Behavioral Polymorphism and Parametricity in
Session-Based Communication

Luis Caires', Jorge A. Pérez!, Frank Pfenning?, and Bernardo Toninho'?

! CITI and Departamento de Informética, FCT, Universidade Nova de Lisboa
2 Computer Science Department, Carnegie Mellon University

Abstract. We investigate a notion of behavioral genericity in the context of ses-
sion type disciplines. To this end, we develop a logically motivated theory of
parametric polymorphism, reminiscent of the Girard-Reynolds polymorphic A-
calculus, but casted in the setting of concurrent processes. In our theory, poly-
morphism accounts for the exchange of abstract communication protocols and
dynamic instantiation of heterogeneous interfaces, as opposed to the exchange of
data types and dynamic instantiation of individual message types. Our polymor-
phic session-typed process language satisfies strong forms of type preservation
and global progress, is strongly normalizing, and enjoys a relational parametricity
principle. Combined, our results confer strong correctness guarantees for commu-
nicating systems. In particular, parametricity is key to derive non-trivial results
about internal protocol independence, a concurrent analogous of representation
independence, and non-interference properties of modular, distributed systems.

1 Introduction

Modern distributed systems are typically conceived as decentralized collections of soft-
ware artifacts which execute intricate communication protocols. These large-scale sys-
tems must meet strict correctness and trustworthiness requirements. Emerging technol-
ogies—such as service-oriented computing and subscription-based, cost-sharing plat-
forms (e.g. cloud computing)—promise to be effective towards achieving these goals,
while reducing costs and enhancing business agility. They also pose new challenges
for system construction: communicating systems should behave properly even when
deployed in open, highly dynamic environments, such as third-party infrastructures.

In this communication-oriented context, genericity—one of the fundamental princi-
ples in software engineering—is a most relevant concern. Indeed, genericity promotes
modular protocol specifications, therefore facilitating system verification and evolu-
tion/maintenance. It allows for convenient representations of, for instance, families of
protocols which differ only in the format of the exchanged messages (as in, e.g., proto-
cols for file distribution which behave correctly independently of the transferred items).
This “message genericity” is most useful and appears to be well-understood.

Nevertheless, and partly due to the widespread adoption of technologies such as
those hinted at above, distributed systems nowadays exhibit fairly sophisticated incar-
nations of genericity, which often go well beyond message genericity. Indeed, systems
are increasingly generic with respect to arbitrary communication protocols, which may
be known and instantiated only at runtime. Here we refer to this kind of genericity as
behavioral genericity; we find it to be a very common concept in several settings:

2 Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

— Critical web applications (such as banking portals) are increasingly being deployed
into service-oriented architectures. As such, upgrade actions (e.g., replacing a ser-
vice provider) often involve the dynamic reconfiguration of communication inter-
faces/protocols. These changes should be transparent to clients. To this end, web ap-
plications should be conceived as generic with respect to such interfaces/protocols.

— Online application stores are infrastructures for the distribution of software appli-
cations. They should concurrently interact with (i) developers willing to add new
(i.e. unknown) applications to the store and (ii) clients wishing to remotely exe-
cute/buy/download available applications. In order to operate securely and reliably,
the store needs to be generic with respect to the behavior of clients and applications.

— Cloud-based services admit highly dynamic, flexible architectures. In fact, these ser-
vices are elastic, for they acquire computing resources when demand is high, and re-
lease them when they are no longer needed. For such scaling policies to be effective,
services need to be generic with respect to their underlying coordination protocols,
as these may well depend on the system’s architecture at a given time.

Many other distributed software systems exhibit forms of behavioral genericity in the
context of disciplined, structured communications. Reasoning about these systems and
their correctness is extremely hard, essentially because the required abstractions should
enforce independence with respect to arbitrary complex behaviors, and not just over
messages. Models and techniques for data/message genericity are thus simply inade-
quate for this task. This calls for novel reasoning techniques, which may effectively
support the analysis of behavioral genericity in complex distributed protocols.

Here we rise to this challenge in the context of session-based concurrency [17418]],
a foundational approach to communication correctness. In session-based concurrency,
dialogues between participants are structured into sessions, the basic units of communi-
cation; interaction patterns are abstracted as session types, which are statically checked
against specifications. Session types ensure protocols in which actions always occur in
dual pairs: when one partner sends, the other receives; when one partner offers a selec-
tion, the other chooses; when a session terminates, no further interaction may occur.

In this paper, we develop a session types discipline able to cope with behavioral
genericity. Our system includes impredicative universal and existential quantification
over sessions: this results in parametric polymorphism—in the sense of the Girard-
Reynolds polymorphic A-calculus [23l[13]—defined in a session-based, concurrent set-
ting. In our theory, universal and existential quantification correspond to the input and
output of a session type, respectively. As session types may describe arbitrarily complex
communication protocols, our theory of polymorphic processes enables an expressive
form of abstract protocol communication. As a key distinguishing feature, our devel-
opments follow naturally from the interpretation of session types as intuitionistic linear
logic propositions given in [6l7]. This allows us to obtain central technical results for
polymorphic, session-typed processes in a remarkably elegant way:

1. Polymorphic processes respect session typed specifications in a deadlock-free way.
These two central—and non trivial—correctness guarantees follow from our type
preservation and global progress results (Theorems [T and [2)).

2. Polymorphic processes never engage into infinite internal behavior. In fact, well-
typed processes are strongly normalizing (Theorem [5). The proof of this important

Behavioral Polymorphism and Parametricity in Session-Based Communication 3

(and arguably expected) result is via the reducibility candidates technique, by relying
on an elegant generalization of the linear logical relations of [20].

3. Polymorphic processes enjoy a principle of relational parametricity in the context of
a behavioral type theory (Theorem 8)). In Section [6] we illustrate how parametricity
allows us to formally justify properties of behavioral genericity and representation
independence, which in our case means behavioral independence on representation
protocols. Parametricity also enables a sound and complete characterization of typed
contextual equivalence (Theorem [9).

To our knowledge, relational parametricity (in the sense of Reynolds [24]) has not been
previously investigated in the context of a rich behavioral type theory for processes,
such as session types. In the realm of concurrent processes, genericity via (existential)
polymorphism was first investigated by Turner [27], in the context of a simply-typed
m-calculus. Berger et al. [[1L2] were the first to study a w-calculus with parametric poly-
morphism based on universal and existential quantification over types. In the setting of
session types, support for genericity has been obtained mainly via bounded polymor-
phism [12I10l9], which extends session types with a form of (universal) quantification
over types, controlled via subtyping. While useful to reason about protocols with mes-
sage genericity, bounded polymorphism is insufficient to support behavioral genericity.
Recently, Wadler [28] proposed a logic-based session type theory which includes the
natural typing rules for second-order quantifiers and may support polymorphism of the
kind we consider here; however, no analysis of behavioral genericity is identified. Our
results thus provide substantial evidence of how a logically motivated approach offers
appropriate, powerful tools for actually reasoning about behavioral genericity in com-
plex protocols. In passing, we establish rather strong connections between well-known
foundational results and polymorphically typed concurrent processes.

In the remainder of this introduction, we briefly describe the logical interpretation
of [6] and illustrate the potential of our model of polymorphic sessions with an ex-
ample. Our ongoing research program on logical foundations for session-based con-
currency [64261214712018] builds upon an interpretation of intuitionistic linear logical
propositions as session types, sequent proofs as m-calculus processes [25], and cut
elimination as process communication. In the resulting Curry-Howard correspondence,
well-typed processes enjoy strong forms of type preservation and global progress [6/7],
and are strongly normalizing [20]. The interpretation endows channel names with types
(logic propositions) that describe their session protocol. This way, e.g., an assignment
x:A—o B denotes a session x that first inputs a name of type A, and then behaves as type
B on x; dually, x:A ® B denotes a session z that first outputs a name of type A and
then behaves as type B on x. Other constructors are given compatible interpretations;
in particular, ! A is the type of a shared server offering sessions of type A. Given a linear
environment A and an unrestricted environment I, a type judgment in our system is of
the form I'; A+ P :: 2:C, where I, A, and z:C' have pairwise disjoint domains. Such
a judgment is intuitively read as: process P offers session C along channel z, provided
it is placed in a context providing the sessions declared in I" and A.

Here we uniformly extend the system of [6]] with two new kinds of session types,
VX.A and 3X.A, corresponding to impredicative universal and existential quantifica-
tion over sessions. As mentioned above, they are interpreted as the input and output of

4 Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

a session type, respectively. As an example, consider the polymorphic session type:
CloudServer = VX.!(api—oX)—o!X

which represents a simple interface for a cloud-based application server. In our theory,
this is the session type of a system which first inputs an arbitrary type (say GMaps);
then inputs a shared service of type api —o GMaps. Each instance of this service yields
a session that when provided with the implementation of an API will provide a behavior
of type GMaps; finally becoming a persistent (shared) server of type GMaps. Our ap-
plication server is meant to interact with developers who, by building upon the services
it offers, implement their own applications. In our framework, the dependency between
the cloud server and applications may be expressed by the typing judgment

-; x:CloudServer = DrpBozx :: z:dbox (1)

Intuitively, (1)) says that to offer behavior dbox on z, the file hosting service represented
by process DrpBoz relies on a linear behavior described by type CloudServer provided
on z (no shared behaviors are required). The role of behavioral genericity should be
clear from the following observation: to support interaction with developers such as
DrpBoz—which implement all kinds of behaviors, such as dbox above—any process
realizing type CloudServer should necessarily be generic on such expected behaviors.

The above example illustrates how the combination of polymorphism and linear-
ity enables very fine-grained specifications of interactive behavior via types. Indeed,
as just discussed, impredicative quantification enforces that every cloud server imple-
mentation must be agnostic to the specific behavior of the actual applications it will
provide, whereas linearity allows us to reason precisely about behavior and session us-
age (e.g., the only way the server can provide the behavior X is by making use of
session api—X). In Section [3|we develop this example further, demonstrating how the
expressiveness and flexbility of polymorphic session types is captured in process spec-
ifications. Then, in Section [we illustrate how to exploit parametricity, strong normal-
ization, and other properties of well-typed processes to reason about such specifications.
In fact, we show how by merely exploiting the shape of its (polymorphic) type, we are
able to analyze the observable behavior of a generic cloud-based server.

For space reasons, most proofs are omitted. An associated technical report [S]] gives
full technical details, and reports further developments which connect our work with
impredicative polymorphism in the functional setting via an encoding of System F.

2 Polymorphic Session Types

We consider a synchronous 7-calculus [25] extended with binary guarded choice, chan-
nel links, and prefixes for type input/output. The syntax of processes/types is as follows:

Definition 1 (Processes, Session Types). Given an infinite set A of names (x, y, z, u, v),
the set of processes (P, Q, R) and session types (A, B, C) is defined by

Pim@y)P | 2(y)P | w@).P | P1Q | wyP |0
| Z(A).P | 2(X).P | x.inl; P | z.inr; P | z.case(P,Q) | [z + 2]

Au= 1| A~B | A9B | A&B | A®B | 1A | X | VX.A | 3X.A

Behavioral Polymorphism and Parametricity in Session-Based Communication 5

The guarded choice mechanism and the channel link construct are as in [6426/20]. In-
formally, channel links “re-implement” an ambient session on a different channel name,
thus defining a renaming operation (see below). Moreover, channel links allow a simple
interpretation of the identity rule. Polymorphism is represented by prefixes for input
and output of types, denoting the exchange of abstract communication protocols.

We identify processes up to consistent renaming of bound names, writing =, for
this congruence. We write P{%/y} for the process obtained from P by capture avoiding
substitution of x for y in P, and fin(P) for the free names of P. Session types are directly
generated from the language of linear propositions. Structural congruence expresses
basic identities on the structure of processes, reduction expresses internal behavior of
processes, and labeled transitions define interaction with the environment.

Definition 2. Structural congruence is the least congruence relation generated by the
following laws: P|0=P; P=,Q=P=Q; P|Q=Q|P; P|(Q|R)=
(P1Q)| B (va)wy)P = (wy)(va)P; o & fn(P)= P | (va)Q = (va)(P | Q);
(vz)0=0; and [z <> y] = [y <> .

Definition 3. Reduction (P — Q) is the binary relation on processes defined by:

Z(y).Q | z(2).P — Q| P{Y/z} T(A).Q | 2(Y).P = Q| P{4/v}
Z(y).Q | 'z(2).P — Q| P{¥/2} | 'x(z).P x.inl; P | z.case(Q,R) —» P | Q
(vz)([x < y] | P) = P{Y/z} (z #£y) z.inr; P | xz.case(Q,R) - P | R
RQ—Q=P|Q—>P|Q P— Q= (vy)P — (vy)Q

P=P P -Q,0=Q=P—Q

A transition P —— @ denotes that P may evolve to @ by performing the action
represented by label .. In general, an action « (&) requires a matching @ («) in the
environment to enable progress. Labels include: the silent internal action 7, output and
bound output actions z(y) and (vz)x(z), respectively, and input action z(y). Also, they
include labels pertaining to the binary choice construct (z.inl, x.inl, x.inr, and z.inr),
and labels describing output and input of types (denoted x(A) and x(A), respectively).

Definition 4 (Labeled Transition System). The relation labeled transition (P ~ Q)
is defined by the rules in Fig.|I} subject to the side conditions: in rule (res), we require
y & fn(a); in rule (par), we require bn(a) N fn(R) = 0; in rule (close), we require
y & f(Q). We omit the symmetric versions of rules (par), (com), and (close).

We write p1 ps for the composition of relations p1, ps. Weak transitions are defined
as usual: we write = for the reflexive, transitive closure of —. Given « = T, notation
=2 stands for == and = stands for =

Type System. Our type system assigns session types to communication channels. Our
session type language (cf. Definition |I)) corresponds exactly to second-order linear
logic, and our typing rules capture this correspondence in a precise way. We define
two judgments: 2;I"; A+ P :: x:A and 2 - A type. Context {2 keeps track of type
variables that can be introduced by the polymorphic type constructors; I records persis-
tent sessions u: B, which can be invoked arbitrarily often along channel u; A maintains
the sessions z:B that can be used exactly once on channel z. When empty, I', A, and

6 Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

(out) (in) (outT) (inT)
)P 2% poay).P 2 Plyy ma).p ZY poa(y).p 22, piBry)
(par) (com) (res)
(id) «@ a / @ ’ o
. P—=Q P—-P Q—Q P—=Q
(va)([z < y] | P) = P{Y/x} = Y P
PIR=Q|R Pl|Q—=P|Q (wy)P — (vy)Q
(open) (close)
(re?)) " T p z{y) 0 P (vy)z(y) P Q z(y) Q'
lz(y).P —= P{%/y} | lz(y).P —— -
(vy)P LY PlQ = (vy)(P'|Q)

(lout) (rout) (lin) (rin)

x.inl x.inr

z.inl; P 2 P zinr; P 2™ P z.case(P,Q) zil p g.case(P,Q) £ Q

Fig. 1. m-calculus Labeled Transition System.

{2 are often denoted by ‘-’. Judgment {2 - A type defines well-formedness of types:
it denotes that A is a well-formed type with free variables registered in (2. The rules
for type well-formedness are straightforward (see [5]). Our main typing judgment thus
states that process P implements a session of type A along channel z, provided it is
composed with processes providing sessions linearly in A and persistently in I”, such
that the types occurring in the judgment are well-formed according to 2.

The typing rules for our polymorphic session calculus are given in Fig. 2| We use
T, S for right-hand-side singleton environments (e.g., z:C). Rules pertaining to the
propositional fragment extend those introduced in [6] with context {2. The rules in the
last two rows of Fig. 2] explain how to provide and use sessions of a polymorphic type.
More precisely, rule (TVR) describes the offering of a session of universal type VX.A
by inputing an arbitrary type, bound to X, and proceeding as A, which may bind the
type variable X, regardless of what the actual received type is. Rule (TVL) says that
the use of type V.X.A consists of the output of a type B—well-formed under type con-
text 2—which then warrants the use of the session as A{B/X}. The existential type is
dual: providing an existentially typed session 3.X. A (cf. rule (T3R)) is accomplished by
outputting a well-formed type B and then providing a session of type A{B/X}. Using
an existential session 3X. A (cf. rule (T3L)) implies inputing a type and then using the
session as A, agnostic to what the actual received type can be. Note that in the presence
of polymorphism the identity rule (Tid) (not present in [6l7], but used in [26l21120]) is
necessary, since it is the only way of typing a session with a type variable.

As usual, in the presence of type annotations in binders, type-checking is decidable
in our system (these are omitted for readability). We consider w-calculus terms up to
structural congruence, and so typability is closed under = by definition. The system
enjoys the usual properties of equivariance, weakening, and contraction in I, as well
as name coverage (free names of a process are bound by the contexts or the right-hand-
side) and regularity (free variables of types are bound in the type variable context).

Correspondence with Second-Order Linear Logic. Our type system exhibits a tight
correspondence with a sequent calculus presentation of intuitionistic second-order lin-
ear logic. Informally, if we erase the processes and channel names from the typing

Behavioral Polymorphism and Parametricity in Session-Based Communication 7

(Tid) (T1L) (T1R)
QAP T

;e Ab [z 2] z2A 0 A 1P T 2,050zl
(T®L) (T®R)

;0 A y:Aje:BEP T QT AFPyA QDA FQ::x:B
;00,0 AQBFx(y).P T ;05A,A F (vy)z(y).(P| Q) »x:AQ B
(T—olL) (T—R)

QAP uyA 0N oBFQ:T ;' A,y:AF P ::x:B
20 A,A 2 A—BF (vy)z(y). (P Q) =T ;T AF x(y).P:: x:A—B
(Teut) (Teut')
Q;TAFPuxA QA c:AFQ =T ;1 FPyA ;T uwA;AFQ T
;A A F(ve)(P| Q) =T 2;0AF (vu)(lu(y).P | Q) =T
(T'L) (Tcopy) (T'R)
2, NuwA; A P{Wz} T Q;NuwA; Ay AP T ;- FQ - y:A
;A ' AP 2T Q; DN wA; AF (vy)u(y).P =T ;05 F lz(y).Q = x:lA
(TeL) (T&R)
QA AP =T QA xBFEQ::T QAP :x:A 1A Q ::x:B
;A 2:A® BF z.case(P,Q) = T ;' AF z.case(P,Q) :: :A & B
(T&Ly1) (T®Ry)
;I A x: AP =T ;' AF P x:A
QI A A& BFx.inl; P T ;1A 2.inl; P x: A B
(TVL) (TVR)
R2F Btype ;A,2: A{B/X}+P:T 2, X;I' AR P z:A
;A2 :VX.ARZ(B).P =T 2, AF 2(X).P o 2VX.A
(T3L) (T3R)
QX I A AP T Q2F Btype ;AR P:x:A{B/X}
;A 23X AR x(X).P =T 2, AFZ(B).P::2:3X.A

Fig. 2. The Type System. Rules (T&L,)-(T®R,), analogous to (T&L;)-(THR;), are omitted.

derivations we obtain precisely sequent proofs in intuitionistic second-order linear logic.
This correspondence (detailed in [5]) is made precise by defining a faithful proof term
assignment for the sequent calculus and a typed extraction function that maps these
proof terms to process typing derivations, as reported in [6] for the propositional case.
Notice that the correspondence goes beyond the mapping of proof inferences to typ-
ing derivations. We can show that process reductions can be mapped to proof conver-
sions arising from the standard proof-theoretic cut elimination procedure. This induces
a strong form of subject reduction on well-typed processes (see below). Furthermore,
we can classify all proof conversions arising in this manner as reductions, structural
congruences, or as observational equivalences on well-typed processes. See [6/20] for
details of the correspondence of proof conversions and their process interpretation.

Subject Reduction and Progress. The deep logical foundations allow us to establish
strong properties of process behavior through typing. We now discuss and state subject
reduction and global progress for our system. Subject reduction (Theorem [1) follows

8 Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

from a simulation between reductions in the typed mw-calculus and proof conversions
that arise naturally in proof theory. This ensures that our interpretation is not arbitrary,
but rather captures the actual dynamics of proofs. Subject reduction, together with linear
typing, ensures session fidelity; the proof follows closely that of [6/7]], extending it with
lemmas that characterize process/proof reductions at universal and existential types.

Theorem 1 (Subject Reduction/Type Preservation). If ;1A + P :: z:A and
P = Qthen ;1 AFQ :: z: A

As for global progress (Theorem [2)), also in this case the proof is an orthogonal
extension from that of [6l7], requiring a series of inversion lemmas and the following
notion of live process. For any P, define live(P) if and only if P = (vn)(7.Q | R), for
some process R, a sequence of names 7, and a non-replicated guarded process 7.Q).

Theorem 2 (Progress). If -;-;- b P :: x:1 and live(P) then 3Q s.t. P — Q.

3 The Cloud Application Server, Revisited

To illustrate the expressiveness and flexibility that we obtain via polymorphic ses-
sions, here we present concurrent specifications associated to the cloud-based appli-
cation server described in the Introduction. Below, for the sake of clarity, we abbreviate
bound outputs (vy)Z(y)as Z(y). Recall the type for the cloud-based application server:
CloudServer £ VX .!(api — X) —o !X. Then, following the logic interpretation just
introduced, a process which realizes type CloudServer on name z is the following:

CSy = 2(X).x(y) o (w).yv) v{la).(P, | [w < v])

where P, is a process implementing the server API along channel a. Process CS, ex-
pects a protocol description X (a session type) and a session y, which is a persistent
implementation of X that requires the API provided by the server. CS, will then cre-
ate a replicated service that can provide the behavior X after delivering to y the API
implementation that is represented by process P, .

What does an application to be published in the cloud server look like? Let us as-
sume a simple process, noted Conuv,,, representing a file conversion service which, by
using a suitable API, takes a file and generates its PDF version (e.g., performing OCR
on images and generating the PDF of the text): a:api - Conv,, :: w:file—o(pdf ® 1).

In order to publish the conversion service into our application server, developers
need to harmonize its requirements (as described by the left-hand side typing) with
those of the server infrastructure CS,. To this end, we define a “wrapper” process
which contains Conw,, and is compatible with CS_, (where conv 2 file—o(pdf ® 1)):

x:CloudServer = PubConv, :: z:!conv
PubConv, = Z(conv).Z(y).(ly(w).w(a).Conv,, | [¢ 2])

Process PubConwv,, first sends protocol/type conv to the cloud server, followed by a
session y that consists of a persistent service, that when given the API will produce a
session of type conv. After these communication steps, the cloud server session now

Behavioral Polymorphism and Parametricity in Session-Based Communication 9

provides the full behavior of conv along z, and so the client forwards = along the
endpoint channel z, thus providing !conv along z by making use of the functionality
provided by the server. By combining the above processes, we obtain:

- (ve)(CS, | PubConvy) :: z:lconv 2)

representing the publication of our file conversion service in the cloud-based infrastruc-
ture. Behavioral genericity is in the fact that publishing any other service would require
following exactly the same above procedure. Assume, for instance, a service Maps,,:

a:api - Maps,, :: n:addr — (AMaps & GMaps)

which when provided a value of type addr (representing an address), it offers a choice
between map services AMaps (vector-based maps) and GMaps (raster-based maps). Let
maps = addr —o (AMaps & GMaps). Clearly, the behavior described by types conv and
maps is very different. Still, their relationship with the server at x is exactly the same—
they are equally independent. Indeed, by proceeding exactly as we showed above for
process Conv,,, we can produce a wrapper process PubMaps, and then obtain:

-+ (vz)(CS, | PubMaps.,) :: z:!maps 3)

The parametric behavior of C'S,, can be thus witnessed by comparing (2) and (3) above.
In Section [6] we illustrate how to use parametricity to formally justify properties of
behavioral genericity/representation independence for processes such as those above.
The above example can be extended to illustrate the interplay of behavioral gener-
icity and concurrency. A more realistic cloud-based platform is one which is always
available on a certain name w. This can be represented in our framework by stating

o lu(x).CSy i w: ICloudServer

and by slightly modifying our assumptions on processes PubConv, and PubMaps ,, in
such a way that they become two clients of the persistent server on wu:

w:CloudServer; - - u({x). PubConuv, :: z:conv

(The client for PubMaps,, is similar.) Our typing system ensures that interactions be-
tween the server lu(x).CS, and clients such as the two above will be consistent, safe,
and finite. Moreover, these interactions exploit behavioral genericity without interfering
with each other, and respecting resource usage policies declared by typing.

Above we have considered a very simple interface type for the cloud-based server.
Our framework allows us to represent much richer interfaces. For instance, the type
CloudServerAds £ VX.!(api —o X) —o !(X & AdListings) captures a more sophisti-
cated server which provides its API but forces the resulting system to feature an adver-
tisement service. Type AdListings encodes a listing of advertisements that the applica-
tion server “injects” into the service—this injection is represented with a choice &, so
as to model the ability of a client to choose to watch an advertisement. It is not diffi-
cult to extend this mechanism with further functionalities, such as providing the server
developers/clients with an administrator service not exposed to the external clients.

10 Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

Having illustrated the expressiveness of polymorphic session-typed processes, it is
legitimate to investigate the correctness guarantees they enjoy. In the next section, we
establish strong normalization, a desirable liveness property for mobile code. Then, in
Section[5] we develop a theory of relational parametricity for session-typed processes.

4 Polymorphic Session-Typed Processes are Strongly Normalizing

In this section, we show that well-typed processes of our polymorphic language are
(compositionally) strongly normalizing (terminating). Hence, in addition to adhering
to the behavior prescribed by session types in a deadlock-free way (cf. Theorems [I]
and [2), our well-typed, polymorphic processes never engage into infinite computations
(Theorem [3)). This property is practically meaningful in the context of distributed com-
puting, as it may be used to certify that mobile polymorphic code will not attempt, e.g.,
a denial-of-service attack by exhausting the resources of a remote service.

Our proof builds on the well-known reducibility candidates technique [[14]], and gen-
eralizes the linear logical relations for session typed processes given in [20] to the im-
predicative polymorphic setting. Technically, the proof is in two stages: we first define
a logical predicate inductively on the linear type structure; then, we show that all well-
typed processes are in the predicate.

Below, we say that a process P ferminates (written P|}) if there is no infinite re-
duction sequence starting with P. The logical predicate uses the following extension to
structural congruence with the so-called sharpened replication axioms [23]).

Definition 5. We write =, for the least congruence relation on processes which results
from extending structural congruence = (Def.[2)) with the following axioms:

1. (vu)(tu(z).P | (vy)(Q | R)) =1 (vy)((vu)(u(2)-P | Q) | (vu)(u(z).P | R))

5 (u)(tu(y).P | (vo)(l(2).Q | R))

' = (vo)((o(2)-(vu)(tu(y)-P | Q) | (vu)(tu(y).P | R))
3. (vu)(u(y)-Q | P)= P ifudfa(P)

Intuitively, =, allows us to properly “split” processes: axioms (1) and (2) represent
the distribution of shared servers among processes, while (3) formalizes the garbage
collection of shared servers which can no longer be invoked by any process. It is worth
noticing that = expresses sound behavioral equivalences in our typed setting (see [6]]).

We now define a notion of reducibility candidate at a given type: this is a predicate
on well-typed processes which satisfies some crucial closure conditions. As in Girard’s
proof, the idea is that one of the particular candidates is the “true” logical predicate.
Below and henceforth, - - P :: z: A stands for a process P which is well-typed under
the empty typing environment.

Definition 6 (Reducibility Candidate). Given a type A and a name z, a reducibility
candidate at z: A, written R[z: A}, is a predicate on all processes P suchthat -+ P :: z:A
and satisfy the following:

(1) If P € R[z:A] then Pl. (2) If P € R[z:A] and P = P’ then P’ € R[z:A].
(3) If for all P; such that P = P, we have P; € R[z:A] then P € R[z:A].

Behavioral Polymorphism and Parametricity in Session-Based Communication 11

As in the functional case, the properties required for our reducibility candidates are
termination (1), closure under reduction (2), and closure under backward reduction (3).

The Logical Predicate. Intuitively, the logical predicate captures the terminating be-
havior of processes as induced by typing. This way, e.g., the meaning of a terminating
process of type z:VX. A is that after inputing an arbitrary type B, a terminating process
of type z:A{B/X} is obtained. As we consider impredicative polymorphism, the main
technical issue is that A{B/X} may be larger than VX.A, for any measure of size.

The logical predicate is defined inductively, and is parameterized by two mappings,
denoted w and 7. Given a context {2, we write w : {2 to denote that w is an assignment
of closed types to variables in 2. We write w[X — A] to denote the extension of w
with a new mapping of X to A. We use a similar notation for extensions of 7. We write
w(P) (resp. w(A)) to denote the application of the mapping w to free type-variables in
P (resp. in A). We write 1 : w to denote that 7 is an assignment of functions taking
names to reducibility candidates, to type variables in {2 (at the types in w).

It is instructive to compare the key differences between our development and the
notion of logical relation for functional languages with impredicative polymorphism,
such as System F. In that context, types are assigned to terms and thus one maintains
a mapping from type variables to reducibility candidates at the appropriate types. In
our setting, since types are assigned to channel names, we need the ability to refer to
reducibility candidates at a given type at channel names which are yet to be determined.
Therefore, when we quantify over all types and all reducibility candidates at that type,
intuitively, we need to “delay” the choice of the actual name along which the candidate
must offer the session type. A reducibility candidate at type A which is “delayed” in
this sense is denoted as R[—: A], where ‘—’ stands for a name to be instantiated later on.

We thus define a sequent-indexed family of process predicates: a set of processes
Ty A+ T satisfying some conditions is assigned to any sequent of the form
2;I'; A = T, provided both w:f2 and n:w. The predicate is defined inductively on
the structure of the sequents: the base case considers sequents with an empty left-hand
side typing (abbreviated 7, [T]), whereas the inductive case considers arbitrary typing
contexts and relies on principles for process composition (cf. rules (Tcut) and (Tcut')).

Definition 7 (Logical Predicate - Base Case). For any type A and name z, the logical
predicate T,” [2:A] is inductively defined by the set of all processes P such that - +
&(P) :: z:w(A) and satisfy the conditions in Figure 3]

Definition 8 (Logical Predicate - Inductive Case). For any sequent 2;'; A + T
with a non-empty left hand side environment, we define T,°[I'; A = T (with w : 2 and
1 : w) as the set of processes inductively defined as follows:

PEﬁ“[F;y:A, AFT]iff VR € ﬁw[y:A].(uy)(cD(R) | &(P)) € 7:7“[F; AFT]
PeTlwA, I ATLiff VR € T [y:Al.(vu) (fu(y) w(R) |@(P)) € T [A - T]
Definitions [/| and E] are the natural extension of the linear logical relations in [20]

to the case of impredicative polymorphic types. Notice how the interpretation of the
variable type includes the instantiation at name z of the reducibility candidate given

12 Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

P e T2[2:X] iff P € n(X)(2)
Pe T[] iff VP (P = P' AP /)= P =0

P e TP [z:A—B] iff VP'y.(P 22 P') = VQ € T2 [y:Al.(vy)(P' | Q) € Ty [2:B)]

PeT¢ A Bliff vP'y.(P "2 Py =
3P, P.(P' = P | P, AP € T, [y:A] A Py € T, [2:B))
P e T [z Al iff VP .(P = P') = 3P.(P' = 12(y).PL A P € T, [y:A])

P e T [=VX Al iff (VB, P',R[—:B]. (Btype AP 22 Py = P € TP [A])
P e Ty [z3X.A] iff (3B, R[—:B.(B type A P 22 P') = P/ e TS0 | [2:4))

Fig. 3. Logical predicate (base case). Definitions for 7,°[2:A @ B] and 7, [2:A & B] are as
expected; see [5] for details.

by n(X). The clause for the universal VX.A denotes that a terminating session of uni-
versal type must be able to input any type and then be terminating at the open type A,
where the meaning of the type variable can be any possible candidate of appropriate
type (which includes the actual logical predicate). The clause for the existential is dual.

Proving Strong Normalization. Using the above logical predicate, the proof of strong
normalization of well-typed processes follows the one presented in [20]. Roughly, the
idea is to define a notion of logical representatives of the dependencies specified in the
left-hand side typing. Such representatives simplify reasoning, as they allow to move
from predicates for sequents with non empty left-hand side typings to predicates with
an empty left-hand side typing, provided processes have been appropriately closed.

The theorem below ensures that 7,°[I"; A I T is indeed a reducibility candidate,
and thus it implies termination.

Theorem 3 (The Logical Predicate is a Reducibility Candidate). If {2 - A type,
w: $2, and 1 : w then T °[2:A] is a reducibility candidate at z:w(A).

With the technical machinery appropriately defined, we can show the Fundamental
Theorem, stating that all well-typed processes belong to the logical predicate.

Theorem 4 (Fundamental Theorem). If 2; ['; A+ P :: T then, for all w : {2 and
1 :w, we have that &(P) € T,°[I'; A= T7.

We state the main result of this section, which follows as a consequence of the
Fundamental Theorem above: all well-typed polymorphic processes terminate.

Theorem 5 (Strong Normalization). If 2; '; A - P::T then &(P)d}, for every w:S2.

5 Relational Parametricity for Session-Typed Processes

The cloud-based server given in Section [3|calls for the need for formally asserting that
a server with type u : !CloudServer must behave “the same” independently of the arbi-
trary types of its clients. In general, the characterization of any well-behaved notion of

Behavioral Polymorphism and Parametricity in Session-Based Communication 13

type genericity has been captured by some kind of parametricity property, in particular
relational parametricity, as introduced by Reynolds [24]. The principle of relational
parametricity allows us to formally support reasoning about non-trivial properties of
processes, such as observational equivalence under changes of representation, which
have important consequences on our setting, where types actually denote process be-
haviors, and the abstraction result implies observational equivalence of a composite
system under change of some internal (representation) protocol (not just data) types.
In this section we thus establish for the first time a relational parametricity result for
a session-typed process calculus, based on our underlying logically founded approach.
We first introduce a form of logical equivalence, noted =, which formalizes a re-
lational parametricity principle (Theorem [8)) along the lines of Reynolds’ abstraction
theorem [24] (see [16]]). Logical equivalence also allows us to characterize barbed con-
gruence, noted =, in a sound and complete way (Theorem [9). Notice that while ~,
corresponds to the natural extension of 7,7 [I'; A F T (cf. Definition [8)) to the binary
setting, = represents the form of contextual equivalence typically used in concurrency.

Barbed Congruence. We begin by introducing barbed congruence. It is defined as the
largest equivalence relation on typed processes that is (i) closed under internal actions;
(i) preserves barbs— arguably the most basic observable on the behavior of processes;
and is (iii) contextual, i.e., preserved by every admissible process context. We make
these three desiderata precise, defining first a suitable notion of type-respecting relations
in our setting. Below, we use S to range over sequents of the form §2; I'; A - T.

Definition 9 (Type-respecting relations). A (binary) type-respecting relation over pro-
cesses, written {R s }s, is defined as a family of relations over processes indexed by S.
We often write R to refer to the whole family. Also, 2;1'; A+ PR Q :: T stands for

(i) ;AP Tand 2;0AFQ =T and (ii) (P,Q) € R o.r,ArT-

We omit the definitions of reflexivity, transitivity, and symmetry for type-respecting

relations; we will say that a type-respecting relation that enjoys the three properties is

an equivalence. In what follows, we will often omit the adjective “type-respecting”.
We now define 7-closedness, barb preservation, and contextuality.

Definition 10 (7-closed). Relation R is T-closed if 2; I'; A+ PRQ :: T and P — P’
imply there exists a Q' such that Q = Q' and 2;T'; A P'RQ' :: T.

The following definition of observability predicates, or barbs, extends standard pre-
sentations with observables for labeled choice and selection, and type input and output:

Definition 11 (Barbs). Let O, = {Z,z,x.inl, z.inr, z.inl, x.inr} be the set of basic
observables under name x. Given a well-typed process P, we write: (i) barb(P,T), if
p WY pr iy barb(Pz), if P S P for some A, P (iii) barb(P,),

if P EASON P’, for some A, P’; (iv) barb(P,z), if P EAON P, for some y, P’;

(v) barb(P,), if P =+ P', for some P' and o € O, \ {z,T}. Given some o € O,
we write wbarb (P, o) if there exists a P' such that P => P’ and barb(P’, 0) holds.

14 Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

Definition 12 (Barb preserving relation). Relation ‘R is a barb preserving if, for every
name x, 2; I'; AF PRQ :: T and barb(P, o) imply wbarb(Q, o), for any o € O,.

In an untyped setting, a relation is said to be contextual if it is closed under any well-
formed process context C' (i.e., a process with a hole). In our case, contexts are typed,
and the set of well-formed process contexts (i.e., processes with a typed hole) can be
mechanically derived from the typing rules, by exhaustively considering all possibili-
ties for typed holes. This way, e.g., rules (Tcut) and (Tcut') are the basis for defining
parallel contexts. The operation of “filling in” the hole of a context with a process can
be handled by an additional typing rule available to contexts, which checks that the type
of the process matches that of the hole. For space reasons, we refrain from reporting the
complete formal definition of typed process contexts; see [5] for details. Based on these
intuitions, we define a contextual relation as follows:

Definition 13 (Contextuality). Relation R is contextual if ;A F PRQ == T
implies 2; I'; A"+ C[PIR C[Q)] :: T', for every A", T and typed context C.

Definition 14 (Barbed Congruence). Barbed congruence, noted ==, is the largest equiv-
alence on well-typed processes that is T-closed, barb preserving, and contextual.

Logical Equivalence. We now define our notion of logical equivalence for well-typed
processes: it arises as a natural extension of the logical predicate of Definition [§|to the
relational setting. We begin by defining the crucial notion of equivalence candidate: an
equivalence relation on well-typed processes satisfying certain basic closure conditions.

Definition 15 (Equivalence Candidate). Let A, B be types. An equivalence candidate
R at z:A and z:B, noted R :: z: A< B, is a binary relation on processes such that, for
every (P,Q) € R :: z2z A< Bboth-+ P :: zzAand - - Q :: z:B hold, together with
the following conditions:

LIf(PQ eR::zAB -FP 2P = zA and -+ Q =2 Q' :: 2:B then
(P',Q')eR:zAeB.

2. If (P,Q) € R :: z2:A< B then, for all Py such that Py = P, we have (P, Q) €
R :: z:A& B. Similarly for Q: If (P, Q) € R :: 2:A< B then, for all Qg such that
Qo = Q then (P,Qy) € R :: 2:A< B.

We often write (P,Q) € R :: z2ZA<BasPRQ :: A< B.

While item (1) says that equivalence candidates are closed with respect to 22, item (2)
can be shown to be redundant. As in our definition of logical predicate, we require
some auxiliary notation. We recall that w : {2 denotes a type substitution w that as-
signs a closed type to type variables in 2. Given two type substitutions w : {2 and
w’ : 2, we define an equivalence candidate assignment 1 between w and w’ as a map-
ping of a delayed (in the sense of the mapping 7 of Section 4)) equivalence candidate
N(X) :: —w(X) e W (X) to the type variables in (2. We write (X)(z) for the instan-
tiation of the (delayed) equivalence candidate with the name z. We write 7) : w< w' to
denote that 7 is a (delayed) equivalence candidate assignment between w and w’.

We define a sequent-indexed family of process relations, that is, a set of pairs of
processes (P, Q), written I'; A+ P =~ Q :: T[n : we W], satisfying some conditions,

Behavioral Polymorphism and Parametricity in Session-Based Communication 15

~L QX[wed] iff (PQ) € n(X)(2)
P~ Quzln:wed]iff VP,Q.(P=P AP /o NQ=Q NQ' /)=
(PP=0AQ =0)

Pray Q: mA—oBl: wew] iff VP y. (P2 Py = 30'.0 24 ¢ s.t.
VRi,Re. R~ Ry y:Aln: wed]
() (P | Ra) = (p)(Q' | Ra) = 2:Bln s w]

Pr Q:zA® Bl :wed] iff VP y. (P22 py o 3070 V2R @ st
VRi,Ro,n. y:AF Ry = Ra i niln: we W)
(vy)(P" | R) =~ (vy)(Q" | R2) = z:B[n : we W]

QA weW] it VP (P2 P = 30.Q 24 @' A
VRi,R2,n. y:AF Ri =1 Ry :: n:l[n: w<:>w/]
() (P | Ry) = (v9)(@' | Ra) = 51Al - w o]
Pry Q22X Al weW] iff VB1, Ba, PR = —:B1 & By. (P 22 Py =

30.Q 2 Q) P~ Q2 ARIX s R w[X = Bi] oW [X — Bl
Pay Q23X Aln: wew'] iff 3By, Ba, R = —:B1 < By, (P 22 Py =

3Q".Q 5y Q' P~ Q' 2 A[X = R]: w[X = Bi] &' [X = B

Fig. 4. Logical equivalence (base case). Definitions for P =~ Q :: 2:A & B[: w & w'] and
Py Qi 2:A® Bln: wew'] are as expected; see [3] for details.

is assigned to any sequent of the form 2; I'; A+ T, withw : 2,0 : Qandn: wew'.
As in the definition of the logical predicate, logical equivalence is defined inductively
on the structure of the sequents: the base case considers empty left-hand side typings,
whereas the inductive case which considers arbitrary typing contexts.

Definition 16 (Logical Equivalence - Base Case). Given a type A and mappings
w,w’,n, we define logical equivalence, noted P =~y Q :: z:Aln : w & W', as the
largest binary relation containing all pairs of processes (P, Q) such that (i) - F &(P) ::
z(A); (i) -+ &' (Q) = 2:0' (A); and (iii) satisfies the conditions in Figure[4)

Definition 17 (Logical Equivalence - Inductive Case). Let I, A be non empty typing
environments. Given the sequent (2; I'; A &= T, the binary relation on processes I'; A =
Prp QT wew] (withw,w' : 2andn : wesw') is inductively defined as:

MAYy: AP Q= Tlp:wew] iff VR1, Re. s.t. R =1 Ro i y:Aln : we W],
Iy AE (vy)(@0(P) | @(R)) = (vy)(@'(Q) | &' (R2)) = T[n : wew]

TNu: ;AP Q=T wed] iff VRi, Ra. s.t. Ry~ Ry i y:A[n : wew'],
I A (vy)(O(P) | 'u(y).w(R)) = (vy)(@'(Q) | u(y) &' (R2)) = Tn: wew]

This way, logical equivalence turns out to be a generalization of the logical predicate
Ty [I'; A = T (Definition [7) to the binary setting. The key difference lies in the defi-

16 Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

nition of candidate (here called equivalence candidate), which instead of guaranteeing
termination, enforces closure under barbed congruence.

Theorem [6] below is the binary analog of Theorem [(Fundamental Theorem). Its
proof is similar: we establish that logical equivalence is one of the equivalence candi-
dates, and then show that well-typed processes are logically equivalent to themselves.

Theorem 6 (Logical Equivalence is an Equivalence Candidate). The relation P ~
Q :: z2A[n : we W' is an equivalence candidate at z:w(A) and z:w' (A).

The final ingredient for our desired parametricity result is the following theorem:

Theorem 7 (Compositionality). Let B be any type. Also, let R :: —:(B) < u;’(B)
stand for logical equivalence (cf. Definition[I6).
Then, P~ Q :: 22 A{B/X}[n : we '] if and only if

Pry Qi zARX = R] : wX = &(B)|ew[X — ' (B)]

We now state the main result of the section; its proof depends on a backward closure
property, and on Theorems [6]and

Theorem 8 (Relational Parametricity). If (2; I'; A - P :: z: A then, for all
w,w' : Pandn: wew, we have I'; A - O(P) =y w'(P) = z:A[n : wew'].

Remarkably, by appealing to parametricity and contextuality of logical equivalence,
we can show that ~; and = coincide. This result establishes a definitive connection
between the usual barb-based notion of observational equivalence from concurrency
theory, and the logical equivalence induced by our logical relational semantics (see [Sl]).

Theorem 9 (Logical Equivalence and Barbed Congruence coincide). Relations =~
and = coincide for well-typed processes. More precisely:

1. IfT;AF Py Q : z:A[n - we W' holds for any w,w’ @ 2 and n : w< W', then
QN AFPX2Q o z:A

22If ;T AF PX2Q: ziAthen ;A E P o=y Q i z:Alnp : w < W' for some
w, W' Randn: wed

6 Using Parametricity to Reason About the Cloud Server

Here we illustrate a simple application of our parametricity result for reasoning about
concurrent polymorphic processes. We are interested in studying a restaurant finding
system; such an application is expected to rely on some maps application, to be up-
loaded to a cloud server. In our example, we would like to consider two different imple-
mentations of the system, each one relying on a different maps service. We assume that
the two implementations will comply with the expected specification for the restaurant
service, even if each one uses a different maps service (denoted by closed types AMaps
and GMaps). This assumption may be precisely expressed by the judgment

s:l(api—X)—o!X F C =1, Cy :: zirest[n, : w1 < ws])

Behavioral Polymorphism and Parametricity in Session-Based Communication 17

where 7,.(X) = R, w1(X) = AMaps, and wy(X) = GMaps, where R is an equiva-
lence candidate that relates AMaps and GMaps, i.e., R : AMaps < GMaps. The type
of the restaurant finding application is denoted rest; it does not involve type variable
X. Also, we assume X does not occur in the implementations C1, Co. Intuitively, the
above captures the fact that C'y and C5 are similar “up to” the relation R.

By exploiting the shape of type CloudServer, we can ensure that any process S
such that - = S :: s:CloudServer behaves uniformly, offering the same generic be-
havior to its clients. That is to say, once the server is instantiated with an uploaded
application, the behavior of the resulting system will depend only on the type provided
by the application. Recall the polymorphic type of our cloud server: CloudServer £
VX.!(api — X) —o !X. Based on the form of this type and combining inversion on
typing and strong normalization (Theorem [3)), there is a process SBody such that

5 2 SBody X+ F SBody :: s:(api—oX)—olX 5)

hold. By parametricity (Theorem|[8) on (5), we obtain
-+ &(SBody) =1, &' (SBody) :: s:!(api—X)—!X[n: wew']
for any w,w’, and 7). In particular, it holds for the 7,., w1 and wo defined above:
-t &1 (SBody) ~ &2(SBody) :: s:!(api—oX)—o! X [0, : wi < ws) (6)
By Definition[T7} the formal relationship between C4 and C5 given by () implies
F (ws)(@1(Ry) | C1) =1 (vs)(@2(R2) | C2) = zirestn, : wy < ws]

for any Ry, R such that Ry =~ R :: s:!(api—X)—o! X1, : w1 < ws]. In particular, it
holds for the two processes related in (6)) above. Combining these two facts, we have:

-F (vs)(@1(SBody) | Cy) =1 (vs)(02(SBody) | Ca) :: z:rest[n, : w1 < ws]
Since rest does not involve X, using Theorem [7] we actually have:
-k (ws)(@1(SBody) | C1) =1 (vs)(@2(SBody) | C2) :: zirest[d : D<=0] (7)

Now, given (7), and using backward closure of ~, under reductions (possible because
of Theorem [6]and Definition [I3]), we obtain:

- (vs)(S | s(AMaps).C1) =~ (vs)(S | 5(GMaps).Cs) :: z:rest[() : < ()
Then, using Theorem [0} we finally have
-F (vs)(S | s{AMaps).C1) = (vs)(S | 5{(GMaps).Cy) :: z:rest

This simple, yet illustrative example shows how one may use our parametricity
results to reason about the observable behavior of concurrent systems that interact under
a polymorphic behavioral type discpline.

18 Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

7 Related Work

To our knowledge, our work is the first to establish a relational parametricity principle
(in the sense of Reynolds [24]) in the context of a rich behavioral type theory for con-
current processes. Combined with parametricity, our type preservation, progress, and
strong normalization results therefore improve upon previous works on polymorphism
for session types ([[1211014128/9l15]], see below) by providing general, logic-based foun-
dations for the analysis of behavioral genericity in structured communications.

By extending the notion of subtyping in [[11]], Gay [12]] studied a form of bounded
polymorphism associated to branch/choice types: each branch is quantified by a type
variable with upper and lower bounds. Forms of unbounded polymorphism can be
enabled via special types Bot and Top. Dezani et al. [[10] studied bounded polymor-
phism for a session-typed, object-oriented language. Bono and Padovani [3/4]] rely on
unbounded polymorphism in a session types variant that is used to ensure correct (copy-
less) message-passing programs. Dardha et al. [9] develop an encoding of session types
into linear/variant types; it can be extended to handle session types with existential
parametric polymorphism (as in the 7-calculus [25127]], see below) and bounded poly-
morphism (as in [12]). Goto et al. [15] develop a model of session polymorphism, in
which session types are modeled as labeled transition systems which may incorporate
deductive principles; polymorphism relies upon suitable deductions over transitions.

Most related to our developments are works by Berger et al. [1I2] and Wadler [28]].
Berger et al. [112] proposed a polymorphically typed mw-calculus with universal and
existential quantification. Their system is not based on session types but results from
combining so-called action types with linearity and duality principles. In their setting,
enforcing resource usage disciplines entails a dedicated treatment for issues such as,
e.g., sequentiality/causality in communications and type composition; in contrast, in
the context of session-typed interactions, our logic-based approach offers general prin-
ciples for handling such issues (e.g., typed process composition via cut). As in our case,
they prove strong normalization of well-typed processes using reducibility candidates;
however, due to the differences on typing, the proofs in [112]] cannot be compared to our
developments. In particular, our application of the reducibility candidates technique
generalizes the linear logical relations we defined in [20]. While in [1]] a parametric-
ity result is stated, the journal paper [2]] develops a behavioral theory based on generic
transitions together with a fully abstract embedding of System F. Here again detailed
comparisons with our proofs are difficult, because of the different typing disciplines
considered in each case. Wadler [28]] proposed an interpretation of session types as
classical linear logic (along the lines of [[7]]). His system supports the kind of parametric
polymorphism we develop here. However, the focus of [28] is not on the theory of para-
metric polymorphism. In particular, it does not address proof techniques for behavioral
genericity nor establishes a relational parametricity principle, as we do here.

In a broader context—and loosely related to our work—Turner [27]] studied impred-
icative, existential polymorphism for a simply-typed 7-calculus (roughly, the discipline
in which types describe the objects names can carry). In processes, polymorphism is ex-
pressed as explicit type parameters in input/output prefixes. Sangiorgi and Pierce [22]
proposed a behavioral theory for Turner’s framework. Neither of these works address
strong normalization nor study relational parametricity. Building upon [22]], Jeffrey and

Behavioral Polymorphism and Parametricity in Session-Based Communication 19

Rathke [[19] show that weak bisimulation is fully abstract for observational equivalence
for an asynchronous polymorphic 7-calculus. Recently, Zhao et al. [30] studied linear-
ity and polymorphism for (variants of) System F. They prove relational parametricity
via logical relations for open terms, but no concurrent interpretation is considered.

8 Concluding Remarks

In this paper, we have presented a systematic study of behavioral genericity for con-
current processes. Our study is in the context of session types—a rich behavioral type
theory able to precisely describe complex communication protocols. Our work naturally
generalizes recent discoveries on the correspondence between linear logic propositions
and session types [6/7/20]. Previous works on genericity for concurrent processes ap-
peal to various forms of polymorphism. In contrast to most of such works, and by
developing a theory of impredicative, parametric polymorphism, we are able to for-
mally connect the concept of behavioral parametricity with the well-known principle
of relational parametricity, as introduced by Reynolds [24]]. Since in our framework
polymorphism accounts for the exchange of abstract protocols, relational parametricity
enables us to effectively analyze concurrent systems which are parametric on arbitrarily
complex communication disciplines. In addition to enjoying a relational parametricity
principle, well-typed processes in our system respect session types in a deadlock-free
way and are strongly normalizing. This unique combination of results confers very
strong correctness guarantees for communicating systems. As a running example, we
have illustrated how to specify and reason about a simple polymorphic cloud-based
application server. In future work we would like to explore generalizations of our rela-
tional parametricity result so as to address security concerns (along the lines of [29]).

Acknowledgments. This research was supported by the Fundagao para a Ciéncia e a
Tecnologia (Portuguese Foundation for Science and Technology) through the Carnegie
Mellon Portugal Program, under grants INTERFACES NGN-44 /2009 and SFRH / BD
/33763 /2009, and CITI; and by the Army Research Office under Award No. W91 1NF-
09-1-0273. We thank the anonymous reviewers for their useful comments.

References

1. Berger, M., Honda, K., Yoshida, N.: Genericity and the pi-calculus. In: Proc. of FoSSaCS.
LNCS, vol. 2620, pp. 103—119. Springer (2003)

2. Berger, M., Honda, K., Yoshida, N.: Genericity and the pi-calculus. Acta Inf. 42(2-3), 83—
141 (2005)

3. Bono, V., Padovani, L.: Polymorphic endpoint types for copyless message passing. In: Proc.
of ICE’11. EPTCS, vol. 59, pp. 52-67 (2011)

4. Bono, V., Padovani, L.: Typing copyless message passing. Logical Methods in Computer
Science 8(1) (2012)

5. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Relational parametricity for polymorphic
session types. Tech. rep., CMU-CS-12-108, Carnegie Mellon Univ. (Apr 2012)

6. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In: CON-
CUR’2010. LNCS, vol. 6269, pp. 222-236. Springer (2010)

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types (2012), under

Revision - http://www.cs.cmu.edu/~fp/papers/sessionsl2.pdf

. Caires, L., Pfenning, F., Toninho, B.: Towards concurrent type theory. In: TLDI’12. pp. 1-12.

ACM, New York, NY, USA (2012)

. Dardha, O., Giachino, E., Sangiorgi, D.: Session Types Revisited. In: PPDP. pp. 139-150.

ACM (2012)

Dezani-Ciancaglini, M., Giachino, E., Drossopoulou, S., Yoshida, N.: Bounded session types
for object oriented languages. In: FMCO’06. LNCS, vol. 4709, pp. 207-245. Springer (2007)
Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42, 191-225
(2005)

Gay, S.J.: Bounded polymorphism in session types. Math. Struc. in Comp. Sci. 18(5), 895—
930 (2008)

Girard, J.Y.: Une extension de I'interprétation de Godel a I’analyse, et son application a
I’élimination de coupures dans 1’analyse et la théorie des types. In: Proc. of the 2nd Scandi-
navian Logic Symposium. pp. 63-92. North-Holland Publishing Co. (1971)

Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types (Cambridge Tracts in Theoretical Com-
puter Science). Cambridge University Press (1989)

Goto, M., Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: An Extensible Approach to Ses-
sion Polymorphism (2012), http://fpl.cs.depaul .edu/projects/xpol/
Harper, R.: Practical Foundations for Programming Languages. Cambridge University Press
(2012)

Honda, K.: Types for dyadic interaction. In: CONCUR. LNCS, vol. 715, pp. 509-523.
Springer (1993)

Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for struc-
tured communication-based programming. In: ESOP’98. LNCS, vol. 1381, pp. 122-138.
Springer (1998)

Jeffrey, A., Rathke, J.: Full abstraction for polymorphic pi-calculus. Theor. Comput. Sci.
390(2-3), 171-196 (2008)

Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations for session-based
concurrency. In: Proc. of ESOP. LNCS, vol. 7211, pp. 539-558. Springer (2012)

Pfenning, F., Caires, L., Toninho, B.: Proof-carrying code in a session-typed process calculus.
In: Proc. of CPP "11. LNCS, vol. 7086, pp. 21-36. Springer (2011)

Pierce, B.C., Sangiorgi, D.: Behavioral equivalence in the polymorphic pi-calculus. J. ACM
47(3), 531-584 (2000)

Reynolds, J.C.: Towards a theory of type structure. In: Programming Symposium, Proceed-
ings Colloque sur la Programmation. pp. 408—423. Springer-Verlag, London, UK, UK (1974)
Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Mason, R.E.A. (ed.)
Information Processing 83. pp. 513-523. Elsevier Science Publishers B. V. (1983)
Sangiorgi, D., Walker, D.: The m-calculus: A Theory of Mobile Processes. Cambridge Uni-
versity Press, New York, NY, USA (2001)

Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic linear type
theory. In: Proc. of PPDP *11. pp. 161-172. ACM, New York, NY, USA (2011)

Turner, D.: The polymorphic pi-calculus: Theory and implementation. Tech. rep., ECS-
LFCS-96-345, Univ. of Edinburgh (1996)

Wadler, P.: Propositions as sessions. In: Thiemann, P., Findler, R.B. (eds.) ICFP. pp. 273-286.
ACM (2012)

Washburn, G., Weirich, S.: Generalizing parametricity using information-flow. In: LICS. pp.
62-71. IEEE Computer Society (2005)

Zhao, J., Zhang, Q., Zdancewic, S.: Relational parametricity for a polymorphic linear lambda
calculus. In: APLAS. LNCS, vol. 6461, pp. 344-359. Springer (2010)

http://www.cs.cmu.edu/~fp/papers/sessions12.pdf
http://fpl.cs.depaul.edu/projects/xpol/

	Behavioral Polymorphism and Parametricity in Session-Based Communication

