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Abstract. In prior research we have developed a Curry-Howard interpreta-

tion of linear sequent calculus as session-typed processes. In this paper we

uniformly integrate this computational interpretation in a functional language

via a linear contextual monad that isolates session-based concurrency. Monadic

values are open process expressions and are first class objects in the language,

thus providing a logical foundation for higher-order session typed processes.

We illustrate how the combined use of the monad and recursive types allows us

to cleanly write a rich variety of concurrent programs, including higher-order

programs that communicate processes. We show the standard metatheoretic

result of type preservation, as well as a global progress theorem, which to the

best of our knowledge, is new in the higher-order session typed setting.

1 Introduction

In prior work, we have developed a Curry-Howard interpretation of an intu-
itionistic linear sequent calculus, where linear propositions correspond to ses-
sion types [11], sequent proofs to process expressions, and cut reduction to syn-
chronous concurrent computation [4]. This π-calculus based system supports
input and output of channels along channels, choice and selection, replicated
input, generation of new channels, and message forwarding. Its logical origin
led to straightforward generalizations to support data input and output [19] as
well as polymorphism [20, 6], incorporated as type input and output. This leaves
open the question of how to fully and uniformly incorporate the system into a
complete functional calculus to support higher-order, message-passing concur-
rent computation. In this paper we make a proposal for such an integration and
explore its expressive power. We feel that the latter is particularly important,
since it is not a priori clear how significantly our session-based (typed) commu-
nication restricts the π-calculus, or how easy it is to fully combine functional and
concurrent computation while preserving the ability to reason about programs
in the two paradigms.

Besides all the constructs of the π-calculus mentioned above, our language in-
cludes recursive types and, most importantly, a contextual monad to encapsulate
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open concurrent computations, which can be passed in functional computation
but also communicated between processes in the style of higher-order processes,
providing a uniform symmetric integration of both higher-order functions and
processes. We allow the construction of recursive processes, which is a common
motif in applications. As the examples demonstrate, the various features combine
smoothly, allowing concise implementations of diverse examples such as streams
and stream transducers, higher-order programs with process passing, polymor-
phic stacks and process networks for binary counting, among others we omit due
to length constraints.

The rest of the paper is organized as follows: Section 2 sets up the necessary
background for the presentation of our language. Sections 3.1 through 3.9 present
the constructs of our language, intermixed with examples illustrating some of
the key features of the constructs. Section 4 details two extended examples:
a process implementation of stacks and a process network implementation of
a binary counter. Section 5 discusses the metatheory of our language and we
present some concluding remarks in Section 6.

2 Processes, Session Types and Functional Computation

In this section we introduce the preliminaries and notation necessary for the
introduction of our language. We begin with the notion of session-typed process.
We conceive of a process P as offering a specified service A along a channel c.
The session type A prescribes the communication pattern along channel a. We
have written this as P :: c : A. The process P may use services offered by other
processes, each with their specified session types, leading to a linear sequent :

c1:A1, . . . , cn:An ` P :: c:A

where each of the channels ci must be used linearly in P and in accordance with
its session type Ai. We will abbreviate linear channel contexts with ∆. Note that
the order in which the channels are listed is irrelevant, and they can be renamed
consistently in the whole sequence as long as all channel names remain distinct.
As we will see, to cover the full generality of our language, our typing judgment
must account not only for linear channels ∆, but also shared channels which
we maintain in a context Γ , and (functional) variables, which we maintain in a
context Ψ , thus making our process typing judgment: Ψ ;Γ ;∆ ` P :: c:A.

Our goal is to combine session typed processes and functional computation,
to enable potentially sophisticated reasoning about concurrent programs by ex-
ploiting our Curry-Howard foundations. One of the first issues that arises is how
to treat the channels c and ci of the process typing judgment: One solution is to
map channels to ordinary functional variables, forcing the entire language to be
linear, which is a significant departure from typical approaches. Moreover, even
if linear variables are supported, it is unclear how one should restrict their oc-
currences so they are properly localized with respect to the structure of running
processes.
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Our solution is to encapsulate processes in a contextual monad so that each
process is bundled with all channels (both linear and shared – the latter we cover
in Section 3.9) it uses and the one that it offers. This is a linear counterpart to
the contextual comonad presented in [15].

In our presentation in the following sections, we specify execution of concur-
rent programs in the form of a substructural operational semantics [17], for con-
venience of presentation. We rely on the following predicates: the linear propo-
sition execP denotes the state of a linear process expression P ; !execP denotes
the state of a persistent process (which must always be a replicating input); and
!evalM V expresses that the functional term M evaluates to value V without
using linear resources.

The rules that make up our substructural operational semantics, for those
unfamiliar with this style, can be seen as a form of multiset rewrite rules [7] where
the pattern to the left of the ( arrow describes a state which is consumed and
transformed into the one to the right. Existentials are used to generate names.
Names or predicates marked with ! are not linear and thus not consumed as part
of the rewrite (aptly modeling replication). The use of connectives from linear
logic in this style of presentation, namely( to denote the state transformation,
⊗ to combine linear propositions from the context, and ! to denote persistence
should not be confused with our session type constructors.

3 Combining Sessions and Functions

In this section we provide first an overview of the constructs of our language
and then some details on each. The types of the language are separated into a
functional part and a concurrent part, which are mutually dependent on each
other. In types, we refer to functional type variables t, process type variables X,
labels lj , and channel names a. We briefly note the meaning of the each session
type from the perspective of a provider.

τ, σ ::= τ → σ | . . . | ∀t. τ | µt. τ | t (ordinary functional types)
| {a:A← ai:Ai} process offering A along channel a,

using channels ai offering Ai

A,B,C ::= τ ⊃ A input value of type τ and continue as A
| τ ∧A output value of type τ and continue as A
| A( B input channel of type A and continue as B
| A⊗B output fresh channel of type A and continue as B
| 1 terminate

| N{lj : Aj} offer choice between lj and continue as Aj

| ⊕{lj : Aj} provide one of the lj and continue as Aj

| !A provide replicable service A
| µX.A | X recursive process type

a ::= c | !u linear and shared channels
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The functional types consist of functions types, polymorphic and recursive types
and some additional standard constructs such as base types, products and sums
that we have omitted for brevity. The novelty here is the contextual monadic
type {a:A ← ai:Ai}, denoting the type of a process expression offering session
A along channel a, using the channels ai at types Ai. Channels a can either be
linear (denoted by c or d) or shared (denoted by !u or !v).

At the level of session types we have value input τ ⊃ A and value output
τ ∧ A, referring back to the functional layer. We also have recursive process
types, absent from our prior work, which allows us to write some interesting
concurrent programs. Next we summarize the terms M,N and process expres-
sions P,Q of the language. Many of the process expressions have a continuation,
which is separated from the first action by a semicolon (‘;’). To explicate the
binding structure we have indicated the scope of variables that are bound using
subscripts. An overlined expression abbreviates an indexed sequence.

M,N ::= λx:τ.Mx |M N | fixx.Mx | . . . (usual functional constructs)
| a← {Pa,ai

} ← a1, . . . , an process providing a, using a1, . . . , an

P,Q ::= a←M ← a1, . . . , an;Pa compose process computed by M
in parallel with Pa, communicating
along fresh channel a

| x← input c;Qx input a value x along channel c
| _← output c M ;P output value of M along channel c

| d← input c;Qd input channel d along channel c
| _← output c (d← Pd);Q output a fresh channel d along c

| close c close channel c and terminate
| _← wait c;P wait for closure of c

| output c !(d← Pd) output a replicable d along c and terminate
| !u← input c;Q!u input shared channel u along c

| case c of lj ⇒ Pj branch on selection of lj along c
| _← c.lj ;P select label lj along c

| c← copy !u;Pc spawn a copy of !u along c

| fwd c1 c2 forward between c1 and c2

The functional part of the language contains ordinary λ-abstraction, application,
recursion, and the usual constructors for sum, product, and recursive types,
omitted here for brevity. The main construct of interest is the internalization
of process expressions through the contextual monadic construct a ← {P} ←
a1, . . . an, denoting a process P using channels ai to provide along a.

Among the process expressions, the analogue of the monadic bind construct
is a←M ← a1, . . . , an;Pa. It denotes the composition of the monadic object M
(using channels ai), spawning a new process that provides along a fresh channel
for a, that will run in parallel with Pa. Typing enforces that if a is shared, all
channels ai must also be shared (otherwise we could violate linearity).
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Using linear and persistent composition of monadic objects, we subsume di-
rect process composition and provide a more uniform way of integrating compo-
sition of processes and functional computation. Monadic composition ultimately
reduces to ordinary process composition during the computation.

Since we only provide a fixpoint operator at the functional level, writing
recursive processes can only be done by writing a recursive function that returns
an object of monadic type. We will see this pattern in our examples.

We write Ψ = (x1:τ1, . . . , xn:τn) for the context declaring ordinary (func-
tional) variables, ∆ = (c1:Ai, . . . , cn:An) and Γ = (!u1:B1, . . . , !un:Bn) for linear
and shared channels, respectively. The order of declarations in all three forms of
contexts is irrelevant, but all variables or channel names must be distinct.

Ψ M : τ term M has type τ
Ψ ;Γ ;∆ ` P :: c:A process P offers A along c
∆ = lin(ai:Ai) ∆ consists of the linear channels ci in ai:Ai

Γ = shd(ai:Ai) Γ consists of the shared channels !ui in ai:Ai

3.1 The Contextual Monad

We first detail our contextual monad, for now restricted to offering a service of
type A along a linear channel c. It is embedded in the functional language with
type {c:A← ai:Ai} and value constructor c← {Pc,ai} ← a1, . . . , an.

A monadic value denotes a runnable process offering along channel c and
using channels a1, . . . , an, serving both as a way of referring to processes in the
functional layer and as a way of communicating processes in the process layer.
The typing rule for the monad is:

∆ = lin(ai:Ai) Γ = shd(ai:Ai) Ψ ;Γ ;∆ ` P :: c:A

Ψ  c← {Pc,ai
} ← ai:Ai : {c : A← ai:Ai}

{ }I

The monadic bind operation implements process composition. In the simplest
case, c←M ;Qc composes the process underlying the monadic value M (which
offers along c) with Qc (which uses c and offers d). More generally, composition
can refer to monadic values that use multiple channels: c←M ← a1, . . . , an;Qc.
When writing code we often omit the semicolon, instead writing the continuation
starting on the next line. The typing rule for the monadic bind is:

∆ = lin(ai:Ai) Γ ⊇ shd(ai:Ai) Ψ  M : {c:A← ai:Ai} Ψ ;Γ ;∆′, c:A ` Qc :: d:D

Ψ ;Γ ;∆,∆′ ` c←M ← ai;Qc :: d:D
{ }E

The shared channels need not all be used, because shared channels are not linear.
On the other hand, linear names ci must exactly match all names in ∆, enforcing
linearity. The operational semantics for executing a monadic bind are:

exec (c←M ← ai ; Qc)⊗ !evalM (c← {Pc,ai
} ← ai)

( {∃c′. exec (Pc′,ai
)⊗ exec (Qc′)}
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Executing a bind evaluates M to a value of the appropriate form, which must
contain a process expression P . We then create a fresh channel c′ and execute
of Pc′,ai itself, in parallel with Qc′ . In the value of M , the channels c and ai are
all bound names, so we rename them implicitly to match the interface of M in
the monadic composition.

3.2 Value Communication (∧ and ⊃)

Communicating a value of the functional language (as opposed to communicating
a channel, which is slightly different, see Section 3.5) is expressed at the type level
as τ ∧A and τ ⊃ A, corresponding to offering to send and receive values of type
τ , respectively. Note that τ is not a session type, although we can communicate
session-typed terms by using a monadic type. The language construct for such
an output is _← output c M ;P with the typing rules:

Ψ M : τ Ψ ;Γ ;∆ ` P :: c : A

Ψ ;Γ ;∆ ` _← output c M ; P :: c : τ ∧A ∧R

Ψ M : τ Ψ ; ∆, c:A ` P :: d : D

Ψ ;Γ ;∆, c:τ ⊃ A ` _← output c M ; P :: d : D
⊃L

Theoretically, these are just trivial reformulations of the usual rules of the
session-based process calculus, for example, as in [5]. We have therefore labeled
them with their names from the linear sequent calculus.

When a process in the context provides a value output along a channel c, we
can input it along c and bind a value variable x, written as x ← input c ; Q.
The same construct applies when we wish to define a session that offers to input
a value. The typing rules are:

Ψ, x:τ ;Γ ;∆, c:A ` Qx :: d : D

Ψ ;Γ ;∆, c:τ ∧A ` x← input c ; Qx :: d : D
∧L

Ψ, x:τ ; Γ ;∆ ` Qx :: c : A

Ψ ; Γ ;∆ ` x← input c ; Qx :: c : τ ⊃ A ⊃R

At this point we have two typing rules each for input and output. This is
because input c either provides a service along c : τ ⊃ A or uses a service offered
along c : τ ∧ A, and dually for output. A type-checker can always tell whether
a process provides or uses a channel, so there is no ambiguity. The rule that
governs the semantics for these constructs is:

exec (_← output c M ; P )⊗ exec (x← input c ; Qx)⊗ !evalM V
( {exec (P )⊗ exec (QV )}

In accord with the call-by-value semantics of the functional language, the term
that is to be output must be reduced to a value V , after which an input and an
output can synchronize, both continuations proceed and the bound variable x is
instantiated with the appropriate value.
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3.3 Forwarding and Termination

In the underlying proof theory of the linear sequent calculus, we can satisfy an
offer c:A by using a channel d:A of identical type through the identity rule:

Ψ ;Γ ; d:A ` fwd c d :: c:A
id

In the monadic formulation it is natural to write d (which is consumed) on the
left, and c (which is provided) on the right. Operationally, the construct just
forwards inputs or outputs along c to d and vice versa. Note that there is no
process continuation here, since the offer of A along c has been satisfied in full
by d:A. It therefore only appears as the last line in a monadic expression. The
semantics of forwarding are:

exec (fwd c d)( {c = d}

The rule applies a global substitution of d for c in the current context represent-
ing the state of all processes. In a spatially distributed situation, this cannot be
directly implemented. One strategy is to send d along c, tagged as a forwarded
channel. In essence, the process offering along c tells its client that it should now
interact with the process offering d and then terminates. For this to work, the
client must be able to discriminate such a message. Fortunately, since channels
are session-typed and have only two endpoints, this does not require a broadcast
or a complex protocol.

The process type 1, the multiplicative unit of linear logic, maps to termina-
tion. The corresponding process constructor is close c with typing rule:

Ψ ;Γ ; · ` close c :: c : 1
1R

According to the rules of linear logic, the linear channel context must be empty.
Thus, communication along all channels that a process uses must be properly
terminated before the process itself terminates. Conversely, if we are using a
channel of type 1 we can wait for its underlying process to terminate with the
wait construct: _← wait c ; P .

Ψ ;Γ ;∆ ` P :: d : D

Ψ ;Γ ;∆, c:1 ` _← wait c ; P :: d : D
1L

The substructural operational semantics rule for these constructs is:

exec (close c)⊗ exec (_← wait c ; P )( {exec (P )}

Termination is straightforward. When we wait upon a channel that is being
closed (as the name implies, wait is blocking – and so is close), the two oper-
ations are consumed and the continuation is executed.



8 Bernardo Toninho, Luis Caires, and Frank Pfenning

3.4 Example: Streams

We want to produce an infinite stream of integers, starting at a given number
n and counting up. This requires a coinductive type, defined as a recursive type
(we distinguish between functional and session type definitions with type and
stype, respectively).

stype intStream = int /\ intStream

In order to produce such a stream, we write a recursive function producing a
process expression:

nats : int -> {c:intStream}

c <- nats x =

{ _ <- output c x

c’ <- nats (x+1)

fwd c c’ }

This an example of a function definition. We take some liberties with the syn-
tax of these definitions for readability. In particular, we list interface channels
on the left-hand side of the definition. In this formulation, every recursive call
starts a new process with a new channel c′. Both for conciseness of notation
and efficiency we provide a short-hand: if a tail-call of the recursive function
provides a new channel which is then forwarded to the original offering channel,
we can reuse the name directly, making the last line of the function above simply
c <- nats (x+1).

It looks as if, for example, calling nats 0 might get into an infinite loop.
However, communication in our language is synchronous, so the output will
block until a matching consumer inputs the numbers.

We can now construct a stream transducer. As an example, we write a filter
that takes a stream of integers and produces a stream of integers, retaining only
those satisfying a given predicate q : int→ bool:

filter : (int -> bool) -> { d:intStream <- c:intStream }

d <- filter q <- c =

{ x <- input c

case q x

of true => _ <- output d x

d <- filter q <- c

| false => d <- filter q <- c }

The filter function is recursive, but not a valid coinductive definition unless
we can show that filter will be true for infinitely many elements of the stream.

3.5 Linear Channel Communication (⊗ and ()

An essential aspect of the π-calculus is the ability to pass channels among pro-
cesses. This operation belongs to the process layer, since the functional layer can
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not track the proper linear use of such channels. In a session-typed system we
enable processes to send and receive fresh communication channels, along which
some particular session will be carried out. The types that capture this behavior
are A ⊗ B, denoting a channel which offers to output a fresh channel of type
A and continue as B; and A ( B, which is the type for a channel that offers
to input a fresh channel of type A in order to provide a continuation of type
B (we will use * for ⊗ when writing programs). The programming construct
that achieves this is: _ ← output c (d ← P ) ; Q which outputs a fresh channel
along c and spawns process P which offers some behavior along the fresh channel
(bound in P as d). All available channels will be used in exactly one of the two
processes P and Q. The typing rules are:

Ψ ;Γ ;∆ ` Pd :: d : A Ψ ;Γ ;∆′ ` Q :: c : B

Ψ ;Γ ;∆,∆′ ` _← output c (d← Pd) ; Q :: c : A⊗B ⊗R

Ψ ;Γ ;∆ ` Pd :: d : A Ψ ;Γ ;∆′, c:B ` Q :: e : E

Ψ ;Γ ;∆,∆′, c:A( B ` _← output c (d← Pd) ; Q :: e : E
(L

Two rules apply for this form of output: offering an output and interacting with
the environment that contains a session of ( type. Note how in both rules the
left premise ensures that process P indeed provides A along d, whereas the right
premise types the continuation, where c is now offered (resp. used) as B.

Correspondingly, the construct to input fresh channels is d← input c ; Rd.

Ψ ;Γ ;∆, d:A, c:B ` Rd :: e : E

Ψ ;Γ ;∆, c:A⊗B ` d← input c ; Rd :: e : E
⊗L

Ψ ;Γ ;∆, d:A ` Rd :: c : B

Ψ ;Γ ;∆ ` d← input c ; Rd :: c : A( B
(R

The semantics for these constructions is defined as:

exec (_← output c (d← Pd) ; Q)⊗ exec (d← input c ; Rd)
( {∃d′. exec (Pd′)⊗ exec (Q)⊗ exec (Rd′)}

When an input and an output along the same channel meet, a fresh channel
d′ is generated and passed to the continuation of the input and the process Q
which is spawned and now offers along that channel, resulting in three parallel
processes: the continuation of the input Rd′ , the offering process Pd′ and the
continuation of the output Q (where d′ cannot occur by construction).

3.6 Choice and Branching (N and ⊕)

A common idiom when writing concurrent programs is to offer alternative be-
havior, where a client selects which behavior the server executes. In our system
this is embodied by the labelled choice type N{l1:A1, . . . , lk:Ak}, where the li
are labels allowing other processes to select behaviors. Dually, it is also common
for clients to be able to branch on alternative behavior, decided by the server.
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From the server perspective, this is usually referred to as internal choice, in op-
position to external choice which corresponds to choices made by the client, and
is represented by the type ⊕{l1:A1, . . . , lk:Ak}.

To offer a choice to a client along a channel c we use a case construct:
case c of l1 ⇒ P1, . . . ,⇒ lk ⇒ Pk Such a construct waits for a selection of a
label lj on channel c, after which it will continue as the process Pj . Similarly, a
client that is interacting with a server that offers an internal choice must branch
on the possible outcomes of the server choice, which is also represented by the
case construct. The typing rules are:

Ψ ;Γ ;∆ ` P1 :: c : A1 . . . Ψ ;Γ ;∆ ` Pk :: c : Ak

Ψ ;Γ ;∆ ` case c of lj ⇒ Pj :: c : N{lj : Aj}
NR

Ψ ;Γ ;∆, c:A1 ` P1 :: d : D . . . Ψ ;Γ ;∆, c:Ak ` Pk :: d : D

Ψ ;Γ ;∆, c:⊕ {lj : Aj} ` case c of lj ⇒ Pj :: d : D
⊕L

In linear logic terminology, the types N and ⊕ are additive. This means
that the linear channels available to the processes in the premises are the same.
Note how, in the first rule, the channel c to the right of the turnstyle arrow is
the same in all the premises, denoting that after the selection takes place, the
selected behavior will be carried out along the same channel. In the second rule,
each branch is typed in a context where the channel c has committed to a choice.

To perform a selection of a label lj on a channel, or to make a particular
internal choice lj along c, we use the process construct _ ← c.lj ; P . After
performing such a selection, c will offer the behavior assigned to li. The typing
rules for this construct are:

Ψ ;Γ ;∆, c:Aj ` P :: d : D

Ψ ;Γ ;∆, c: N {lj : Aj} ` _← c.lj ; P :: d : D
NL

Ψ ;Γ ;∆ ` P :: c : Aj

Ψ ;Γ ;∆ ` _← c.lj ; P :: c : ⊕{lj : Aj}
⊕R

Finally, the operational semantics rule is:

exec (_← c.lj ; P )⊗ exec (case c of lj ⇒ Qj)( {exec (P )⊗ exec (Qj)}

Essentially, choices and selection block until both can be found along the same
channel, after which the synchronization takes place and the continuation of the
selection P and the corresponding selected process Qi are executed concurrently.

3.7 Example: An App Store

Our contextual monad allows us to write functions that produce processes, but
it also enables us to write process expressions that, through communication
and composition of monadic values, communicate and execute actual processes.
This contrasts with previous work where only purely functional values could be
communicated in the functional layer [19] (also in the language of [20], while there
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is no distinction between functional and process expressions, it is not completely
clear how one can in effect communicate suspended processes).

To clarify this, consider an App Store service that sells applications to its
customers. These applications are not necessarily functional, in that they may
communicate with the outside world. We can model such a service using monadic
types as follows, using Choice {...} as our concrete syntax for N{. . .}:

stype AppStore = Choice {weather: {c:Weather <- d:API, e:GPS } /\ 1

travel: {c:Travel <- d:API } /\ 1

game: {c:Game <- d:API } /\ 1}

The type above describes a simplified App Store service, which offers three differ-
ent applications to its customers (for simplicity, assume they are free): a weather
forecast application, a travel information application, and a game. Upon selec-
tion from the client, the store will send to it the corresponding application.
All the applications depend on a proprietary API that is not present locally in
clients and is accessed remotely. Furthermore, the weather forecast application
also makes use of a GPS connection to locate the user. These restrictions and
dependencies are made precise by the contextual regions of the monadic types.
The code for a client that downloads the weather application and runs it is given
below:

ActivateGPS : unit -> {g:GPS}

WeatherClient : unit -> {c:Weather <- a:AppStore,d:API}

c <- WeatherClient() <- a:AppStore, d:API =

{ _ <- a.weather

w <- input a

_ <- wait a

g <- ActivateGPS()

c <- w <- d, g }

The client requires an existing connection with the AppStore service and the
connection with the API, which we assume is established by some other means.
The client then performs the appropriate selection and download from the store.
To run the application, it first makes use of a local function that activates its GPS
module, supplying a channel handle g which is then used to fulfill the required
dependencies of the weather application. This simple example shows how cleanly
we can integrate communication and execution of open, process expressions into
our functional language. It is straightforward to extend this example to more
complex communication interfaces.

3.8 Example: A List Process

We exemplify the usage of branching by defining a type for a process imple-
mentation of a list. The process can either behave as the empty list (i.e. offer
no behavior) or as a list with a head and a tail, modelled by the output of the
head element of the list, followed by the output of a fresh channel consisting
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of the handle to the tail list process. The type employs data polymorphism in
the elements maintained in the list. We write Or {...} as concrete syntax for
⊕{. . . } and t => s as concrete syntax for τ ⊃ A.

stype List t = Or {nil: 1, cons: t => (List t * 1)}

We can now define two functions, Nil and Cons: the first produces a process
that corresponds to the empty list and the second, given a value v of type t will
produce a process that expects to interact with a channel l denoting a list of
t’s, such that it will implement, along channel c, a new list with v as its head.

Nil : unit -> {c:List t} Cons : t -> {c:List t <- l:List t}

c <- Nil () = c <- Cons v <- l =

{ _ <- c.nil { _ <- c.cons

close c _ <- output c v

} _ <- output c (l’ <- fwd l l’)

close c }

Note that the Cons function, after sending the cons label along channel c and
outputting v, it will output a fresh channel l’ that is meant to represent the
tail of the list, which is actually present along channel l. Thus, the function will
also spawn a process that will forward between l and l’.

3.9 Sharing and Replication (!)

All the process type constructors we have described thus far have been purely
linear, in the sense that they represent behavior that must take place exactly
once. Shared channels !u allow behavior to be replicated.

Shared channels appear in our language in two roles: we can bind a monadic
expression to a shared channel, provided the monadic expression does not depend
on linear channels; and we can use a channel of type !A, which we make precise
shortly. A monadic expression that does not depend on any linear channels can
be bound to a persistent channel !u ← M ← !u1, . . . , !un ; P . where M is an
expression of monadic type, conforming to the linearity restriction mentioned
above. Type-theoretically, this is reminiscent of the cut! principle:

Γ ⊆ !ui:Bi Ψ M : {!u:A← !ui:Bi} Ψ ; Γ, u:A;∆ ` Q!u :: c : C

Ψ ;Γ ;∆ ` !u←M ← !ui ; Q!u :: c : C
{ }E!

The idea is that the monadic process underlying M will be replicated as many
times as uses of u take place. The semantics for this form of bind are:

exec (!u←M ← !ui ; Q!u)⊗ !evalM (c← {Pc,!ui
} ← !ui)

( {∃u. !exec (c← input !u ;Pc,!ui
)⊗ exec (Q!u)}

A persistent bind forces the evaluation of the monadic object and then spawns
a replicating process that will input on the generated (shared) channel u a fresh
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channel c. Each such channel c well be used for communication between replicas
of P and its clients. This process is spawned in parallel with the continuation
Q!u which can trigger replications of P as needed.

Using a shared channel is accomplished by c ← copy !u ; P . The copy

construct triggers the creation of a new process that implements the behavior
ascribed to !u along a fresh linear channel that is bound to c. The typing rule
for copy explicates this concept:

Ψ ;Γ, u:A;∆, c:A ` Qc :: d : D

Ψ ;Γ, u:A;∆ ` c← copy !u ; Qc :: d : D
copy

And the semantics are:

!exec (d← input !u ; Pd)⊗ exec (c← copy !u ; Qc)( {∃c′. exec(Pc′)⊗ exec(Qc′)}

Note that the process performing an input along !u persists, since the proposition
!exec is persistent in the metalanguage of SSOS.

We internalize sharing at the process type level as !A, the type of a linear
channel that can be promoted to a shared channel of type A. The constructs
below may appear somewhat complex, but arise entirely from a Curry-Howard
interpretation of intuitionistic linear logic. We provide a channel c:!A of such a
type with the construct output c !(d← Pd). Note that there is no continuation,
and the subterm is preceded by a ‘!’. To use a channel of type !A, we input the
fresh shared channel !u← input c ; Qu.

The idea is that we will output along c a fresh channel !u′ which will be of
a shared nature. It is along !u′ that subsequent interactions will take place, and
thereafter all communication along c has terminated. The process expression
Pd will then implement some behavior that will be replicated whenever (and
only if) the fresh shared channel u′ that was output is used. The typing rules,
corresponding to the !R and !L from dual intuitionistic linear logic:

Ψ ;Γ ; · ` Pd :: d : A

Ψ ;Γ ; · ` output c !(d← Pd) :: c : !A
!R

Γ, u:A;∆ ` Qu :: d : D

Γ ;∆, c:!A ` !u← input c ; Qu :: d : D
!L

Note that Pd may not depend on any linear channels, so that it can be replicated
as needed. The semantics for these forms of input and output are:

exec (output c !(d← Pd))⊗ exec (!u← input c ; Q!u)
( {∃!u′. !exec (d← input !u′ ; Pd)⊗ exec (Q!u′)}

4 Extended Examples

In this section we cover two slightly larger examples that showcase some of the
expressiveness of our language. We will first show how to define two different
implementations of stacks using monadic processes and how our Curry-Howard
basis allows for simple and elegant programs. Secondly, we will describe the
implementation of a binary counter as a network of communicating processes.
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Stacks We begin by defining the type for a stack session type:

stype Stack t = Choice {push: t => Stack t

pop: Or {none: unit /\ Stack t

some:t /\ Stack t}

dealloc: 1}

The Stack recursive type denotes a channel along which a process offers the
choice between three operations: push, which will then expect the input of an
element that will be the new top of the stack; pop, which outputs either the top
element or unit (if the stack is empty); and dealloc, which fully deallocates the
stack and thus has type 1.

We present two distinct implementations of type Stack: stack1 makes use of
functional lists to maintain the stack; the second implementation stack2, more
interestingly, uses the list processes from Section 3.8 to implement the stack as
a network of communicating processes.

stack1 : list t -> {c:Stack t}

c <- stack1 nil = | c <- stack1 (v::l) =

{ case c of { case c of

push => v <- input c push => v’ <- input c

c <- stack1 (v::nil) c <- stack1 (v’::v::l)

pop => _ <- c.none pop => _ <- c.some

_ <- output c () _ <- output c v

c <- stack1 nil c <- stack1 l

dealloc => close c } dealloc => close c }

The code above consists of a function, taking a list and producing a monadic
object indexed by the given list. We define the function by branching on the
structure of the list, as usual. We can, for instance, create an empty stack by
calling stack1 with the empty list.

As mentioned above, our second implementation makes use of the list pro-
cesses of Section 3.8. We begin by defining a function deallocList, whose pur-
pose is to fully terminate a process network implementing a list. This means
recursively consuming the list session and terminating it:

deallocList : unit -> {c:1 <- l:List t}

c <- deallocList () <- l =

{ case l of

nil => _ <- wait l

close c

cons => v <- input l

l’ <- input l

_ <- wait l

c <- deallocList () <- l’ }

We define our second stack implementation by making use of the Cons, Nil and
deallocList functions. The function stack2 below produces a monadic stack
process with an underlying process network implementing the list itself:
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stack2 : unit -> {c:Stack t <- l:List t}

c <- stack2 () <- l =

{ case c of

push => v <- input c

l’ <- Cons v <- l

c <- stack2 <- l’

pop => case l of

nil => _ <- wait l

_ <- c.none

_ <- out c ()

l’ <- Nil ()

c <- stack2 () <- l’

cons => v <- input l

l’ <- input l

_ <- wait l

_ <- c.some

_ <- out c v

c <- stack2 () <- l’

dealloc => c <- deallocList () <- l }

The monadic process specified above begins by offering the three stack oper-
ations: push, pop and dealloc. The first inputs along the stack channel the
element that is to be pushed onto the stack and calls on the Cons function to
produce a monadic process that appends to the list session l the new element,
binding the resulting list process to l′ and making a recursive call. The pop case
needs to branch on whether or not the list session l encodes the empty list. If
such is the case (nil), it waits for the termination of l, signals that the stack
is empty and calls upon the Nil function to reconstruct an empty list for the
recursive call; if not (cons), it inputs the element from the list session and the
continuation list l′. It then outputs the received element and proceeds recursively.
Finally, deallocList calls out to the list deallocation function.

Bit Counter Network As above, we begin with the interface type:

stype Counter = Choice {inc: Counter

val: nat /\ Counter

halt: 1}

The Counter session type provides three operations: an inc operation, which
increments its internal state; a val operation, which just outputs the counter’s
current value and a halt operation which terminates the counter.

One way to implement such a counter is through a network of communicating
processes, each storing a single bit of the bit string that encodes the value of the
counter. We do this by defining two mutually recursive functions epsilon and
bit. The former encodes the empty bit string, abiding to the counter interface.
Notably, in the inc branch, a new bit process is spawned with value 1. To do this,
we make a recursive call to the epsilon function, bound to channel d, and then
simply call the bit function with argument 1, also providing it with the channel
d. The bit function encodes an actual bit element of the bit string. It takes a
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number as an argument which is the 1 or 0 value of the bit and constructs a
process expression that provides the counter interface along channel c by having
access to the process encoding the previous bit in the string along channel d.

bit : nat -> {c:Counter <- d:Counter} epsilon : unit -> {c:Counter}

c <- bit b <- d = c <- epsilon () =

{ case c of { case c of

inc => case b of inc => d <- epsilon ()

0 => c <- bit 1 <- d c <- bit 1 <- d

1 => _ <- d.inc

c <- bit 0 <- d

val => _ <- d.val val => _ <- output c 0

n <- input d c <- epsilon ()

_ <- output c (2*n+b)

c <- bit b <- d

halt => _ <- d.halt halt => close c }

_ <- wait d

close c }

A bit b outputs the counter value by polling the previous bit for its counter
value n and then outputting 2n+ b. This invariant ensures an adequate binary
encoding of the counter. Termination triggers the cascade termination of all bits
by sending a termination message to the previous bit, waiting on the channel
and then terminating. The increment case simply recurses with value 1 if the bit
is 0; otherwise it sends an increment message to the previous bit to encode the
carry and recurses with value 0.

5 Metatheory

For the functional part of the language, we presuppose a standard call-by-value
semantics. We could also use call-by-name, but for communication across chan-
nels, especially if distributed, one would not want to pass potentially large com-
putations and the data structures they still rely on. If the functional language
is overlaid with a termination checker (for examples, along the lines of Abel’s
proposal [1]), then the two should semantically coincide in any case. Since this
is standard, we focus on the interesting new constructs: the monad, and the
process expressions contained in them.

From the perspective of the functional language, an encapsulated process
expression is a value and is not executed. Instead, functional programs can be
used to construct concurrent programs which can be executed at the top-level,
or with a special built-in construct such as run, which would have type

run : {c:1} -> unit

Not accidentally, this is analogous to Haskell’s I/O monad [16], even if our lan-
guage is call-by-value.

We now summarize the expected preservation and progress theorems. In or-
der to state the type preservation theorem we must be able to talk about the
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types and channels during the execution of the processes, not just for a process
expression P . An elegant way to accomplish this is to annotate each execP with
the channel c along which P offers its output and its type A. This exploits the
observation that every process offers a service along exactly one channel, and
for every channel there is exactly one process providing a service along it. This
extended form is written execP cA. The rules given above can be updated in a
straightforward fashion, and the original rules can be recovered by erasure. The
annotations fix the role of every channel in a communication as either offered
or used, and we can check if the whole process state Ω is well-typed according
to a signature of (linear and shared) channels Σ. We write |= (Σ ; Ω) :: c0 : 1
if process state Ω uses channels in Σ accordingly and offers 1 along an initial
channel c0 that is offered but not used anywhere. Initially, we have a closed
process expression P0 and |= (· ; execP0 c0 1) :: c0 : 1. Overall, a pair consisting
of the currently available channels and the process state evolves via multiset
rewriting [7] to another pair, potentially containing new channels and the new
process state.

Theorem 5.1 (Type Preservation).

(i) If · M : τ and !evalM V then V is a value and ·  V : τ .
(ii) If |= (Σ ; Ω) :: c0 : 1 and (Σ ; Ω) −→∗ (Σ′ ; Ω′) then |= (Σ′ ; Ω′) :: c0 : 1.

Type preservation is fairly straightforward to prove, given the strong logical
foundations of our language. We require the typical substitution property for
the functional portion of the language. As for processes, the proof requires us to
relate typing derivations of process expressions to typings of the global executing
process state. This turns out to be easy, since substructural operational semantics
breaks down the global state into its local process expressions.

Theorem 5.2 (Progress). Assume for every term M such that ·  M : τ
there exists a value V with !evalM V . Then for every well-typed process state
|= (Σ ; Ω) :: c0 : 1, either Ω = (!Ω′′, exec (close c0) c0 1) where !Ω′′ consists of
propositions of the form !execP , or (Σ ; Ω) −→ (Σ′ ; Ω′) for some Σ′ and Ω′.

Progress is, as usual, slightly harder to prove. Once we account for the internal
transitions of processes and functional evaluation, we note that in a well-typed
state Ω, persistent processes (which always perform a replicating input) can
never block. Due to linear well-typing of the state, we can therefore restrict
attention to the remaining k+ 1 processes that offer communication along k+ 1
channels, but using only k channels since c0 does not have a match. Now we
perform an induction on k. If P0 is blocked on c0, it must have the form stated
in the theorem (by inversion on its typing) and we are done. If not, it must be
blocked on some other channel, say, c1. Now the process P1 offering c1 is either
blocked on c1, in which case it can communicate with P0 and we can make a
transition, or it must be blocked on some other c2. We proceed in this way until
we must come to Pk, which must be blocked on ck and can communicate with
Pk−1 since no other linear channel ck+1 remains on which it could be blocked.
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It is easy to modify the operational semantics to employ a small-step seman-
tics for the functional layer, which ensures progress for the full language without
relying on termination of functional computation.

We now return to consideration of what we have called the linear contextual
monad. In general, a monad consists of a type constructor M supporting two
operations usually called return and bind. The return operation allows for any
value in the language to be made into a monadic object, whereas bind is a form
of composition. These operations are expected to satisfy certain equational laws.
Specifically, return is both a left and right unit for bind, and bind is associative.

Using our monadic introduction and composition constructs, we can repro-
duce similar laws. First, if we consider the process expression: c← {c← Pc};Qc,
it is straightforward to see, using our semantics, that it behaves as just both Pc

and Qc executing in parallel. This is a form of left identity, and captures the
computational effects of binding. Secondly, we can reconstruct a right identity
law by observing that the term: {c← (d←M ; fwd c d)} always behaves like M .
This is reminiscent of an η-conversion law, but one must note that in the presence
of non-termination, evaluating the expression M might not terminate, whereas
the monadic expression is always a value. However, any context that uses both
expressions will not be able to distinguish them, regardless of non-termination.
Finally, it is easy to see that our composition construct is associative.

Taking the category theory perspective, these constructions are somewhat
reminiscent of the work on Arrows [12], itself a special case of Relative Monads
[2], which are monadic constructions for functors that are not endomorphic. A
closer work, also rich in category theoretical foundations is that of Benton [3],
where two functors F and G are defined, forming an adjunction between intu-
itionistic and linear functional calculi. Our construction is in essence a contextual
variant of G, albeit with some slight differences, specifically the fact that we em-
ploy a let-style elimination and we bridge a functional and a process calculus,
instead of two functional calculi.

6 Related Work and Conclusion

Our language is similar to the higher-order session typed calculi of [14]. How-
ever, our logical foundation makes the system substantially simpler, and the
contextual monad allows for a cleaner integration of higher-order communica-
tion, which they accomplish by passing λ-abstractions. Furthermore, we obtain
a global progress result, which is not present in [14].

A language with similar goals to ours is Wadler’s GV [20], which is itself
based on a session-typed functional language created by Gay and Vasconce-
los [10]. GV is also a session-typed functional language, essentially consisting
of a simply typed, linear λ-calculus extended with primitives for session-typed
communication. A point of divergence of GV and our language is that GV is
itself linear, whereas we base our functional language in a traditional λ-calculus
equipped with a linear contextual monad that isolates communication and lin-
ear typing. Naturally, making the whole language linear avoids the need for the
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monad, since it becomes possible to write functions that, for instance, take a
data value and a channel and send the piece of data along the channel (this is
so because essentially all terms in GV can be translated to session-typed linear
processes). On the other hand, the pervasively concurrent semantics means it is
further from a practical integration of concurrency into an existing functional
language. Another significant difference between the two approaches is that the
underlying type theory of GV is classical, whereas ours is intuitionistic. Monads
are intuitionistic in their logical form [9], which therefore makes the intuitionis-
tic form of linear logic a particularly good candidate for a monadic integration
of functional and concurrent computation based on a Curry-Howard correspon-
dence. We believe our natural examples demonstrate this clearly. Prior work by
Mazurak and Zdancewic [13] indicates that control operators may be a better
candidate than a contextual monad for classical linear logic, if the functional
character of the underlying language is to be fully preserved.

The language F∗ [18] shares similar goals and ideas, but it is aimed at security
properties and distributed computation, while we aim at concurrency. Instead of
linear types, F∗ uses affine types and its concurrency primitives are not based on
a Curry-Howard correspondence. The various language levels, including commu-
nication, are separated not by a monad but through a complex kinding system
that controls their interaction. Our language design aims to be a stepping stone
towards full dependent verification (as traditional in type theory) and allowing
for dynamic verification. F∗ makes several interesting contributions with respect
to this tradeoff, in particular the use of value-dependent types.

Finally, there are a number of language features we have given short thrift
here in order to concentrate on our essential contributions. One is the possibility
of asynchronous communication. Work by DeYoung et al. [8] shows that this
is consistent with a Curry-Howard approach although some programs we wrote
here (like infinite stream producers) would have to be rewritten to account for the
change in the operational semantics. Polymorphism [20, 6] for process expressions
is largely orthogonal and manageable as long as types are explicitly passed.

Future Work. Our main goal for future work is the generalization of the system
we have presented here to a full dependent type theory that integrates reason-
ing about both functional and concurrent computation. Dependent types in the
purely functional setting are a well understood concept, however the generaliza-
tion to our language is far from straightforward since we move to a setting where
session types can be indexed not only by purely functional terms, but also by
session typed processes through the monadic type from the functional language.
Similarly, dependent types in the functional layer share this feature. This means
that type equality (crucial for type conversion in dependent type theories), which
ultimately reduces to term equality, requires a suitable notion of process equality.
While we obviously want a decidable equality, it is not clear what other criteria
this notion of equality should obey. Moreover, reasoning about processes is typ-
ically done both inductively and coinductively, so to be able to internalize this
reasoning in the language we require a primitive notion of coinductive reasoning,
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as well as a proper theory of inductive and coinductive definitions applied to our
session typed setting. We plan to tackle these challenges in future work.
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