Ψ,w; Γ ` Qw :: (xS : AS[ωmlωv
ωu

])

Ψ ; Γ ` w← new world; Qw :: (xS : AS[ωmlωv
ωu

])
(T-NewS)

ωp, ωr ∈ Ψ (Ψ, ωp < ωr)
+ irreflexive

Ψ, ωp < ωr; Γ ; Φ; ∆ ` Q :: (xL : AL[ωmlωv
ωu

])

Ψ ; Γ ; Φ; ∆ ` ωp < ωr; Q :: (xL : AL[ωmlωv
ωu

])
(T-OrdL)

ωp, ωr ∈ Ψ (Ψ, ωp < ωr)
+ irreflexive

Ψ, ωp < ωr; Γ ` Q :: (xS : AS[ωmlωv
ωu

])

Ψ ; Γ ` ωp < ωr; Q :: (xS : AS[ωmlωv
ωu

])
(T-OrdS)

We now consider the typing rule for acquire, which must explicitly enforce the
various low-level invariants above. Since an acquire results in the addition of a
new child node to the executing process, the rule can interfere with invariants 1
and 2. The first two premises of the rule ensure that the two invariants are
preserved. Moreover, the rule has to ensure that the acquiring process is locking-
up (invariant 3), which is achieved by the third premise.

Ψ∗ ` ωk ≤ ωm ≤ ωn Ψ+ ` ωn < ωu ∀yL : BL[ωllωr
ωp

] ∈ Φ : ωl < ωm
Ψ ; Γ, xS : ↑SLAL[ωmlωv

ωu
]; Φ, xL : AL[ωmlωv

ωu
]; ∆ ` QxL :: (zL : CL[ωj lωn

ωk
])

Ψ ; Γ, xS : ↑SLAL[ωmlωv
ωu

]; Φ; ∆ ` xL ← acquirexS ;QxL :: (zL : CL[ωj lωn
ωk

])
(T-↑SLL)

The remaining shift rules are actually unchanged with respect to SILLS, mod-
ulo the world annotations. In particular, low-level invariant 4 is already satisfied
because the conclusion of rule (T-↑SLR) does not have a context Φ and because
the independence principle forces Φ to be empty in rule (T-↓SLR).

Ψ ; Γ ; · ; · ` PxL :: (xL : AL[ωmlωv
ωu

])

Ψ ; Γ ` xL ← acceptxS ;PxL :: (xS : ↑SLAL[ωmlωv
ωu

])
(T-↑SLR)

Ψ ; Γ, xS : AS[ωmlωv
ωu

]; Φ; ∆ ` QxS :: (zL : CL[ωj lωn
ωk

])

Ψ ; Γ ; Φ, xL : ↓SLAS[ωmlωv
ωu

]; ∆ ` xS ← releasexL ;QxS :: (zL : CL[ωj lωn
ωk

])
(T-↓SLL)

Ψ ; Γ ` PxS :: (xS : AS[ωmlωv
ωu

])

Ψ ; Γ ; · ; · ` xS ← detachxL ;PxS :: (xL : ↓SLAS[ωmlωv
ωu

])
(T-↓SLR)

We now consider the linear connectives, starting with 1. Rule (T-1L) re-
veals that only processes that have never been acquired may be terminated.
This restriction is important to guarantee progress because existing clients of
a shared process may wait indefinitely otherwise. We impose the restriction as
a well-formedness condition on a session type, giving rise to a strictly equi-
synchronizing session type. The notion of an equi-synchronizing session type [2]
has been defined for SILLS and guarantees that a process that has been acquired
at a type AS is released back to the type AS, should it ever be released. A strictly
equi-synchronizing session type additionally requires that an acquired resource
must be released. The corresponding rules can be found in [4]. Linearity enforces
invariant 4 in rule (T-1R), making sure that no linear channels are left behind.

Manifest Deadlock-Freedom for Shared Session Types 11

Ψ ; Γ ; Φ; ∆ ` Q :: (zL : CL[ωj lωn
ωk

])

Ψ ; Γ ; Φ; ∆,xL : 1[ωmlωv
ωu

] ` waitxL ;Q :: (zL : CL[ωj lωn
ωk

])
(T-1L)

Ψ ; Γ ; · ; · ` closexL :: (xL : 1[ωmlωv
ωu

])
(T-1R)

Next, we consider internal and external choice. Since internal and external
choice cannot alter the linear process tree of a process graph, the rules are very
similar to the ones in SILLS. The only differences are that we get two left rules
for each connective and that the Φ-context of each right rule must be empty to
satisfy invariant 4. The former is merely due to the tracking of possibly aliased
sessions in the Φ context. We only list rules for internal choice, those for external
choice are dual and can be found in [4].

(∀i) Ψ ; Γ ; Φ; ∆,xL : ALi [ωmlωv
ωu

] ` Qi :: (zL : CL[ωj lωn
ωk

])

Ψ ; Γ ; Φ; ∆,xL : ⊕{l : AL}[ωmlωv
ωu

] ` case xL of l⇒ Q :: (zL : CL[ωj lωn
ωk

])
(T-⊕L1)

(∀i) Ψ ; Γ ; Φ, xL : ALi [ωmlωv
ωu

]; ∆ ` Qi :: (zL : CL[ωj lωn
ωk

])

Ψ ; Γ ; Φ, xL : ⊕{l : AL}[ωmlωv
ωu

]; ∆ ` case xL of l⇒ Q :: (zL : CL[ωj lωn
ωk

])
(T-⊕L2)

Ψ ; Γ ; · ; ∆ ` P :: (xL : AL h [ωmlωv
ωu

])

Ψ ; Γ ; · ; ∆ ` xL.lh ;P :: (xL : ⊕{l : AL}[ωmlωv
ωu

])
(T-⊕R)

More interesting are linear channel output and input, since these alter the
linear process tree of a process graph. Moreover, additional world annotations
are needed to indicate the worlds of the channel that is exchanged. For the
latter we use the notation @ωl lωr

ωp
, indicating that the exchanged channel has

the worlds ωl, ωp, and ωr for self, min, and max, respectively. To account for
induced changes in the process graph, the rules that type an input of a linear
channel must guard against any disturbance of invariants 1 and 2. Because the
two invariants guarantee that parents do not overlap with their descendants in
terms of acquired resources, they prevent any exchange of acquired channels.
We thus restrict ⊗ and (to the exchange of channels that have not yet been
acquired. This is not a limitation since, as we will see below, shared channel
output and input are unrestricted.

Even with the above restriction in place, we still have to make sure that a
received channel satisfies invariant 2. If we were to state a corresponding premise
on the receiving rules, invertibility of the rules would be disturbed. To uphold
invertibility, we impose a well-formedness condition on session types that ensures
for a session of type AL@ωl lωr

ωp
⊗BL[ωmlωv

ωu
] that ωv < ωp and, analogously, for

a session of type AL@ωl lωr
ωp
(BL[ωm lωv

ωu
] that ωv < ωp. Session types are

checked to be well-formed upon process definition. Given type well-formedness,
we obtain the following rules for(, noting that the right rule enforces invariant 4

12 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

by requiring an empty Φ-context. The rules for ⊗ are dual.

Ψ ; Γ ; Φ; ∆,xL : BL[ωmlωv
ωu

] ` Q :: (zL : CL[ωj lωn
ωk

])

Ψ ; Γ ; Φ; ∆,xL : AL@ωllωr
ωp
(BL[ωmlωv

ωu
], yL : AL[ωllωr

ωp
] ` sendxL yL ;Q :: (zL : CL[ωj lωn

ωk
])

(T-(L1)

Ψ ; Γ ; Φ, xL : BL[ωmlωv
ωu

]; ∆ ` Q :: (zL : CL[ωj lωn
ωk

])

Ψ ; Γ ; Φ, xL : AL@ωllωr
ωp
(BL[ωmlωv

ωu
]; ∆, yL : AL[ωllωr

ωp
] ` sendxL yL ;Q :: (zL : CL[ωj lωn

ωk
])

(T-(L2)

Ψ ; Γ ; · ; ∆, yL : AL[ωllωr
ωp

] ` PyL :: (xL : BL[ωmlωv
ωu

])

Ψ ; Γ ; · ; ∆ ` yL ← recv xL ;PyL :: (xL : AL@ωllωr
ωp
(BL[ωmlωv

ωu
])

(T-(R)

Since there are no invariants imposed on the shared context Γ , the rules
for shared channel output and input are identical to those in SILLS. The only
differences are that we have two left rules and that the Φ-context of the right rule
must be empty to satisfy invariant 4. The former is merely due to the tracking
of possibly aliased sessions in the Φ context.

Ψ ; Γ, yS : AS[ωllωr
ωp

];Φ; ∆,xL : BL[ωmlωv
ωu

] ` QyS :: (zL : CL[ωj lωn
ωk

])

Ψ ; Γ ;Φ; ∆,xL : ∃x:AS@ωllωr
ωp
. BL[ωmlωv

ωu
] ` yS ← recv xL ;QyS :: (zL : CL[ωj lωn

ωk
])

(T-∃L1)

Ψ ; Γ, yS : AS[ωllωr
ωp

];Φ, xL : BL[ωmlωv
ωu

]; ∆ ` QyS :: (zL : CL[ωj lωn
ωk

])

Ψ ; Γ ;Φ, xL : ∃x:AS@ωllωr
ωp
. BL[ωmlωv

ωu
]; ∆ ` yS ← recv xL ;QyS :: (zL : CL[ωj lωn

ωk
])

(T-∃L2)

Ψ ; Γ, yS : AS[ωllωr
ωp

]; · ; ∆ ` P :: (xL : BL[ωmlωv
ωu

])

Ψ ; Γ, yS : AS[ωllωr
ωp

]; · ; ∆ ` sendxL yS ;P :: (xL : ∃x:AS@ωllωr
ωp
. BL[ωmlωv

ωu
])

(T-∃R)

We finally consider the rules for forwarding and spawning. We allow a shared
forward between processes that offer the same session at the same worlds. Be-
cause forwards have to be world-invariant, however, no well-typed program could
ever have a linear forward. The process being forwarded to must be in either of
the contexts Φ or ∆, and thus satisfies invariant 2, making it impossible for
the world annotations of the forwarder and forwardee to match. We omit linear
forwarding and discuss possible future extensions in Section 6.

Ψ ; Γ, yS : AS[ωj lωn
ωk

] ` fwd xS yS :: (xS : AS[ωj lωn
ωk

])
(T-IdS)

The rules for spawning depend on the possible modes of the spawning and
spawned processes: (T-SpawnLL) specifies how a linear process can spawn an-
other linear process; (T-SpawnSS) specifies how a shared processes can spawn
another shared process. The rules are checked relative to a process definition
found in the signature Σ and to a world substitution mapping γ : |Ψ | → |Ψ ′|,
such that for each δ ∈ Ψ ′ we have Ψ ` γ(δ), where |Ψ | denotes the field of
Ψ (i.e., the union of its domain and range). As usual, we lift substitution to
types γ̂(Am), contexts γ̂(Γ), and orders γ̂(Ψ). Both rules ensure that, given the
mapping γ, the order Ψ of the spawning process entails the one of the process
definition (Ψ ` γ̂(Ψ ′)). The linear spawn rule (T-SpawnLL) further enforces
invariant 2 for the spawned child. We note that the spawned child enters the

Manifest Deadlock-Freedom for Shared Session Types 13

linear context ∆ in the spawning process’ continuation since no aliases to such
a process can exist at this point.

∆1 = yL : BL[ωmlωv
ωu] Φ1 = ỹL : B̃L[ω̃mlω̃v

ω̃u
] Γ1 = zS : CS[ωllωr

ωp]

(Ψ ′ ` x′L : A′L[δj lδnδk]← XL ← ∆′, Φ′, Γ ′ = Px′
L
,dom(∆′),dom(Φ′),dom(Γ ′),Ψ ′′) ∈ Σ

γ̂(A′L[δj lδnδk]) = AL[ωj lωn
ωk

] γ̂(∆′) = ∆1 γ̂(Φ′) = Φ1 γ̂(Γ ′) = Γ1 Ψ ` γ̂(Ψ ′)

Ψ+ ` ωt < ωk

Ψ ; Γ1, Γ2; Φ2; ∆2, xL : AL[ωj lωn
ωk

] ` QxL :: (z′′L : DL[ωilωt
ωq

])

Ψ ; Γ1, Γ2; Φ1, Φ2; ∆1,∆2 ` xL : AL[ωj lωn
ωk

]← XL ← yL, ỹL, zS ; QxL :: (z′′L : DL[ωilωt
ωq

])
(T-SpawnLL)

Γ1 = zS : CS[ωllωr
ωp] (Ψ ′ ` x′S : A′S[δj lδnδk]← XS ← Γ ′ = Px′

S
,dom(Γ ′),Ψ ′′) ∈ Σ

γ̂(A′S[δj lδnδk]) = AS[ωj lωn
ωk

] γ̂(Γ ′) = Γ1 Ψ ` γ̂(Ψ ′)

Ψ ; Γ1, Γ2, xS : AS[ωj lωn
ωk

] ` QxS :: (z′′S : DS[ωilωt
ωq

])

Ψ ; Γ1, Γ2 ` xS : AS[ωj lωn
ωk

]← XS ← zS ; QxS :: (z′′S : DS[ωilωt
ωq

])
(T-SpawnSS)

In the companion technical report [4], we provide a variant of rule (T-SpawnLL)
for the case of a linear recursive tail call. Without linear forwarding, a linear tail
call can no longer be implicitly “de-sugared” into a spawn and a linear forward
[52,2,22], but must be accounted for explicitly. In the report, we also provide
the rules for checking process definitions. Those rules make sure that the pro-
cess’ world order is acyclic, that the types of the providing session and argument
sessions are well-formed, and that the process satisfies invariants 1 and 2.

3.3 Dining Philosophers in SILLS+

Having introduced our type system, we revisit the dining philosophers from
Section 1 and show how to program the example in SILLS+ , ensuring that the
program will run without deadlocks. The code is given in Figure 4. We note the
world annotations in the signature of the process definitions. For instance,

thinking : {δ0 < δ1, δ1 < δ2, δ2 < δ3 ` phil[δ0lδ2δ1]← sfork[δ1lδ3δ3], sfork[δ2lδ3δ3]; ·; ·}

indicates that, given the order δ0 < δ1 < δ2 < δ3, process thinking provides
a session of type phil[δ0 lδ2δ1] and uses two shared channel references of type

sfork[δ1 lδ3δ3] and sfork[δ2 lδ3δ3]. The two · signify that neither acquired nor linear
channel references are given as arguments. The signature indicates that the two
shared fork references reside at different worlds, such that the world of the first
one is smaller than the one of the second.

Let’s briefly convince ourselves that the two acquires in process thinking in
Figure 4 are type-correct. For each acquire we have to show that: the world
of the resource to be acquired is within the acquiring process’ range; the max
of the acquiring process is smaller than the min of the acquired resource; and,
that the self of the acquired resource is larger than those of all already acquired

14 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

resources. We can convince ourselves that all those conditions are readily met.
We note, however, that if we were to swap the two acquires, the program would
not type-check.

thinking : {δ0 < δ1, δ1 < δ2, δ2 < δ3 `
phil[δ0lδ2δ1]← sfork[δ1lδ3δ3], sfork[δ2lδ3δ3]; ·; ·}

c[δ0lδ2δ1]← thinking ← left [δ1lδ3δ3], right [δ2lδ3δ3] =

left ′ ← acquire left ;
right ′ ← acquire right ;
c← eating ← left ′, right ′ ;

lfork = ↓SL sfork
sfork = ↑SL lfork
phil = 1

eating : {δ0 < δ1, δ1 < δ2, δ2 < δ3 `
phil[δ0lδ2δ1]← ·; lfork[δ1lδ3δ3], lfork[δ2lδ3δ3]; ·}

c[δ0lδ2δ1]← eating ← left ′[δ1lδ3δ3], right ′[δ2lδ3δ3] =

right ← release right ′ ;
left ← release left ′ ;
c← thinking ← left , right

fork proc : {δ0 < δ1 ` sfork[δ0lδ1δ1]}
c[δ0lδ1δ1]← fork proc =

c′ ← accept c ;
c ← detach c′ ;

c′′ : sfork[δ0lδ1δ1]← fork proc ;

fwd c c′′

Fig. 4: Deadlock-free version of dining philosophers in SILLS+ .

Let us once more set the table for three philosophers and three forks. We
execute this code in a process with world annotations [δalδbδb] such that δa < δb.
We first create new worlds and define their order:

w1 ← new world;w2 ← new world;w3 ← new world;w4 ← new world;
δa < w1; δa < w2; δb < w1;w1 < w2;w1 < w3;w1 < w4;w2 < w3;w2 < w4;w3 < w4;

We then spawn the forks, each residing at a different world, such that the max
world of a fork is higher than the self of the highest fork, ensuring invariant 2
for the philosopher processes that we spawn afterwards:

f1 : sfork[w1lw4
w4

]← fork proc ; f2 : sfork[w2lw4
w4

]← fork proc ;
f3 : sfork[w3lw4

w4
]← fork proc ;

When we spawn the philosophers, we ensure that P0 is going to pick up fork F1

and then F2, P1 is going to pick up F2 and then F3, and P2 is going to pick up
F1 and then F3.

p0 : phil[δalw2
w1

]← thinking ← ·; ·; f1 , f2 ; p1 : phil[δalw3
w2

]← thinking ← ·; ·; f2 , f3 ;
p2 : phil[δalw3

w1
]← thinking ← ·; ·; f1 , f3 ;

We note that the deadlocking spawn

p2 : phil[δalw3
w1

]← thinking ← ·; ·; f3 , f1 ;

is type-incorrect since we would substitute both w1 and w3 for δ1 and w3 and w1

for δ2, which violates the ordering constraints put in place by typing.

Manifest Deadlock-Freedom for Shared Session Types 15

3.4 Dynamics

We now give the dynamics of SILLS+ . Our current system is based on a syn-
chronous dynamics. While this choice is more conservative, it allows us to narrow
the complexity of the problem at hand.

As in SILLS, we use multiset rewriting rules [12] to capture the dynam-
ics of SILLS+ (see Section 2). Multiset rewriting rules represent computation
in terms of local state transitions between configurations of processes, only
mentioning the parts of a configuration they rewrite. We use the predicates
proc(am , wa1 l

wa3
wa2
, Pam

) and unavail(aS, wa1 l
wa3
wa2

) to define the states of a config-
uration (see Section 5.1). The former denotes a process executing term P that
provides along channel am at mode m with worlds wa1 , wa2 , and wa3 for self,
min, and max, respectively. The latter acts as a placeholder for a shared process
providing along channel aS with worlds wa1 , wa2 , and wa3 for self, min, and max,
respectively, that is currently unavailable. We note that since worlds are also
run-time artifacts, they must occur as part of the state-defining predicates.

Figure 5 lists selected rules of the dynamics. Since the rules remain largely
the same as those of SILLS, apart from the world annotations that are “threaded
through” unchanged, we only discuss the rules that actually differ from the
SILLS rules. The interested reader can find the remaining rules in the companion
technical report [4].

(D-SpawnLL)

proc(aL, wa1 l
wa3
wa2
, xL : AL[wb1 l

wb3
wb2

]← XL ← cL, c̃L, dS ; QxL),

!def(Ψ ′ ` x ′L : A′L[δj lδn
δk

]← XL ← ∆′,Φ′,Γ ′ = Px ′
L
,dom(∆′),dom(Φ′),dom(Γ ′),Ψ′′)

−→ proc(bL, wb1 l
wb3
wb2
, [bL/x ′L , cL/dom(∆′), c̃L/dom(Φ′), dS/dom(Γ ′)]γ̂(Px ′

L
,dom(∆′),dom(Φ′),dom(Γ ′),Ψ′′)),

proc(aL, wa1 l
wa3
wa2
, [bL/xL]QxL),

unavail(bS, wb1 l
wb3
wb2

) (b fresh)

(D-New)

proc(a, wa1 l
wa3
wa2
, w← new world; Qw) −→ proc(a, wa1 l

wa3
wa2
, Qw) (w fresh)

(D-Ord)

proc(a, wa1 l
wa3
wa2
, w < w′; Q) −→ proc(a, wa1 l

wa3
wa2
, Q)

Fig. 5: Selected multiset rewriting rules of SILLS+ .

Noteworthy are the rules D-New and D-Ord for creating and relating
worlds, respectively. Rule D-New creates a fresh world, which will be glob-
ally available in the configuration. Rule D-Ord, on the other hand, updates the
configuration’s order with the pair w < w′. Rule D-SpawnLL, lastly, substitutes
actual worlds for world variables in the body of the spawned process, using the
substitution mapping γ defined earlier. It relies on the existence of a correspond-
ing definition predicate for each process defintion contained in the signature Σ.
We note that the substitution γ in rule D-SpawnLL instantiates the appropriate
world variables in the spawned process P .

16 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

4 Extended Example: An Imperative Shared Queue

We now develop a typical imperative-style implementation of a queue that uses
a list data structure internally to store the queue’s elements and has shared
references to the front and the back of the list for concurrent dequeueing and
enqueueing, respectively. The session types for the queue and the list are4

queue AS = ↑SLN{enq : Πx:AS. ↓SLqueue AS,
deq : ⊕{none : ↓SLqueue AS, some : ∃x:AS. ↓SLqueue AS}}

list AS = ↑SLN{ins : Πx:AS.∃y:list AS. ↓SLlist AS,
del : ⊕{none : ↓SLlist AS, some : ∃x:AS. ↓SLlist AS}

The list is implemented in terms of processes empty and elem, denoting the
empty list and a cons cell, respectively. We show the more interesting case of
a cons cell (Figure 6). The queue is defined by processes head (Figure 7) and
queue proc (Figure 8), the latter being the queue’s interface to its clients.

elem : {δ1 < δ2, δ2 < δ3, δ3 < δ4 ` list[δ1lδ2δ2]AS[δ3lδ4δ4]← AS[δ3lδ4δ4], list[δ1lδ2δ2]AS[δ3lδ4δ4]}

c[δ1lδ2δ2][δ3lδ4δ4]← elem ← x [δ3lδ4δ4],next [δ1lδ2δ2][δ3lδ4δ4] =

c′ ← accept c ;
case c′ of
| ins→ y ← recv c′ ; n ← elem ← y , next ; send c′ n ;

c ← detach c′ ;

c′′ : list[δ1lδ2δ2]AS[δ3lδ4δ4]← elem ← x , n ; fwd c c′′

| del→ c′.some ; send c′ x ;
c ← detach c′ ; fwd c next

Fig. 6: Imperative queue – elem process.

We can now define a client (Figure 8) for the queue, assuming existence
of a corresponding shared session type item and a process item proc offering a
session of type item[δ3lδ4δ4]. The client instantiates the queue at world δb, allowing
it to acquire resources at world w1, which is exactly the world at which process
queue proc instantiates the list. Given that the client itself resides at world δa,
which is smaller than the queue’s world δb, the client is allowed to acquire the
queue, which in turn will acquire the list to satisfy any requests by the client.

The example showcases a paradigmatic use of several collaborators, where
collaborators can hold resources while they “talk down” in the tree. In particular,
as illustrated in Figure 9, the clients C1, C2, and C3 compete for resources at
world δb, i.e., the queue Q. On the other hand, a client Ci collaborates with the

4 We adopt polymorphism for the example without formal treatment since it is or-
thogonal and has been studied for session types in [46,23].

Manifest Deadlock-Freedom for Shared Session Types 17

head : {δ0 < δ1, δ1 < δ2, δ2 < δ3, δ3 < δ4 ` queue[δ0lδ1δ1]AS[δ3lδ4δ4]←list[δ1lδ2δ2]AS[δ3lδ4δ4],

list[δ1lδ2δ2]AS[δ3lδ4δ4]}

c[δ0lδ1δ1][δ3lδ4δ4]← head ← front [δ1lδ2δ2][δ3lδ4δ4], back [δ1lδ2δ2][δ3lδ4δ4] =

c′ ← accept c ;
case c′ of
| enq→ x ← recv c′ ;

back ′ ← acquire back ;
back ′.ins ; send back ′ x ; e ← recv back ′ ;
back ← release back ′ ;

c ← detach c′ ; c′′ : queue[δ0lδ1δ1]AS[δ3lδ4δ4]← head ← front , e ; fwd c c′′

| deq→ front ′ ← acquire front ;
front ′.del ;
(case front ′ of
| none→ front ← release front ′ ; c′.none ; c ← detach c′ ;

c′′ : queue[δ0lδ1δ1]AS[δ3lδ4δ4]← head ← front , back ; fwd c c′′

| some→ x ← recv front ′ ;
front ← release front ′ ;
c′.some ; send c′ x ; c ← detach c′ ;

c′′ : queue[δ0lδ1δ1]AS[δ3lδ4δ4]← head ← front , back ; fwd c c′′)

Fig. 7: Imperative queue – head process.

queue proc : {δ0 < δ1, δ1 < δ3, δ3 < δ4
` queue[δ0lδ1δ1]AS[δ3lδ4δ4]}

c[δ0lδ1δ1][δ3lδ4δ4]← queue proc =

w2 ← new world ;
δ1 < w2 ; w2 < δ3 ;

e : list[δ1lw2
w2

]AS[δ3lδ4δ4]← empty ;

c′′ : queue[δ0lδ1δ1]AS[δ3lδ4δ4]← head

← e, e ;
fwd c c′′

client : {δa < δb ` 1[δalδbδb]}

c[δalδbδb]← client =

w1 ← new world ; w3 ← new world ;
w4 ← new world ;
δb < w1 ; w1 < w3 ; w3 < w4 ;
i0 : item[w3lw4

w4
]← item proc ;

q : queue[δblw1
w1

]AS[w3lw4
w4

]← queue proc ;
q′ ← acquire q ; q′.enq ; send q′ i0 ;
q ← release q′ ; close c

Fig. 8: Imperative queue – queue proc process and client process.

queue Q, the list elements Li, and the items Ii, since they do not overlap in
the set of resources they may acquire: a client acquires resources at δb, a queue
resources at w1, a list resources at w2, and an item resources at w4, and we have
δa < δb < w1 < w2 < w3 < w4. We note in particular that the setup prevents a
list element from acquiring its successor, forcing linear access through the queue.

5 Semantics

In this section, we discuss the meta-theoretical properties of SILLS+ , focusing on
deadlock-freedom. The companion technical report [4] provides further details.

18 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

C2

Q

L1L0 L2 L3 L4

I0 I1 I2 I3

C1 C3

front’ back

q’

[�blw1
w1

]

[�al�b

�b
]

[w1lw2
w2

]

[w3lw4
w4

]

�a < �b

�b < w1

w1 < w2

w2 < w3 < w4

Fig. 9: Run-time process graph for imperative queue (see Figure 3 for legend).

5.1 Configuration Typing and Preservation

Given the hierarchy between mode S and L and the fact that shared processes
cannot depend on linear processes, we divide a configuration into a shared part
Λ and a linear part Θ. We use the typing judgment Ψ ;Γ � Λ;Θ :: Γ ;Φ,∆ to
type configurations. The judgment expresses that a well-formed configuration
Λ;Θ provides the shared channels in Γ and the linear channels in Φ and ∆.
A configuration is type-checked relative to all shared channel references and a
global order Ψ . While type-checking is compositional insofar as each process
definition can be type-checked separately, solely relying on the process’ local
Ψ (and Γ), at run-time, the entire order that a configuration relies upon is
considered. We give the configuration typing rules in Figure 10.

Our progress theorem crucially depends on the guarantee that the invariants 1
and 2 from Section 3 hold for every linear process in a configuration’s tree. This is
expressed by the premises Inv1(proc(aL, wa1 l

wa3
wa2
, PaL

)) and Inv2(proc(aL, wa1 l
wa3
wa2
, PaL

))
in rule (T-Θ2), based on the definitions 1 and 2 below that restate invariants 1
and 2 for an entire configuration. We note that Invariant 2 is based on the set
of all transitive children (i.e., descendants) of a process. We formally define the
notion of a descendant inductively over a well-typed linear configuration. The
interested reader can find the definition in the companion technical report [4].

Invariant 1 (min(parent) ≤ self(acquired child) ≤ max(parent)). If Ψ ; Γ � Θ ::
Φ,∆ and for any proc(aL, wa1 l

wa3
wa2
, PaL

) ∈ Θ such that Ψ ; Γ ; Φ1; ∆1 ` PaL :: (aL :

AL[wa1 l
wa3
wa2

]), Inv1(proc(aL, wa1 l
wa3
wa2
, PaL

)) holds if an only if for every acquired

resource bL : BL[wb1 l
wb3
wb2

] ∈ Φ1 it holds that Ψ∗ ` wa2 ≤ wb1 ≤ wa3 . Moreover,

if PaL = xL ← acquire cS ;QxL
, for a (cS : ↑SLCL[wc1 l

wc3
wc2

]) ∈ Γ , then, for every

acquired resource bL : BL[wb1 l
wb3
wb2

] ∈ Φ1, it holds that Ψ+ ` wb1 < wc1 and that
Ψ∗ ` wa2 ≤ wc1 ≤ wa3 .

Invariant 2 (max(parent) < minima(descendants)). If Ψ ; Γ � Θ :: Φ,∆
and for any proc(aL, wa1 l

wa3
wa2
, PaL

) ∈ Θ and that process’ descendants (Ψ ; Γ �

Manifest Deadlock-Freedom for Shared Session Types 19

Ψ ;Γ � (·) :: (·)
(T-Θ1)

(aS : B̂[wa1 l
wa3
wa2

]) ∈ Γ ` (AL, B̂) sesync Ψ ` AL[wa1 l
wa3
wa2

] type

Ψ∗ ` wa2 ≤ wa3 Inv1(proc(aL, wa1 l
wa3
wa2
, PaL)) Inv2(proc(aL, wa1 l

wa3
wa2
, PaL))

Ψ ;Γ � Θ :: Φ,Φ1,∆,∆1 Ψ ;Γ ;Φ1;∆1 ` PaL :: (aL : AL[wa1 l
wa3
wa2

])

Ψ ;Γ � Θ, proc(aL, wa1 l
wa3
wa2
, PaL) :: (Φ,∆, aL : AL[wa1 l

wa3
wa2

])
(T-Θ2)

Ψ ;Γ � (·) :: (·)
(T-Λ1)

` (↑SLAL, ↑SLAL) sesync Ψ ` ↑SLAL[wa1 l
wa3
wa2

] type

Ψ∗ ` wa2 ≤ wa3 Ψ ;Γ ` PaS :: (aS : ↑SLAL[wa1 l
wa3
wa2

])

Ψ ;Γ � proc(aS, wa1 l
wa3
wa2
, PaS) :: (aS : ↑SLAL[wa1 l

wa3
wa2

])
(T-Λ2)

Ψ ;Γ � unavail(aS, wa1 l
wa3
wa2

) :: (aS : Â[wa1 l
wa3
wa2

])
(T-Λ3)

Ψ ;Γ � Λ :: Γ1 Ψ ;Γ � Λ′ :: Γ2

Ψ ;Γ � Λ,Λ′ :: Γ1, Γ2

(T-Λ4)

Ψ ;Γ � Λ :: Γ Ψ ;Γ � Θ :: Φ,∆

Ψ ;Γ � Λ;Θ :: Γ ;Φ,∆
(T-Ω)

Fig. 10: Configuration Typing

Θ :: Φ,∆) B aL = (Φ′, ∆′), Inv2(proc(aL, wa1 l
wa3
wa2
, PaL

)) holds iff for every

descendant bL : BL[wb1 l
wb3
wb2

] ∈ (Φ′, ∆′) it holds that Ψ+ ` wa3 < wb2 .

Our preservation theorem states that Invariant 1 and Invariant 2 are pre-
served for every linear process in the configuration along transitions. Moreover,
the theorem expresses that the types of the providing linear channels Φ and
∆ are maintained along transitions and that new shared channels and worlds
may be allocated. The proof relies, in particular, on session types being strictly
equi-synchronizing, on a process’ type well-formedness and assurance that the
process’ min world is less than or equal to its max world.

Theorem 5.1 (Preservation). If Ψ ; Γ � Λ; Θ :: Γ ; Φ,∆ and Λ;Θ −→ Λ′;Θ′,
then Ψ ′; Γ ′ � Λ′; Θ′ :: Γ ′; Φ,∆, for some Λ′, Θ′, Ψ ′, and Γ ′.

5.2 Progress

In our development so far we have distilled the two scenarios of interdepen-
dencies between processes that can lead to deadlocks: cyclic acquisitions and
interdependent acquisitions and synchronizations. This has lead to the develop-
ment of a type system that ingrains the notions of competitors and collaborators,
such that the former compete for a set of resources whereas the latter do not
overlap in the set of resources they acquire. Our type system then ties these
notions to a configuration’s linear process tree such that collaborators stand in a
parent-descendant relationship to each other and competitors in a sibling/cousin
relationship. In this section, we prove that this orchestration is sufficient to rule
out any of the aforementioned interdependencies.

20 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

To this end we introduce the notions of red and green arrows that allow us
to reason about process interdependencies in a configuration’s tree. A red arrow
points from a linear proc(aL, wa1 l

wa3
wa2
, Q) to a linear proc(bL, wb1 l

wb3
wb2
, P), if the

former is attempting to acquire a resource held by the latter and, consequently, is
waiting for the latter to release that resource. A green arrow points from a linear
proc(aL, wa1 l

wa3
wa2
, Q) to a linear proc(bL, wb1 l

wb3
wb2
, P), if the former is waiting to

synchronize with the latter. We define these arrows formally as follows:

Definition 5.2 (Acquire Dependency — “Red Arrow”). Given a well-
formed and well-typed configuration Ψ ;Γ � Λ;Θ :: Γ ;Φ,∆, there exists a waiting-
due-to-acquire relation A(Θ) among linear processes in Θ at run-time such that

proc(aL, wa1 l
wa3
wa2
, xL ← acquire cS; QxL

) <A proc(bL, wb1 l
wb3
wb2
, P〈cL〉)

where P 〈cL〉 denotes a process term with an occurrence of channel cL.

Definition 5.3 (Synchronization Dependency — “Green Arrow”). Given
a well-formed and well-typed configuration Ψ ;Γ � Λ;Θ :: Γ ;Φ,∆, there exists a
waiting-due-to-synchronization relation S(Θ) among linear processes in Θ at
run-time such that

proc(aL, wa1 l
wa3
wa2
, 〈bL〉; Q) <S proc(bL, wb1 l

wb3
wb2
, 〈¬bL〉; P)

proc(bL, wb1 l
wb3
wb2
, 〈bL〉; P) <S proc(aL, wa1 l

wa3
wa2
, 〈¬bL〉; Q〈bL〉)

where P 〈aL〉 denotes a process term with an occurrence of channel bL, 〈a〉; P a
process term that currently executes an action along channel a, and 〈¬a〉; P a
process term whose currently executing action does not involve the channel a.

It may be helpful to consult Figure 3 at this point and note the semantic
difference between the violet arrows in that figure and the red arrows discussed
here. Whereas violet arrows point from the acquiring process to the resource
being acquired, red arrows point from the acquiring process to the process that
is holding the resource. Thus, violet arrows can go out of the tree, while red
arrows stay within. Given the definitions of red and green arrows, we can define
the relation W(Θ) on the configuration’s tree, which contains all process pairs
that are in some way waiting for each other:

Definition 5.4 (Waiting Dependency). Given a well-formed and well-typed
configuration Ψ ;Γ � Λ;Θ :: Γ ;Φ,∆, there exists a waiting relation W(Θ) among
processes in Θ at run-time such that proc(aL, wa1 l

wa3
wa2
, P) <W proc(bL, wb1 l

wb3
wb2
, Q),

– if proc(aL, wa1 l
wa3
wa2
, P) <A proc(bL, wb1 l

wb3
wb2
, Q), or

– if proc(aL, wa1 l
wa3
wa2
, P) <S proc(bL, wb1 l

wb3
wb2
, Q).

Having defined the relationW(Θ), we can now state the key lemma underly-
ing our progress theorem, indicating that W(Θ) is acyclic in a well-formed and
well-typed configuration.

Manifest Deadlock-Freedom for Shared Session Types 21

Lemma 5.5 (Acyclicity of W(Θ)). If Ψ ; Γ � Λ; Θ :: Γ ; Φ,∆, then W(Θ) is
acyclic.

We focus on explaining the main idea of the proof here. The proof proceeds
by induction on Ψ ;Γ � Θ :: Φ,∆, assuming for the non-empty case Ψ ;Γ �
Θ, proc(aL, wa1 l

wa3
wa2
, PaL

) :: (Φ,∆, aL : AL[wa1 l
wa3
wa2

]) that W(Θ) is acyclic, by the
inductive hypothesis. We then know that there cannot exist any paths of green
and red arrows in Θ that form a cycle, and we have to show that there is no
way of introducing such a cyclic path by adding node proc(aL, wa1 l

wa3
wa2
, PaL

) to
the configuration Θ. In particular, the proof considers all possible new arrows
that may be introduced by adding the node and that are necessary for creating a
cycle, showing that such arrows cannot come about in a well-typed configuration.

We illustrate the reasoning for the two selected cases shown in Figure 11.
Case (a) represents a case in which process PaL is waiting to synchronize with
its child PbL while holding a resource a descendant of PbL or PbL itself wants to
acquire. However, this scenario cannot come about in a well-typed configuration
because PaL and PbL are collaborators and thus cannot overlap in resources they
acquire. Case (b) represents a case in which process PaL is waiting to synchronize
with its child PbL while another child, process PcL , is waiting to synchronize with
PaL . Given acyclicity of W(Θ), a necessary condition for a cycle to form is that
there already must exist a red arrow C in the configuration that connects the
subtrees in which the siblings PbL and PcL reside. However, this scenario cannot
come about in a well-typed configuration because PbL and PcL are competitors,
forcing PcL or any of its descendant to release a resource before synchronizing
with PaL . These arguments are made precise in various lemmas in [4].

PaLA B

C

PbL PcL

(b)
PaLA

B

C

PbL PcL

(a)

Fig. 11: Two prototypical cases in proof of acyclicty of W(Θ).

Given acyclicity ofW(Θ), we can state and prove the following strong progress
theorem. The theorem relies on the notion of a poised process, a process currently
executing an action along its offering channel, and distinguishes a configuration
only consisting of the top-level, linear “main” process from one that consists of
several linear processes. We use |Θ| to denote the cardinality of Θ:

Theorem 5.6 (Progress). If Ψ ;Γ � Λ;Θ :: (Γ ; cL : 1[wc1 l
wc3
wc2

]), then either

– Λ −→ Λ′, for some Λ′, or

22 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

– Λ is poised and

• if |Θ| = 1, then either Λ;Θ −→ Λ′;Θ′, for some Λ′ and Θ′, or Θ is
poised, or

• if |Θ| > 1, then Λ;Θ −→ Λ′;Θ′, for some Λ′ and Θ′.

The theorem indicates that, as long as there exist at least two linear processes
in the configuration, the configuration can always step. If the configuration only
consists of the main process, then this process will become poised (i.e., ready to
close), once all sub-computations are finished. The proof of the theorem relies
on the acyclicity of W(Θ) and the fact that all sessions must be strictly equi-
synchronizing.

6 Additional Discussion

Linear Forwarding Our current formalization does not include linear forward-
ing because a forward changes the process tree and thus endangers the invariants
imposed on it. This means that certain programs from the purely linear fragment
may not type-check in our system. However, the correspondingly η-expanded ver-
sions of these programs should be expressible and type-checkable in SILLS+ . As
part of future work, we want to explore the addition of the linear forward

Ψ+ ` ωn < ωu
Ψ ; Γ ; · ; yL : AL[ωmlωv

ωu
] ` fwd xL yL :: (xL : AL[ωj lωn

ωk
])

(T-IdL)

which allows forwarding to processes that are known to not yet be aliased and
whose world annotations meet the premise Ψ+ ` ωn < ωu. Restricting to pro-
cesses in∆ should uphold Invariant 1, while the premise of the rule should uphold
Invariant 2. However, this change will affect the inner working of the proofs, the
use of inversion in particular, which might have far-reaching consequences that
need to be carefully explored.

Unbounded Process Networks and World Polymorphism The typing
discipline presented in the previous sections, while rich enough to account for a
wide range of interesting programs, cannot type programs that spawn a statically
undetermined number of shared sessions that are then to be used. For instance,
while we can easily type a configuration of any given number of dining philoso-
phers (Section 3.3), we cannot type a recursive process in which the number of
philosophers (and forks) is potentially unbounded (as done in [38,21]), due to
the way worlds are created and propagated across processes.

The general issue lies in implementing a statically unbounded network of pro-
cesses that interact with each other. These interactions require the processes to
be spawned at different worlds which must be generated dynamically as needed.
To interact with such a statically unknown number of processes uniformly, their
offering channels must be stored in a list-like structure for later use. However,
in our system, recursive types have to be invariant with respect to worlds. For

Manifest Deadlock-Freedom for Shared Session Types 23

instance, in a recursive type such as T = AL@ωl lωr
ωp
⊗T , the worlds ωl, ωp, ωr

are fixed in the unfoldings of T . Thus, we cannot type a world-heterogeneous
list and cannot form such process networks.

Given that the issues preventing us from typing such unbounded networks
lie in problems of world invariance, the natural solution is to explore some form
of world polymorphism, where types can be parameterized by worlds which are
instantiated at a later stage. Such techniques have been studied in the context of
hybrid logical processes in [7] by considering session types of the form ∀δ.A and
∃δ.A, sessions that are parametric in the world variable δ, that is instantiated
by a concrete reachable world at runtime. While their development cannot be
mapped directly to our setting, it is a promising avenue of future work.

7 Related Work

Behavioral Type Analysis of Deadlocks The addition of channel usage
information to types in a concurrent, message-passing setting was pioneered by
Kobayashi and Igarashi [34,30], who applied the idea to deadlock prevention
in the π-calculus and later to more general properties [31,32], giving rise to a
generic system that can be instantiated to produce a variety of concrete typing
disciplines for the π-calculus (e.g., race detection, deadlock detection, etc.).

This line of work types π-calculus processes with a simplified form of pro-
cess (akin to CCS [42] terms without name restriction) that characterizes the
input/output behavior of processes. These types are augmented with abstract
data that pertain to the relative ordering of channel actions, with the type sys-
tem ensuring that the transitive closure of such orderings forms a strict partial
order, ensuring deadlock-freedom (i.e., communication succeeds unless a process
diverges). Building on this, Kobayashi et al. proposed type systems that ensure
a stronger property dubbed lock-freedom [35] (i.e., communication always suc-
ceeds), and variants that are amenable to type inference [36,39]. Kobayashi [37]
extended this latter system to more accurately account for recursive processes
while preserving the existence of a type inference algorithm.

Our system draws significant inspiration from this line of work, insofar as we
also equip types with abstract ordering data on certain communication actions,
which is then statically enforced to form a strict partial order. We note that
our SILLS+ language differs sufficiently from the pure π-calculus in terms of its
constructs and semantics to make the formulation of a direct comparison or an
immediate application of their work unclear (e.g., [37] uses replication to encode
recursive processes). Moreover, we integrate this style of order-based reasoning
with both linear and shared session typing, which interact in non-trivial ways
(especially in the presence of recursive types and recursive process definitions).

In terms of typability, enforcing session fidelity can be a double-edged sword:
some examples of the works above can be transposed to SILLS+ with mostly
cosmetic changes and without making use of shared sessions (e.g., a parallel im-
plementation of factorial that recurses via replication but always answers on a
private channel); others are incompatible with linear sessions and require the

24 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

use of shared sessions via the acquire-release discipline, which entails a more
indirect but still arguably faithful modelling of the original π-calculus behavior;
some examples, however, cannot be easily adapted to the shared session disci-
pline (e.g., ∗c?(x, y).x?(z).y?(z) | ∗c?(x, y).y?(z).x?(z) is typable in [37], where
x?(z) denotes input on x and ∗c?(x, y) denotes replicated input) and their tran-
scription, while possible, would be too far removed from the original term to
be deemed a faithful representation. Recursive processes are known to produce
patterns that can be challenging to analyze using such order-based techniques.
The work of [21,38] specializes Kobayashi’s system to account for potentially
unbounded process networks with non-trivial forms of sharing. Such systems are
not typable in our work (see Section 6 for additional discussion on this topic).

The work of Padovani [44] develops techniques inspired by [35,37] to develop
a typing system for deadlock (and lock) freedom for the linear π-calculus where
(linear) channels must be used exactly once. By enforcing this form of linearity,
the resulting system uses only one piece of ordering data per channel usage and
can easily integrate a form of channel polymorphism that accounts for intricate
cyclic interleavings of recursive processes. The combination of manifest sharing
and linear session typing does not seem possible without the use of additional
ordering data, and the lack of single-use linear channels make the robust channel
polymorphism of [44] not feasible in our setting.

Dardha and Gay [15] recently integrated a system of Kobayashi-style or-
derings in a logical session π-calculus based on classical linear logic, extended
with the ability to form cyclic dependencies of actions on linear session channels
(Atkey et al. [1] study similar cycles but do not consider deadlock-freedom), with-
out the need for new process constructs or an acquire-release discipline. Their
work considers only a restricted form of replication common in linear logic-based
works, not including recursive types nor recursive process definitions. This re-
duces the complexity of their system, at the cost of expressiveness. We also note
that the cycles enabled by their system are produced by processes sharing multi-
ple linear names. Since linearity is still enforced, they cannot represent the more
general form of cycles that exploit shared channels, as we do.

A comparative study of session typing and Kobayashi-style systems in terms
of sharing was developed by Dardha and Pérez [16], showing that such order-
based techniques can account for sharing in ways that are out of reach of both
classical session typing and pure logic-based session typing. Our system (and
that of [15]) aims to combine the heightened power of Kobayashi-style systems
with the benefits of session typing, which seems to be better suited as a typing
discipline for a high-level programming language [18].

Progress and Session Typing To address limitations of classical binary ses-
sion types, Honda et al. [27] introduced multiparty session types, where sessions
are described by so-called global types that capture the interactions between
an arbitrary number of session participants. Under some well-formedness con-
straints, global types can be used to ensure that a collection of processes cor-
rectly implements the global behavior in a deadlock-free way. However, these
global type-based approaches do not ensure deadlock freedom in the presence of

Manifest Deadlock-Freedom for Shared Session Types 25

higher-order channel passing or interleaved multiparty sessions. Coppo et al. [13]
and Bettini et al. [6] develop systems that track usage orders among interleaved
multiparty sessions, ruling out cyclic dependencies that can lead to deadlocks.
The resulting system is quite intricate, since it combines the full multiparty ses-
sion theory with the order tracking mechanism, interacts negatively with recur-
sion (essentially disallowing interleaving with recursion) and, by tracking order
at the multiparty session-level, ends up rejecting various benign configurations
that can be accounted for by our more fine-grained analysis. We also highlight
the analyses of Vieira and Vasconcelos [54] and Padovani et al. [45] that are more
powerful than the approaches above, at the cost of a more complex analysis based
on conversation types [10] (themselves a partial-order based technique).
Static Analysis of Concurrent Programs Lange et al. [40,41] develop a
deadlock detection framework applied to the Go programming language. Their
work distills CCS processes from programs which are then checked for deadlocks
by a form of symbolic execution [40] and model-checked against modal µ-calculus
formulae [41] which encode deadlock-freedom of the abstracted process (among
other properties of interest). Their abstraction introduces some distance between
the original program and the analysed process and so the analysis is sound only
for certain restricted program fragments, excluding any combination of recursion
and process spawning. Our direct approach does not suffer from this limitation.

de’Liguoro and Padovani [17] develop a typing discipline for deadlock-freedom
in a setting where processes exchange messages via unordered mailboxes. Their
calculus subsumes the actor model and their analysis combines both so-called
mailbox types and specialized dependency graphs to track potential cycles be-
tween mailboxes in actor-based systems. The unordered nature of actor-based
communication introduces significant differences wrt our work, which crucially
exploits the ordering of exchanged messages.

8 Concluding Remarks

In this paper we have developed the concept of manifest deadlock-freedom in
the context of the language SILLS+ , a shared session-typed language, showcasing
both the programming methodology and the expressiveness of our framework
with a series of examples. Deadlock-freedom of well-typed programs is estab-
lished by a novel abstraction of so-called green and red arrows to reason about
the interdependencies between processes in terms of linear and shared channel
references.

In future work, we plan to address some of the limitations of the interactions
of deadlock-free shared sessions with recursion, by considering promising notions
of world polymorphism and world communication. We also plan to study the
problem of world inference and the inclusion of a linear forwarding construct.

26 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

References

1. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: et al., S.L.
(ed.) Wadler Festschrift. pp. 32–55. Springer LNCS 9600 (2016)

2. Balzer, S., Pfenning, F.: Manifest sharing with session types. Proceedings of the
ACM on Programming Languages (PACMPL) 1(ICFP), 37:1–37:29 (2017)

3. Balzer, S., Pfenning, F., Toninho, B.: A universal session type for untyped asyn-
chronous communication. In: 29th International Conference on Concurrency The-
ory (CONCUR). pp. 30:1–30:18. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2018)

4. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. Tech. Rep. CMU-CS-19-102, Carnegie Mellon University (2019)

5. Benton, P.N.: A mixed linear and non-linear logic: Proofs, terms and models. In:
8th International Workshop on Computer Science Logic (CSL). Lecture Notes in
Computer Science, vol. 933, pp. 121–135. Springer (1994), an extended version
appeared as Technical Report UCAM-CL-TR-352, University of Cambridge

6. Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini, M., Yoshida,
N.: Global progress in dynamically interleaved multiparty sessions. In: CONCUR
2008 - Concurrency Theory, 19th International Conference,. pp. 418–433 (2008)

7. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Logic-based domain-aware ses-
sion types, unpublished draft

8. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
21st International Conference on Concurrency Theory (CONCUR). pp. 222–236.
Springer (2010)

9. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Mathematical Structures in Computer Science 26(3), 367–423 (2016)

10. Caires, L., Vieira, H.T.: Conversation types. Theor. Comput. Sci. 411(51-52),
4399–4440 (2010)

11. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint apis
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019)

12. Cervesato, I., Scedrov, A.: Relating state-based and process-based concurrency
through linear logic. Information and Computation 207(10), 1044–1077 (2009)

13. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science 26(2), 238–302 (2016)

14. Crary, K., Harper, R., Puri, S.: What is a recursive module? In: ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). pp.
50–63 (1999)

15. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session-typed processes.
In: Foundations of Software Science and Computation Structures (FoSSaCS). pp.
91–109 (2018)

16. Dardha, O., Pérez, J.A.: Comparing deadlock-free session typed processes. In: EX-
PRESS/SOS. pp. 1–15 (2015)

17. de’Liguoro, U., Padovani, L.: Mailbox types for unordered interactions. In: 32nd
European Conference on Object-Oriented Programming, ECOOP 2018. pp. 15:1–
15:28 (2018)

18. Gay, S.J., Gesbert, N., Ravara, A.: Session types as generic process types. In: 21st
International Workshop on Expressiveness in Concurrency and 11th Workshop on
Structural Operational Semantics, EXPRESS/SOS 2014. pp. 94–110 (2014)

Manifest Deadlock-Freedom for Shared Session Types 27

19. Gay, S.J., Hole, M.: Subtyping for session types in the π-calculus. Acta Informatica
42(2–3), 191–225 (2005)

20. Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modu-
lar session types for distributed object-orientedriented programming. In: 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). pp. 299–312 (2010)

21. Giachino, E., Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process
networks. In: CONCUR 2014 - Concurrency Theory - 25th International Confer-
ence, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings. pp. 63–77
(2014)

22. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. In:
Ahmed, A. (ed.) European Symposium on Programming (ESOP’18). pp. 771–798.
Springer LNCS 10801, Thessaloniki, Greece (Apr 2018)

23. Griffith, D.: Polarized Substructural Session Types. Ph.D. thesis, University of
Illinois at Urbana-Champaign (2016)

24. Griffith, D., Pfenning, F.: SILL. https://github.com/ISANobody/sill (2015)

25. Honda, K.: Types for dyadic interaction. In: 4th International Conference on Con-
currency Theory (CONCUR). pp. 509–523. Springer (1993)

26. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: 7th European Symposium
on Programming (ESOP). pp. 122–138. Springer (1998)

27. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL). pp. 273–284. ACM (2008)

28. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Fundamental Approaches to Software Engineering - 19th International Confer-
ence, FASE. pp. 401–418 (2016)

29. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Fundamental Approaches to Software Engineering, FASE. pp. 116–133 (2017)

30. Igarashi, A., Kobayashi, N.: Type-based analysis of communication for concurrent
programming languages. In: Static Analysis, 4th International Symposium, SAS
’97. pp. 187–201 (1997)

31. Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. In: Confer-
ence Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 128–141 (2001)

32. Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. Theor.
Comput. Sci. 311(1-3), 121–163 (2004)

33. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for rust. In: 11th
ACM SIGPLAN Workshop on Generic Programming. pp. 13–22. WGP 2015 (2015)

34. Kobayashi, N.: A partially deadlock-free typed process calculus. In: Proceedings,
12th Annual IEEE Symposium on Logic in Computer Science. pp. 128–139 (1997)

35. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177(2), 122–159
(2002)

36. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Inf.
42(4-5), 291–347 (2005)

37. Kobayashi, N.: A new type system for deadlock-free processes. In: International
Conference on Concurrency Theory (CONCUR). pp. 233–247 (2006)

38. Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process networks. In-
formation and Computation 252, 48–70 (2017)

https://github.com/ISANobody/sill

28 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

39. Kobayashi, N., Saito, S., Sumii, E.: An implicitly-typed deadlock-free process cal-
culus. In: CONCUR 2000 - Concurrency Theory, 11th International Conference,
University Park, PA, USA, August 22-25, 2000, Proceedings. pp. 489–503 (2000)

40. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: Liveness and safety
for channel-based programming. In: 44th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). pp. 748–761. ACM (2017)

41. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in go using behavioural types. In: Proceedings of the 40th Inter-
national Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018. pp. 1137–1148 (2018)

42. Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer
Science, vol. 92. Springer (1980)

43. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in f#. In: Proceed-
ings of the 27th International Conference on Compiler Construction, CC 2018. pp.
128–138 (2018)

44. Padovani, L.: Deadlock and lock freedom in the linear π-calculus. In: Computer
Science Logic – Logic in Computer Science (CSL-LICS). pp. 72:1–72:10 (2014)

45. Padovani, L., Vasconcelos, V.T., Vieira, H.T.: Typing liveness in multiparty com-
municating systems. In: Coordination Models and Languages - 16th IFIP WG 6.1
International Conference, COORDINATION 2014. pp. 147–162 (2014)

46. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations and obser-
vational equivalences for session-based concurrency. Information and Computation
239, 254–302 (2014)

47. Pfenning, F., Griffith, D.: Polarized substructural session types. In: 18th Interna-
tional Conference on Foundations of Software Science and Computation Structures
(FoSSaCS). pp. 3–22. Springer (2015)

48. Reed, J.: A judgmental deconstruction of modal logic (January 2009), http://

www.cs.cmu.edu/~jcreed/papers/jdml.pdf, unpublished manuscript
49. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty

sessions for safe distributed programming. In: 31st European Conference on Object-
Oriented Programming, ECOOP 2017. pp. 24:1–24:31 (2017)

50. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: 30th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2016. pp. 21:1–21:28
(2016)

51. Toninho, B.: A Logical Foundation for Session-based Concurrent Computation.
Ph.D. thesis, Carnegie Mellon University and New University of Lisbon (2015)

52. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: a monadic integration. In: 22nd European Symposium on Programming
(ESOP). pp. 350–369. Springer (2013)

53. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)
54. Vieira, H.T., Vasconcelos, V.T.: Typing progress in communication-centred sys-

tems. In: Coordination Models and Languages, 15th International Conference, CO-
ORDINATION 2013, Held as Part of the 8th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2013, Florence, Italy, June 3-5,
2013. Proceedings. pp. 236–250 (2013)

55. Wadler, P.: Propositions as sessions. In: 17th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP). pp. 273–286. ACM (2012)

http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf

	Manifest Deadlock-Freedom for Shared Session Types

