A Proof of the Church-Rosser Theorem
and its Representation in a Logical Framework

Frank Pfenning
September 1992
CMU-CS-92-186

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We give a detailed, informal proof of the Church-Rosser property for the untyped A-calculus and
show its representation in LF. The proof is due to Tait and Martin-L6f and is based on the
notion of parallel reduction. The representation employs higher-order abstract syntax and the
judgments-as-types principle and takes advantage of term reconstruction as it is provided in the
Elf implementation of LF. Proofs of meta-theorems are represented as higher-level judgments which
relate sequences of reductions and conversions.

This research was sponsored by the Avionics Laboratory, Wright Research and Development Center, Aeronautical
Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract F33615-90-C-
1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S. government.

Keywords: Lambda calculus, Church-Rosser property, logical framework.

Introduction 1

Contents
1 Introduction 1
2 The Untyped A-Calculus 3
3 Reduction and Conversion 4
4 Parallel Reduction and Conversion 12
5 The Proof of the Church-Rosser Theorem 17
6 Equivalence of Ordinary and Parallel Reduction 29
7 Conclusion 36
A Summary of the Representation in EIf 37
A.1 The untyped A-calculus 37
A.2 Ordinary reduction L 37
A.3 Parallel reduction e 38
A.4 Lemmas about parallel reduction oL 39
A.5 The Church-Rosser theorem for parallel reduction. 39
A.6 Lemmas about ordinary reduction Lo 0oL, 41
A.7 Equivalence of ordinary and parallel reduction 42
A.8 The Church-Rosser theorem for ordinary reduction 44
References 45

1 Introduction

The logical framework LF [HHP] has been designed as a formal meta-language for the representation
of deductive systems. It is based on a predicative type theory with dependent types in which
Judgments are represented as types and deductions are represented as objects. In this report we
explore the use of this framework for the formalization of the theory of the untyped A-calculus.
More specifically, we will develop a proof and representation of the Church-Rosser theorem under
B-reduction. This report will focus on techniques of representation—details of the LF type theory
and its implementation in Elf can be obtained from [HHP, Pfe91b]. Elf is a logic programming
language based on the LF type theory, although in this report we deemphasize the operational
aspects of Elf. All the Elf code in this report has been type-checked and executed in the current
implementation [Pfe91a).! If the EIf implementation of the proof is ignored, this report can also
be read as a detailed, informal proof of the Church-Rosser theorem using the method of parallel
reductions due to Tait and Martin-Lof.

The methodology for the representation of meta-theorems (such as the Church-Rosser theorem)
can be seen as consisting of three stages. The first stage is the formalization of the abstract syntax
of the language under consideration. Here we use the idea of higher-order abstract syntax which
requires that variables of the object language are represented by variables of the meta-language.

!The code in this report and the implementation are available via anonymous ftp. Please send electronic mail to
the author at fp@cs.cmu.edu for further information.

Introduction 2

This allows common conventions in the proofs of meta-theorems which concern bound variables to
be supported directly in the meta-language. In particular, we can avoid explicit renaming of bound
variables (which is modeled by a-conversion in the framework) and have a notation for capture-
avoiding substitution (which is modeled by (-reduction). It may appear that the framework is
specifically designed just for the implementation of the A-calculus, but in fact bound variables
occur in most programming languages and the technique of higher-order abstract syntax has wide
applicability in theorem proving and logic programming [Fel89, NM88, Pau86], and the theory of
programming languages [Han91, HP92, MP91].

The second stage is the formalization of the semantics of the language which is given via
judgments defined by inference rules. The judgments are implemented as types and deductions as
objects. Thus the relationship between a deduction and the judgment it establishes is represented
as the relationship between an object and its type. In our example, we will represent various
reduction and conversion relations in this style. Similar techniques have been used to specify type
systems, operational semantics, compilation and other aspects of the semantics of programming
languages (see, for example, [Han91, HP92, Har90, MP91]).

The third stage is the formalization of the proofs of meta-theorems in the framework. The
construction which is implicit in the proof is represented as a judgment which relates deductions.
For example, in the proof of the Church-Rosser theorem we have to show the existence of certain
reduction sequences, given other reduction sequences. This is done via an explicit construction
which can be represented as a judgment. Verifying that this higher-level judgment indeed represents
a proof is left to a process called schema-checking (see [PR92, HP92]) which is currently mostly
done by hand, since the implementation is still incomplete. This means that there is still the
possibility of error in the implementation of the proof.

Thus all three stages, representation of abstract syntax, semantics, and meta-theory, are carried
out within the same logical framework. The concrete implementation of framework within the EIf
programming language has other features which we will mostly ignore for the purposes of this
discussion, but we briefly review Elf here. Its concrete syntax is very simple, since we only have to
model the relatively few constructs of LF. While LF is stratified into the levels of kinds, families,
and objects, the syntax is overloaded in that, for example, the symbol II constructs dependent
function types and dependent kinds. Similarly, juxtaposition is concrete syntax for instantiation of
a type family and application of objects. We maintain this overloading in the concrete syntax for
Elf and refer to expressions from any of the three levels collectively as terms. A signature is given
as a sequence of declarations.

Terms term = |id a or ¢ or x
| {id: termq}terms IIz:A1. Ay or Ilz:A. K
| [id:termy]terms Az A. M
| termy termeo AM or M; M,
| type Type
| termy => termg Al — Ay
| termy <= terms Ay — Ay
| {id}term | [idlterm | _ omitted terms
| termy : termg cast
| (term) grouping
Declarations decl ::= 1id : term. a:K or cA

The terminal id stands either for a bound variable, a free variable, or a constant at the level
of families or objects. Bound variables and constants in Elf can be arbitrary identifiers, but free

The Untyped \-Calculus 3

variables in a declaration or query must begin with an uppercase letter (an undeclared, unbound
lowercase identifier is flagged as an undeclared constant). An uppercase identifier is one which
begins with an underscore _ or a letter in the range A through Z; all others are considered lowercase,
including numerals. Identifiers may contain all characters except (O{}[]:.% and whitespace. In
particular, A->B would be a single identifier, while A -> B denotes a function type. The left-pointing
arrow as in B <- A is a syntactic variant and parsed into the same representation as A -> B. It
improves the readability of some EIf programs. The simple function type A -> B is treated as an
abbreviation for {x:A} B where x does not occur in B.

The right-pointing arrow -> is right associative, while the left-pointing arrow <- is left associa-
tive. Juxtaposition binds tighter than the arrows and is left associative. The scope of quantifications
{z : A} and abstractions [x : A] extends to the next closing parenthesis, bracket, brace or to
the end of the term. Term reconstruction fills in the omitted types in quantifications {x} and
abstractions [x] and omitted types or objects indicated by an underscore _. In case of essential
ambiguity a warning or error message results. Declarations may contain free variables which can
be interpreted schematically, just as typical inference rules are schematic. This means that a dec-
laration with free variables can intuitively be thought of as representing all its instances. Such
declarations are translated into LF by adding (implicit) II-quantifiers for all free variables. The
corresponding (implicit) arguments are reconstructed by the Elf front end employing a variant of
higher-order unification. This and other aspects of Elf are explained in more detail in [Pfe91b], but
we hope that the material in the remainder of this report can be understood at a pragmatic level
without detailed knowledge about the term reconstruction algorithm.

Single-line comments begin with % and extend through the end of the line. A delimited comment
begins with %{ and ends with the matching }¥%, that is, delimited comments may be properly nested.
The parser for Elf also supports infix, prefix, and postfix declarations similar to the ones available
in Prolog, and we will see some examples of infix declarations later.

2 The Untyped A-Calculus

We consider the pure untyped A-calculus whose syntax is given by
Terms M = z|M; My | x. M.

Here = stands for variables. We will use M and N as meta-variables ranging over terms. A term
of the form Az. M binds the variable x and the rule of a-conversion allows the explicit renaming
of bound variables. We use the convention that a-conversions can be performed implicitly, or, as
Barendregt [Bar80] puts it: “Terms that are a-congruent are identified.” Conventions of this kind
are common right from the beginning of the study of the A-calculus (see, for example, the original
paper with a proof of the Church-Rosser theorem [CR36]). In order to avoid any possible problems
which arise from this convention, a common route is to go to combinatory calculi [CF58] or to
use de Bruijn indices [dB72]. It is interesting to note that de Bruijn’s motivation for his notation
for A-terms came from a proof of the Church-Rosser theorem, and Shankar’s mechanization of the
Church-Rosser theorem in the Boyer-Moore theorem prover [Sha88, BM79] uses de Bruijn indices.
In LF, the detour via de Bruijn indices is not necessary, since variable naming conventions can be
supported directly in the framework.

We use parentheses to disambiguate the concrete syntax of terms. In our presentation, applica-
tion associates to the left, and the scope of A-abstraction extends to the next closing parenthesis or
the end of the expression. For example (Az. A\y. y y) z would be (Az. (Ay. ((z y) y))) z with all

Reduction and Conversion 4

explicit parentheses. For further background material on the untyped A-calculus, the reader may
consult Barendregt’s comprehensive book [Bar80].

The representation of the syntax of the untyped A-calculus is an archetypical use of higher-order
abstract syntaz. Variables of the object language (the A-calculus, in this example) are represented
by variables in the meta-language. For such a representation to be correct, variables bound in the
object language must also be bound in the meta-language. We define "M ', the representation of
the term M in Elf, inductively on the structure of M. Recall that [x:A] P is Elf’s concrete syntax
for abstraction in the framework and binds a variable x of type A in the object P.

r.1

= X
I'M N'I — app I‘M‘I I'N'I
"\z. M' = lam ([x:term] "M

For example,
"Ar. \y.z'=lam [x:term] lam [y:term] x.

As far as we know, this representation is due to Wadsworth [Wad76] and used by Meyer [Mey82] in
the construction of an environment model of the untyped A-calculus. The notation used there is ¥
for 1am and @ for app. From the representation above we can read off the type of the constructors,
leading to the following signature 7.

term : type. ‘name term M

lam : (term -> term) -> term.
app : term -> term -> term.

The annotation %name term M instructs Elf to use M, M1, etc. as names for new variables of type
term which may be introduced during search or term reconstruction.

Our notation for the result of substituting N for x in M is [N/xz|M. We require that no free
variable in NV is bound in M in order to avoid variable capture. This means that M may have to
be renamed into an equivalent form before substitution can be carried out.

The representation function "' is a bijection between terms in the untyped A-calculus and
canonical objects in the LF type theory of type term. Furthermore, the function is compositional,
that is, substitution commutes with representation. Formally,

"IN/x]M'=[N"/z] M.

Note that substitution on the right-hand side is substitution within the LF type theory. We further
observe that

[Nz M = ([x:term] "M) "N
which can be paraphrased by saying that substitution at the object-level (the untyped A-calculus) is
implemented by S-reduction at the meta-level (the LF type theory). Here, = stands for definitional
equality in the framework which includes (-conversion.

3 Reduction and Conversion

The operational semantics of the untyped A-calculus is usually given via a reduction relation, where
the meaning of a term is its normal form, that is, a term which cannot be reduced further. But is
this legitimate? Unless we can show that such a normal form is essentially unique, the semantics

Reduction and Conversion 5

would be ambiguous. In this section we will formulate some reduction relations for the untyped
A-calculus and then investigate their properties in Section 5.

At the heart of the reduction relation lies the rule of 5-reduction, whereby a term (Az. M) N is
reduced to [N/z| M. Recall that substitution may require renaming of bound variables in M in order
to avoid variable capture. This reduction may be applied anywhere inside a term—something which
is not true, for example, for evaluation relations for programming languages (both in call-by-name
and call-by-value semantics, see [Plo75]). One may consider this as a distinguishing characteristic
of general reduction compared to evaluation.

Thus the first judgment we would like to define is M — M’ (read: M reduces to M’). This
judgment is defined by a set of inference rules. These rules are subscripted by “1” in order to
indicate that this is the first formulation we are considering. In the course of the proof of the
Church-Rosser theorem we will need to consider other reduction relations.

beta;
()\.’l? Ml) M2 — [MQ/.’B]Ml

M — M
Ae. M — z. M’

Im1

M2—>Mé
M1 M2 —>M1 Mé

apry

The first rule beta; is the S-reduction rule proper. The other three allow us to perform the
B-reduction anywhere inside a term. These rules are frequently refered to as congruence rules. Note
that the rule Im; is somewhat peculiar, since we require that the bound variable on both sides be
named z, even though we made the general assumption that the names of bound variables should
be irrelevant. Here is a simple example of a deduction.

beta;
(Az. Ay. z) 2 — Ay. 2

aply
Az. Ay.z) z 2z — (A\y. 2) 2

Using the judgments-as-types principle, a deduction is now represented as an object whose
type describes the judgment. Thus a type of the form red "M ' "M’ represents the type of all
deductions of the judgment M — M’. Since "M ' and "M'" are of type term, the so-called type
family red has kind term -> term -> type. Actually, instead of using red in prefix notation, we
use --> in infix notation. The %infix annotation below has this effect.? The %name annotation
indicates that Elf should use R, R1, etc. as meta-variables ranging over deductions.

--> : term -> term -> type. %infix none 10 -->
Jname --> R

In the first approximation, the representation of an inference rule is a function from deductions
of its premisses to a deduction of its conclusion. For example, beta;, which has no premisses, is
represented as a constant betal.

2The keyword none declares that the operator --> is not associative and 10 is its precedence, with higher precedence
binding tighter. Keywords left and right instead of none declare left and right associative operators, respectively.

Reduction and Conversion 6

betal : (app (lam M1) M2) --> M1 M2.

Here, M1 has type term -> term and represents the scope of a A-abstraction. Applying this function
to M2, the representation of the argument, is definitionally equal to the representation of [May /x| M,
where x is the variable bound by A. We are thus taking advantage of the compositionality of the
representation as expressed by

"[My/2]M;" = [My /2] My = ([x:term] "My ") "My

The declaration above can be understood schematically, just as the inference rule itself: any valid
instance of betal is a valid object of the appropriate type. In a more explicit version, M1 and M2
could be made explicit arguments to betal, as in the declaration betal’ below.

betal’ : {Ml:term -> term} {M2:term}
(app (lam M1) M2) --> M1 M2.

To continue in the representation, the rule Im; introduces an additional complication: the
explicit mention of the bound variable x. The solution is to introduce a new parameter x and
substitute it on both sides. A formulation along these lines as an inference rule might be

[z/y]|M — [z/y'|M’
Ay M — Ay M

Im1

with the proviso that the parameter x does not already occur in M or M’. This can now readily be
implemented in Elf, using the same idea as above to represent substitution. This still leaves us to
deal with the proviso, which is common in deductive systems. We consider the premiss a judgment
parametric in z, that is, we should be able to substitute any term N for x in the deduction of the
premiss to obtain a deduction of "[N/z]M" — "[N/x]M"". Recall that {x:A} B (usually written
in IIz:A. B) is the Elf notation for the type of an LF function which accepts an object P of type
A and returns an object of type [P/z]|B.

1ml : ({x:term} M x --> M’ x)
-> (lam M) --> (lam M’).

The remaing two rules are simpler since they do not involve variable binding.

apll : M1 --> M1’
-> (app M1 M2) --> (app M1’ M2).

aprl M2 --> M2’
-> (app M1 M2) --> (app M1 M2’).

The example deduction above is represented by
apll betal : app (lam [x] lam [y] x) z --> lam [y] =z.
where z : term. A slightly more complicated example:

1ml [x:term] betal : (lam [x] (app (lam [y] y) x)) --> lam [x] x.

Reduction and Conversion 7

This list of declarations can also be used as a logic program to reduce a given term. A goal,
usually an atomic formula in Prolog, is given by a type in EIf. Instead of attempting to find a
proof of a formula as in Prolog, Elf searches for a closed object of the given type. This search
proceeds in a depth-first fashion as in Prolog, considering each inference rule in turn and con-
structing an appropriate object incrementally. When the signature above is used as a program
it will find the leftmost-outermost redex first and reduce it. Upon backtracking, other possible
reductions will be enumerated. For example, consider enumerating the (single-step) reductions of

(Az. z) (A\y. y) (Az. 2)).

7- R : (app (lam [x] (app x x)) (app (lam [y] y) (lam [z] z))) --> M’.
Solving...

M =
app (app (lam ([y:term] y)) (lam ([z:term] =z)))
(app (lam ([y:term] y)) (lam ([z:term] z))).

R = betal.

M’ = app (lam ([x:term] app x x)) (lam ([z:term] z)).

R = aprl betal.
no more solutions
Here, M’ is a free variable (a logic variable in the Prolog terminology) which is instantiated by
unification during search. The variable R will be bound to the resulting deduction. In this example
there are two possible single-step reductions, one which reduces the top-level redex, another which
reduces the redex in the right-hand side. The corresponding deductions consist of only one or two
inferences. The semi-colon in the transcript indicates that the user asked for further solutions.
The next task is to encode multi-step reductions. One usually defines M —* M’ iff there
exists a sequence of reductions
M=My— My — - — M, =M
for some n > 0. While the logical framework does not have an immediate notation for this sort of
definition, we can also define it via a very simple deductive system.
) M — M M —* M
idq step;
M —*M M —* M"

Reconsider the example above.

beta;
Ay.y) (Az.2) — Az. 2z ' apry R
Az. zz) (Ay. y) (Az.2)) — (Az. z z) (Az. 2) (Az. z x) (Az. 2) —* (Az. 2) (Az. 2)

Az. z x) (A\y. y) (Az. 2)) —" (Az. 2) (Az. 2)

Step1

where

be ai idl
R — (Az. z x) (Az. 2) — (Az. 2) (Az. 2) ‘ (Az. 2) (Az. z2) —" (Az. 2) (Az. 2) step;
(Az. z x) (Az. 2) —" (Az. 2) (Az. 2)

Reduction and Conversion 8

The implementation of the inference rules in Elf is simple, since it does not involve any side-
conditions or bound variables.

-=>% : term -> term -> type. %infix none 10 —-->x
Jname -->x Rx

id1 : M -->% M.

stepl : M-->M
-> M -->x M
-> M -->x M,

The interpretation of this declaration as a program is now much less useful, since execution can
easily lead to infinite regression even though solutions may exist. This is because the operational
semantics of Elf will solve the subgoals which arise after an application of the stepl rule in an
order which is inconvenient in this example. This illustrates a general phenomenon: in many cases,
a straightforward specification of an inference system will not be useful as a program. In order
to obtain a program we have to design an algorithm and then implement it separately from the
specification. A complete strategy for multi-step reduction is a left-most outermost strategy. This
reduction strategy can also be implemented and its completeness can be proved in Elf, but we
leave this to a future report. Briefly, Elf searches through a signature in a depth-first fashion,
trying inference rules from the top to the bottom, solving the innermost subgoal first. For more
information on the operational semantics of EIf the reader is referred to [Pfe91b] or [MP91] for
a more tutorial presentation. Through sheer luck, however, we can generate the deduction above
even with this operationally inadequate signature. It is given as the third and final answer before
the program diverges.

?7- Rx : (app (lam [x] (app x x)) (app (lam [y] y) (lam [z] z))) -->*x M’.
Solving. ..

M’ = app (lam ([x:term] app x x))

(app (lam ([y:term] y)) (lam ([z:term] z))).
R* = id1l.
M =

app (app (lam ([y:term] y)) (lam ([z:term] z)))
(app (lam ([y:term] y)) (lam ([z:term] z))).

R* = stepl betal idl.

M’ = app (lam ([x:term] app x x)) (lam ([z:term] z)).

R* = stepl (aprl betal) idl.

M’ = app (lam ([z:term] z)) (lam ([z:term] z)).

Reduction and Conversion 9

R* = stepl (aprl betal) (stepl betal idl).

H
interrupt

Finally we come to conversion, a notion of equality generated from (multi-step) reduction. It
is the smallest equivalence relation on terms which contains the reduction relation. This can be
expressed as an inference system with four rules: the first three for reflexivity, symmetry, and
transitivity express that conversion, written as <—, is an equivalence relation. The fourth rule
expresses that if one term can be reduced to another, the two should be convertible.

M+ M
— refl — sym

M+— M M +«— M

M +—— M’ M +—— M" M —* M’
trans —red

M +—— M" M +—— M’

The representation in Elf is a direct transcription.

<-> : term -> term -> type. %infix none 10 <->
Jname <-> C

refl : M <-> M.

sym : M <-> M
-> M’ <> M.

trans: M <-> M’
-> M’ <-> M’
-> M <-> M,

red : M -—>% M’
-> M <-> M’.

The Church-Rosser theorem [CR36] now states that if M <— M’ then there exists some N
such that M —* N and M’ —* N. We are taking the liberty of simply using a judgment J to
stand for the meta-language proposition “J is derivable” or “J is evident’. We hope that this will
not lead to any confusion on the part of the reader. The Church-Rosser theorem is also described
by the following diagram.

The solid lines indicate that a certain relation is assumed, the dotted line means that the
existence of the relation is asserted. Instead of * we use a double-headed arrow to indicate multi-
step reductions. We will usually label the lines with a variable for deductions of the corresponding
judgment. The Church-Rosser theorem is then more explicitly described by the following diagram.

Reduction and Conversion 10

As a warm-up exercise we prove a few lemmas about the multi-step reduction relation and give
the representation of these proofs in Elf. First we would like to show that multi-step reduction is
transitive. In general we use the notation D :: J to express that D is a deduction of the judgment
J. In this particular example, R :: M — M’ can be read as R is a reduction from M to M’', and
similarly for R* :: M —* M'. Note that the existence of an explicit notation for deductions gives
us an explicit notation for reductions, sequences of reductions, and conversions. We generally use
R and S to range over (single-step) reductions, R* and S* to range over multi-step reduction, and
C to range over conversion. Each of these thus ranges over deductions of particular judgments.

Lemma 1 (Transitivity of —*) If M —* M’ and M' —* M" then M —* M".
Proof: The proof is by induction over the structure of R* :: M —* M’. We will provide an

explicit description of a method for constructing S* :: M —* M" given R* and S* :: M’ — M".

Case:

., i
R'= 3 —opr)

By assumption we have a deduction S* :: M’ —* M"” and M = M’'. Thus S* = S§* ::
M —* M" is sufficient to prove the lemma in this case.
Case:

Ry R}
R* = M — M1 M1 —* M’

" e step;
—

By the induction hypothesis on R} and S* there exists a deduction S5’ :: My —* M".
Applying the rule step; to R; and S5’ then yields the desired deduction of M —* M.

O

We represent the algorithmic content of this proof as a judgment which relates the three de-
ductions involved, R* :: M —* M’', S* :: M’ — M", and S* :: M — M". This judgment is
then encoded in Elf as a type family

appd : M -->x M’ -> M’ -->% M’ -> M -->x M’’ -> type.

such that whenever there exists a closed object of type appd R* S* S*’ then S*’ represents the
reduction sequence generated by applying the algorithm which is implicit in the proof above to R*
and S*. A moment’s reflection reveals that this algorithm does nothing but append the reduction
sequences R* and S*. Note that we use the a left-pointing arrow in notation inspired by logic
programming in order to emphasize the computational nature of the rules. Semantically, there is
no difference between A -> B and B <- A.

Reduction and Conversion 11

appd_id : appd idl S* Sx.
appd_step : appd (stepl R1 R2*) Sx (stepl R1 S2%’)
<- appd R2% S* S2%’.

Term reconstruction (which includes type-checking) of these declarations guarantees that re-
duction sequences are composed only when this is sensible, that is, the result of one reduction
sequence is the starting point of another. However, type-checking does not guarantee is that appd
is total in its first two arguments. This is the responsibility of schema-checking which, in essence,
checks that the judgment is primitive recursive in some argument and must therefore be total. The
implementation of schema-checking is currently still incomplete and must be carried out by hand.
Automation, that is, the mechanical construction of representations of proofs such as the one above
is subject of current research—for now we concentrate merely on the representation of deductions
found first by informal reasoning.

We summarize the basic principles. A proof by induction over the structure of a deduction
is represented as a higher-level judgment which relates deductions. Each case in the proof by
induction corresponds to an inference rule defining the higher-level judgment. An appeal to the
induction hypothesis manifests itself in the premiss of such an inference rule. The judgment and
inference rules are then translated into Elf using the familiar judgments-as-types principle. The
resulting signature can be executed as a logic program to exhibit the computational content of the
original, informal proof.

The next lemma shows that multi-step reduction is a congruence. An inference rule is admissible
if any (ground) instance of the rule is derivable.

Lemma 2 (Congruence of —*) The rules Im7, apli, and apri below are admissible rules of infer-
ence.
M —s* M’ M; —* M{ My —* Mé
Im] aplj aprj
. M —* \x. M’ My My —F M{ Mo My M, —F M, Mé

Proof: The proof in each case is by induction over the structure of the derivation R* of the premiss.
We explicitly construct a deduction S* of the conclusion. The basic idea is to distribute the uses
of the the congruence to all the single-step reductions which make up the multi-step reduction.
We show the proof only for the rule Im]. The others are very similar and we directly give the
representation of the argument in EIf.

Case:
o —————idy
= py_vMm
Then Ax. M —* Ax. M also by the identity rule id;
Case:
Ry 5
R* = M — M1 M1 —* M’

IV step;
—

Parallel Reduction and Conversion 12

From the induction hypothesis on R3 we know there exists a deduction S5 :: Ax. M; —*

AT

. M'. We thus construct:

Ry
M—>M1 %
S* — Im 52
Az, M — Az, M, Ax. My —* Az M’

step;
. M — dx. M’

O

The main difficulty in the representation of these lemmas is the bound variable in the case of
the A-congruence. As before, we represent the premiss as a function from a term N to a deduction
which shows that [N/z]M —* [N/z]M'. This reflects that the premiss is a parametric judgment.

Imix :

Imlx*_
Imlx*_

aplilx :

aplix
aplix

aprix :

aprilx
aprilx

({x:term} M x -->*% M’ x)

-> (lam M) -->*% (lam M’)
-> type.
id : Imi* ([x:term] idl) idl.

step : lmlx ([x:term] stepl (R1 x) (R2* x)) (stepl (1lml R1) S2x)
<- Imlx R2x% S2x.

M1 -->% M1’
-> (app M1 M2) -->x (app M1’ M2)
-> type.
_id : aplix idl idil.

_step : apllx* (stepl R1 R2*) (stepl (apll R1) S2%)
<- apli* R2* S2%.

M2 -->% M2’
-> (app M1 M2) -->x (app M1 M2’)
-> type.
_id : aprl* idl id1l.

_step : aprilx* (stepl R1 R2%) (stepl (aprl R1) S2%)
<- aprl* R2% 52,

4 Parallel Reduction and Conversion

The main tool in this proof of the Church-Rosser theorem is the notion of parallel reduction, usually

referred

to as the Tait/Martin-Lof method (see [Bar80]). We write M = M’ for M reduces in

parallel to M'. Parallel reduction is useful, since it will satisfy the so-called diamond property which
is depicted in the following diagram.

Parallel Reduction and Conversion 13

M

7N

M/ M//

R
N

A similar diagram holds for ordinary® maulti-step reduction —*, but not for the ordinary single-
step reduction —. The idea behind parallel reduction is that, besides contracting a redex, we
can also reduce the terms involved in the redex at the same time. Furthermore, the congruence
rule for application is generalized so we can perform reduction in both branches in parallel. A
possible reduction may or may not be peformed, which means that in the extreme we should allow
M = M. In a slight departure from previously published proofs we assume this for variables
only. This simplifies some of the case analyses later on, but does not have a deep impact on the
structure of the proofs.

M = M{ My, — Mé
beta
M = M{ My — Mé
ap

My M, :>M{ Mé

M= M
. M = \z. M’

Im

—var
=z

Thus parallel reduction can take bigger steps than ordinary reduction. One has to keep in mind,
however, that the ordinary definition of a normal form (a term M such that there does not exist
an M’ such that M — M’) must be modified for parallel reduction, since every term reduces to

itself. Under parallel reduction a term is in normal form if it only reduces to itself. As an example
for parallel reduction, we reconsider an earlier term.

——var ———var var var
= T = y=y z=z
ap Im Im
rTr=—2xx AY. Yy = A\y. y A2,z = Az. 2
Im beta
(Az. z2) = (A\z. z 2) ((A\y.y) (Az. 2)) = (Az. 2)
beta

Az. z x) (A\y. y) (Az. 2)) = (Az. 2) (Az. 2)

The representation of parallel reduction is again as a type family, indexed by two objects.

3In order to distinguish reduction as introduced in the previous section we will often refer to it as ordinary
reduction. In the diagrams we will not explicitly distinguish between parallel and ordinary reduction, but it should
be clear from the context which form of reduction is depicted.

Parallel Reduction and Conversion 14

=> : term -> term -> type. %infix none 10 =>
Jiname => R

The first problem one encounters when considering the representation of the inference rules is the
rule for variables. Recall that variables of the untyped A-calculus are represented by meta-variables
and that we thus do not have explicit constructors for them we could match against. This is a
frequent problem when dealing with higher-order abstract syntax. The solution is generally to
extend the judgment we are defining by hypotheses. That is, while deriving M; = M/ we are
allowed to use the hypothesis £ = x. The following formulation of the rule comes closer to the
Elf implementation.

u
=

R
M1:>M{ M2:>Mé

beta"

The label v on the inference rule beta® indicates that the assumptions labelled u are discharged
at this inference and not available elsewhere in the deduction. This is the essence of the notion
of hypothetical judgment (see, for example, [ML80]). We represent the deduction R of the (hypo-
thetical) judgment in the left premiss as a function whose first argument is a term = and whose
second argument is a deduction u of x+ = x. Applying this function to a term N and a deduction
S :: N = N yields a deduction of [N/x]M = [N/x]M’. This deduction is obtained by substi-
tuting NV for in R and then substituting the deduction S :: N = N at each place the hypothesis
r = z labelled u is used in R.

beta : ({x:term} x => x -> M1 x => M1’ x)
-> M2 => M2’
-> (app (lam M1) M2) => M1’ M2’.

We use the same technique in the Im rule: we need to assume the appropriate var reduction wherever
a variable is introduced.

1m : ({x:term} x => x > M x => M’ x)
-> lam M => lam M’.

The rule for application does not require a hypothetical judgment.

ap : M1 => M1’
-> M2 => M2’
-> (app M1 M2) => (app M1’ M2’).

These three rules complete the signature for parallel reduction. The deduction above can be
generated by the Elf interpreter, which is complete for (single-step) parallel reduction.

?7- R : (app (lam [x] (app x %)) (app (lam [y] y) (lam [z] z))) => M’.
Solving. ..
M’ = app (lam ([x:term] x)) (lam ([x:term] x)).
R = beta ([x:term] [R:x => x] ap R R)
(beta ([x:term] [R:x => x] R) (Im ([x:term] [R:x => x] R))).

Parallel Reduction and Conversion 15

As this example demonstrates, parallel reduction is not yet sufficient to reduce terms to normal
form, since a parallel reduction can introduce new redices. We generate sequences of parallel
reductions as before.

. M= M’ M =* M"
[
M ="M M =* M"

step

We represent the step rule by an infix semi-colon to simplify writing down and reading sequences
of parallel reductions.

=>% : term -> term -> type. ‘%infix none 10 =>x
Jname =>x Rx

id : M =>% M.
; : M=> M
-> M2 =>% M’
-> M =>x M’’. Yinfix right 10 ;

Once again, this is insufficient as a program to enumerate parallel reduction sequences in a complete
fashion. Using these declaration, we can check that

(beta ([x:term] [R:x => x] ap R R)

(beta ([x:term] [R:x => x] R) (Im ([x:term] [R:x => x] R)))
; beta ([x] [R] R) (Im [x] [R] R)
; id) @ M o=>x MY

and obtain the answer

M = app (lam ([x:term] app x x))
(app (lam ([x:term] x)) (lam ([x:term] x))),
M’ = lam ([x:term] x).

That is, we can reach a normal form in two parallel reduction steps.

Finally, we define a notion of parallel conversion. This can be defined as the congruence closure
of parallel reduction, but we will define it in a slightly different way to illustrate alternatives. The
judgment is written as M <= M’.

M =* M M =* M

reduce —— expand
M < M’ M < M
M < M’ M < M"
comp
M <= M"

In the Elf implementation we use ;; as an infix notation for composition.

<=> : term -> term -> type. %infix none 10 <=>
Jname <=> C

reduce : M =>x M’

Parallel Reduction and Conversion 16

> M <=> M.

expand : M =>x M’
-> M’ <=> M.

M : M <=M
-> M <=> M
-> M <=> M’’. %infix none 8 ;;

Again, as a simple lemma we prove an earlier remark, namely that every term reduces to itself
under parallel reduction.

Lemma 3 (Reflexivity of =) For any term M, M = M.

Proof: The proof is by induction on the structure of M.
Case: M = z. In this case we apply the var rule.

Case: M = Az. M;. By induction hypothesis there exists an Ry :: M; = M;. Applying the Im
rule to R; yields a deduction of Ax. M1 = Ax. M.

Case: M = M; M. By induction hypothesis on M; and My there are deductions Ry :: My = M
and Ry :: My = Ms. Application of the ap rule yields the desired conclusion.

O

In the implementation, as in a previous example, there will be no uniform case for variables.
Instead, the appropriate reduction rule is assumed whenever a parameter is introduced. For stylistic
reasons, we make M explicit as an argument, since it is the induction variable.

identity : {M:term} M => M -> type.

id_lam : identity (lam M1) (1m R1)
<- {x:term} {eqx: x => x}
identity x eqx -> identity (M1 x) (R1 x egx).

id_app : identity (app M1 M2) (ap R1 R2)
<- identity M1 R1
<- identity M2 R2.

A second lemma shows that multi-step parallel reduction is transitive.
Lemma 4 (Transitivity of =*) The following is an admissible rule of inference.

M :>>k M/ M/ :>>k M//
M:>* M//

append

Proof: By induction on the structure of the reduction R* :: M =* M’. In each case we assume a
deduction S* :: M/ =* M" and construct a deduction S*' :: M = M". The proof is implemented
as a family

The Proof of the Church-Rosser Theorem 17

append : M =>x M’ -> M’ =>x M’’ -> M =>x M’’ -> type.
Case: R* is the identity. Then M’ = M and we can let S* = S*.
append_id : append id S* S*.

Case: R* ends in a reduction step, that is,

R R
R* = M — M; M, =* M’

" oy step
=

Then we apply the induction hypothesis to R5 and S* to obtain a deduction S5 :: M; =*
M". We add the step R; to the beginning of S5’ to obtain S*. In Elf:

append_step : append (R1 ; R2x) S*x (R1 ; S2%’)
<- append R2*x Sx*x S2x%’.

Recall that the infix semi-colon is our notation for the rule step.

5 The Proof of the Church-Rosser Theorem

The proof of the Church-Rosser Theorem proceeds via a sequence of lemmas. The first important
property is the substitution lemma, which is crucial in the later proof of the diamond property.
In fact, it is the substitution lemma which motivates the notion of parallel reduction. We make
the reductions explicit in the formulation of the lemma to simplify the correspondence to the
implementation. Another mechanical verification of the Church-Rosser theorem was carried out by
Shankar [Sha88] using the Boyer-Moore theorem prover [BM79]. Shankar’s proof used de Bruijn’s
representation for term of the A-calculus [dB72]; here we try a perhaps more direct route using the
idea of higher-order abstract syntax. We hope that this provides a good basis for comparison of
representation and proof techniques in different systems.

Lemma 5 (Substitution Lemma) If R :: M = M’ and S :: N = N’ then there exists an
R':: [N/2]M = [N'/x]M'.

We will intersperse the implementation of the proof with the proof itself. First note that R
above is (implicitly) a parametric and hypothetical judgment: it contains the free variable z and
may appeal to the hypothesis that + = x. Putting this together with the idea that substitution is
representated via S-reduction at the meta-level (recall compositionality: "[N/z]M ' = [N'/z]" M)
yields the declaration

subst : ({x:term} x => x -> M x => M’ x)
-> N => N’
->MN => M’ N’
-> type.

Proof: (of the Substitution Lemma) The proof is by induction on the structure of R.

The Proof of the Church-Rosser Theorem 18

Case:

var.
R= , — ¢

In this case, where M = z, we have to show that there exists a derivation R’ of [N/z]z =
[N'/z]x. But [N/z]x = N and [N'/z]x = N’ so we can let R' be S.

In Elf, this case manifests itself as an appeal to the hypothesis idx : x => x which is an
explicit parameter in the first argument to subst.

subst_idx : subst ([x:term] [idx: x => x] idx) S S.

Case:

var
R= y=1y

and y # x. In this case [N/z]y = y = [N'/z]y and we can let R’ = R.

This case is represented as an assumption about the behavior of subst on the hypothesis
that y => y, wherever such a hypothesis is introduced. This is necessary in the case of a
B-reduction and a A-congruence, that is, for the rules beta and Im.

Case: The last inference is a S-reduction, that is,

Ry Ry
R = M = M{ My, — Mé
beta.

In this case we apply the induction hypothesis to R; to obtain a deduction R} :: [N/z|M; =
[N'/x]M{ and to Ry to obtain a deduction R), :: [N/z|My = [N'/x]M. Combining these
with the beta rule yields a deduction

R’ ([N/x]My) ([N/2]My) = ([N'/2]M7) ([N'/x] Mp).

Using the equation ([N/x] M) ([N/z|Ms) = [N/x](My Mz) from the definition of substitution
and a similar equation for the right-hand side reveals that R’ is a deduction of the required
judgment.

Note how in the realization of this case in Elf, we make the appropriate assumption about
the behavior of subst on the hypothesis that y reduces to y.

subst_beta : subst ([x:term] [idx: x => x] beta (R1 x idx) (R2 x idx))
S (beta R1’ R2’)
<- ({y:term} {idy: y => y}
subst ([x:term] [idx: x => x] idy) S idy
-> subst ([x:term] [idx: x => x] Rl x idx y idy)
S (R’ y idy))
<- subst R2 S R2’.

Also note that both premisses are again hypothetical judgments, that is, they also may contain
x free and may use the rule x => x.

The Proof of the Church-Rosser Theorem 19

Case: R ends in the congruence for application, that is,

R1 R2
R= M = M{ My, — Mé

ap

My My — M{ Mé
In this case we simply apply the induction hypothesis to R; and Re and combine the resulting
deductions R} and R, with the ap rule.

subst_ap : subst ([x:term] [idx: x => x] ap (Rl x idx) (R2 x idx))
S (ap R1’ R2%)
<- subst R1 S R1’
<- subst R2 S R2’.

Case: R ends in the congruence for A.

Ry
R= M1:>M{

Im
. M = \z. M’

This case is similar to the case for beta: we apply the induction hypothesis to R; to obtain
an R} and then use the Im rule to obtain the desired conclusion. In this case we need to know
that [N/z|(Ay. M) = Ay. [N/z|M which is valid by the implicit assumption that y is distinct
from z and different from all variables free in N.

Just as in the subst_beta rule, we need to make an assumption about the behavior of subst
on the hypothesis that y => y according to the case for variables y # x given above.

subst_lm : subst ([x:term] [idx: x => x] 1Im (R1 x idx))
S (Im R1?)
<- ({y:term} {idy: y => y}
subst ([x:term] [idx: x => x] idy) S idy
-> subst ([x:term] [idx: x => x] Rl x idx y idy)
S (R1’ y idy)).

O

This completes the proof of the substitution lemma. The next important property is the so-
called diamond lemma which, in this case, concerns single-step parallel reduction.

Theorem 6 If R' :: M = M' and R" :: M = M" then there exists an N and reductions
S'::M' = N and S" :: M" = N. In the form of a picture:

M
V yl
M/ M//

R

The Proof of the Church-Rosser Theorem 20

Proof: The proof is by simultaneous induction on the structure of R' and R”. It is implemented
as a type family

dia : M=>M" -> M=>M"’ -> M =>N -> M’ =N ->type.

such that there will be an object of type dia R’ R’’ S’ S’’ whenever the construction in the
proof yields S’ and S” from R’ and R”. In this proof we will informally apply inference rules to
deductions of the premisses to indicate the shape of a given reduction. We also heavily use inversion
in this proof. Inversion in this context means that, given the form of a conclusion, we examine
all available inference rules and eliminate those from consideration which could not produce a
conclusion of the given form. For example, if the conclusion has the form M; Ms = N for some
My, Ms, and N, we know that the last inference must either be beta or ap, but it could not be Im
or var. Using inversion it is easy to see that the cases we consider below are exhaustive.
Case:
—var.
R = T=x °

Since M = M = x, we know by inversion that also M"” = z and R” = R’ = var. Hence we
can let N =z and complete the diagram.

var = R/ R = var
x x

var =5"". 8" = var

-
x

As usual, this case will not be represented explicitly in the Elf program, but folded into the
cases where parameters are introduced.

Case:

y _ ——————var.
Ri= p— ¢

This is same as the previous case, since by inversion, R’ = R” in this case.

Case: Both R’ and R” end in an application of (parallel) S-reduction.

R, R,
R = M = M{ My — Mé
beta
and
RY Ry
R'" = M = M{/ My, — Mé/
beta.

()\.’l? Ml) M2 — [Mé//.’E]M{/

The Proof of the Church-Rosser Theorem 21

Note that this case is not trivial, since M’ = [M;/x]M{ may be different from M" =
5 /z]M{'. By two applications of the induction hypothesis we obtain the following dia-

[M//
grams.
M1 M2
e N\
M{ M{/ M/ M//
s{-. St S-Sy
a » Y »"
N No

Now the substitution lemma on S| and S} yields an S’ :: [M4/xz]M{ = [N2/x]N;. Similarly,
the substitution lemma on S7 and S yields an S” :: [My/ /x]M{ = [N2/x]N; and we can
fill in the diagram:

)\.’B M1 M2

beta (/ \ = beta(RY, RY)

[M}/x] M1
S/ "-';51//

.‘ ’.

[NQ/.’B]Nl

The implementation of this case is complicated, since we need to make the assumption that
x reduces to itself, and how dia behaves on this assumed reduction. This assumption incor-

porates the case for variables above.

dia_bb : dia (beta R1’ R2’) (beta R1’’ R2’’) S’ S’

<- ({x:term} {idx: x => x}

dia idx idx idx idx

-> dia (R1’ x idx) (R1’’ x idx)

(S1’ x idx) (S1’’ x idx))

<- dia R2’ R2’’ S2’ S27°
<- subst S1’ S2’ S’
<- subst S1°’’ S2’’ S’’.

Note that one would get a type-checking error if the various reductions did not share a source
or target as required by the diagrams, including the check on the substitution conditions.

Case: The reduction R’ is a 3-reduction and R” is an application of the congruence rule ap. Then
R} R
M = M{ My — Mé

R =
(e, My) M ; ; beta

The Proof of the Church-Rosser Theorem 22

and .
Ry RY

(Az. My) = M My = My

R// —
ap.

()\.’B Ml) My, — Ml Mé’

By inversion, we see that R; must end in an application of the A-congruence rule Im, since
this is the only rule which reduces a term of the form Az. M;. Thus M; = (Az. M{') and
Ry
M = M{/ R
Iy/:: Im 2
(Az. My) = dz. MY My = MY

ap.

(Az. My) My = (Az. M) MY

Now we can apply the induction hypothesis twice to obtain:

M, M,
v e 8l e
M/ M{/ M/ Mé/

sy Si- Ly

By the substitution lemma there is an S’ :: [Mj/x]M] = [Ny/x]N;. Furthermore, we can
apply the (rule to S} and S4 to obtain a S” :: (Ax. M{') M} = [N2/x]N; to complete the

diagram.
)\.’L‘ M1 M2
beta (/ \ = ap(Im(RY), RY)
[M}/] M1 (Az. M{’ MY
s"'--,' “§" — beta(S", 1)
<
[NQ/.’B]Nl

Again, in the implementation we have to assume a rule about the variable x.

dia (beta R1’ R2’) (ap (1lm R1’’) R2’’)
S’ (beta S1’’ S2°7)
<- ({x:term} {idx: x => x}
dia idx idx idx idx
-> dia (R1’ x idx) (R1’’ x idx)
(S1’ x idx) (S1’’ x idx))
<- dia R2’ R2’’ S2’ 52’
<- subst S1’ S2’ S’.

dia_bal :

The Proof of the Church-Rosser Theorem 23

Case: The reduction R’ is an application congruence and R” is a 3 reduction. This is dual to the

previous case.

dia (ap (1m R1’) R2’) (beta R1’’ R2’’)
(beta S1’ S2°) §”°
<- ({x:term} {idx: x => x}
dia idx idx idx idx
-> dia (R1’ x idx) (R1’’ x idx)
(S1’ x idx) (S1°’’ x idx))
<- dia R2’ R2’’ S2’ 52’
<- subst S1°’’ S2’’ S§’’.

dia_alb :

Case: Both sides end in an application of the ap rule. Then

R, Ry
R = M = M{ My — Mé
ap
M, My — M{ Mé
and 1" 1
Rl R2
R = M = M{/ My, — Mé/
ap.

M, My — M{/ Mé/
We apply the induction hypothesis twice to complete the following diagrams.

My My
R ZN
M My M} MY

Sy

Si LSy Sy,
a » Y »"
N1 N2
We combine the result by using the ap congruence on each side of the split.
My Mo
ap(RY, RY) :V y":am 1. RY)
M} Mj M} M
ap(S}, Sp) = S 8 = ap(SY),)
e
N1 Ny

The implementation is straightforward.
: dia (ap R1’ R2’) (ap R1’’ R2’’) (ap S1’ S2’) (ap S1’’ S2°7)

<- dia R1’ R1’’ S1’ 817’
<- dia R2’ R2’’ S2’ 852’7,

dia_aa

The Proof of the Church-Rosser Theorem 24

Case: In the final case both sides end in an application of the Im-congruence.

Ry

Im
Ar. M1 = Az. M{

and ,
Rl
R// — Ml] M{/

Im
Ar. M1 = Az. M{/
We apply the induction hypothesis to fill in the following diagram.

My
o
M My

I, ,-"//
51 51
‘o K

N

Now, applying the congruence to the resulting reductions Sj and S} we complete the diagram.

AZ. M1
Im(R}) = V & = Im(R})
Az. M Az. MY
Im(S}) = §""-. 57 = Im(SY)
AT. N1

Once again, assumptions for variables need to be made here.

dia_11 : dia (Im R1’) (Im R1’’) (Im S1’) (I1m S1°°)
<- ({x:term} {idx: x => x}
dia idx idx idx idx
-> dia (R1’ x idx) (R1’’ x idx) (S1’ x idx) (S1’’ x idx)).

O

The EIf rules given in the proof above are a complete implementation of the proof: whenever
we have reduction R’ :: M = M’ and R"” :: M = M" then the Elf program will find an N
and reductions S’ :: M’ = N and S” :: M” = N which complete the diagram according to
the algorithm which is implicit in the proof. Type-checking the signature above guarantees weak
form of correctness: whenever we apply dia to concrete derivations R’ and R” and dia terminates,
then we can read off a valid diagram. The process of schema-checking guarantees that that dia is

The Proof of the Church-Rosser Theorem 25

total in its first two arguments. These observations together verify the diamond lemma. Schema-
checking is sketched in [PR92], but the implementation is incomplete and most of it still has to be
done by hand. Other non-trivial examples have been carried out using the methodology, such as
a verification of type soundness of Mini-ML [MP91] and a compiler from Mini-ML to a variant of
the Categorial Abstract Machine (CAM) [HP92].

As an example for the execution of the EIf program above, reconsider the term

(Az. z x) (A\y. y) (Az. 2))

which can be reduced in four different ways: the outer redex, the inner redex, both, or neither.
Thus, the following query will enumerate 16 different diagrams (we show two). Here we use the
special, top-level form sigma [x:A] B to stage queries, that is, solving sigma [x:A] B first solves
A, binds x to the result and then solves B under this binding. This operational behavior can be
simulated in Elf without this special form of query, but only in a relatively cumbersome way.

7- sigma [R’> : (app (lam [x] (app x x)) (app (lam [y] y) (lam [z] z))) => M’]
sigma [R’’ : (app (lam [x] (app x x)) (app (lam [y] y) (lam [z] z))) => M’’]
dia R’ R’? (8> : M? => N) (S’’ : M’ => N).

Solving...

M’ = app (lam ([x:term] x)) (lam ([x:term] x)),
M’? = app (lam ([x:term] x)) (lam ([x:term] x)),
R’ = beta ([x:term] [R:x => x] ap R R)
(beta ([x:term] [R:x => x] R) (Im ([x:term] [R:x => x] R))),
R’’ = beta ([x:term] [R:x => x] ap R R)
(beta ([x:term] [R:x => x] R) (Im ([x:term] [R:x => x] R))),
N = app (lam ([x:term] x)) (lam ([x:term] x)),
S’ = ap (Im ([x:term] [idx:x => x] idx)) (Im ([x:term] [idx:x => x] idx)),
S’ = ap (Im ([x:term] [idx:x => x] idx)) (Im ([x:term] [idx:x => x] idx)).

I

M’ = app (lam ([x:term] x)) (lam ([x:term] x)),
M’’ = app (app (lam ([x:term] x)) (lam ([x:term] x)))
(app (lam ([x:term] x)) (lam ([x:term] x))),
R’ = beta ([x:term] [R:x => x] ap R R)
(beta ([x:term] [R:x => x] R) (Im ([x:term] [R:x => x] R))),
R’’> = beta ([x:term] [R:x => x] ap R R)
(ap (Im ([x:term] [R:x => x] R)) (Im ([x:term] [R:x => x] R))),
N = app (lam ([x:term] x)) (lam ([x:term] x)),
S’ = ap (Im ([x:term] [idx:x => x] idx)) (Im ([x:term] [idx:x => x] idx)),
g =
ap (beta ([x:term] [idx:x => x] idx) (Ilm ([x:term] [idx:x => x] idx)))
(beta ([x:term] [idx:x => x] idx) (Im ([x:term] [idx:x => x] idx))).

The next step in the proof of the Church-Rosser theorem is the strip lemma which is depicted
in the following diagram.

The Proof of the Church-Rosser Theorem 26

M
% \Rik//
M/ M//
g
k\ ;“
N

Here, R*" and S* stand for multi-step parallel reductions.

Lemma 7 (Strip Lemma) If R' :: M = M’ and R :: M =* M" then there exists an N and
reductions S* :: M =* N and S" :: M" = N.

Proof: By induction over the structure of R*”. The proof is implemented as type family strip.
strip : M => M’ -> M =>x M’ -> > =>x N -> M’’ =>N -> type.

Case: R* is the identity reduction. Then M"” = M and we can let N be M’.

M

M’ M

id". R
“ »"
M/
strip_id : strip R’ id id R’.
Case: R* ends in a reduction step.
Ry Ry’
R M= M MY =* M"
step
M =* M"

Now we can appeal to the diamond lemma on R’ and R{ to obtain an S} and S7. Next the

induction hypothesis on S and R3” completes the diagram.

M
% &/{
M/

MY
i s \132
a >
]\[1 M//
g o
.\ ".'

N

The Proof of the Church-Rosser Theorem 27

Recall that the rule step was written as an infix semi-colon.

strip_step : strip R’ (R1’’ ; R2x’’) (S1’ ; S82%’) S’
<- dia R’ R1’’ S1’ 81’
<- strip S1’’ R2%’’ S2x’ §’7,

O

Now we can prove the diamond property for multi-step reduction which we call confluence. In
the literature this property is often refered to as the Church-Rosser theorem, since in most situations
it is equivalent to the property of conversion actually proved in [CR36] (here: Theorem 16).

Lemma 8 (Confluence) If R* :: M =* M’ and R*' :: M =* M" then there exists an N and
reductions S* :: M' =* N and S*" :: M" =* N.

M
Y
M’ M"
G-, e

Proof: By induction on the structure of R*. The implementation is as a type family conf.
conf : M =>x M -> M=>x M’ -> M =>xN -> M’ =>x N -> type.

Case: R* ends in the identity. Then M’ = M and we can let N be M" to fill the diagram.
M

/ \Rik//
M M//
R id
“ r's
M//

conf_id : conf id Rx’’ Rx’’ id.

The Proof of the Church-Rosser Theorem 28

Case: R* ends in a reduction step R] followed by R3'. Then we apply the strip lemma and then
the induction hypothesis on R3' to fill in the diagram.

M
R/ \gk//
M{ M//
R/ Si'-. Sy
'\ ;"
M’ N
S;k'/".' S;”
w2
N

conf_step : conf (R1’ ; R2x%’) R*’’ S*’ (S1’’ ; S2%’?)
<- strip R1’ R%’’ Si1x’ 51’°
<- conf R2x’ S1x’ Sx’ S2x%77

O
Finally we are ready to prove the Church-Rosser theorem for parallel conversion and reduction.
Theorem 9 (Church-Rosser) If M <= M’ then there exists a term N and reductions S* ::

M =*N and S* : M' =—=* N c

M ~ - M’

S, g

Proof: By induction over the structure of C :: M <= M’. The proof is implemented as a family
cr @ M<=>M -> M=>xN -> M’ =>*x N -> type.

Case: C is a reduction R* :: M =* M’. Then we let N be M.
reduce(R*)

M. M

R id
“ r's
M/

cr_reduce : cr (reduce Rx) Rx id.

Case: C is a reduction R* :: M’ =* M. Then we let N be M.
expand(R*)

M M’

Equivalence of Ordinary and Parallel Reduction 29

cr_expand : cr (expand R*) id Rx.

Case: C is a composition of conversions. This is the interesting case.

C 1 C’2

C= M= M M'" <= M’
comp

M <— M’

Then we apply the induction hypothesis to C; and C5, followed by an appeal to confluence
and the transitivity of parallel multi-step reduction.

M Cl M// C’2 M/
ST Ry 5 S3
“ 2 “ 2
N, Ny
Ty Ty
<2
N

The Elf code makes the call to the transitivity lemma explicit which is only implicit in the
diagram (we need to append the reduction sequence S7 and 75 on the left, and S5 and T3
on the right).

cr_compose : cr (Cl ;; C2) S Sx’
<- cr C1 Si1x Ri1x
<- cr C2 R2x S2x%
<- conf R1* R2* T1x T2x*
<- append S1* T1x Sx*
<- append S2% T2* Sx*’.

6 Equivalence of Ordinary and Parallel Reduction

In this section we will prove that multi-step ordinary reduction and multi-step parallel reduction
define the same relation between terms. As a direct corollary we obtain the Church-Rosser theorem
for ordinary reduction. The first lemma states that parallel reduction can be simulated by multi-
step ordinary reduction.

Lemma 10 If M = N then M —* N.

Proof: By induction on the structure of R :: M = N. In each case we explicitly construct a
reduction S* :: M —* N. We heavily use Lemmas 2 and 1 which state that multi-step reduction
is congruent and transitive. The proof is implemented in Elf by a type family eq1.

eql : M=>N -> M -->x N -> type.

Equivalence of Ordinary and Parallel Reduction 30

Case:

- var
R= ,

Then id; is a multi-step reduction from x to x. As usual, this case is not directly represented as
a separate declaration in the Elf implementation, but folded into the cases where parameters
are introduced.

Case:
Ry Ry
eta
St My —* M{ By ind. hyp. on R;
St Ap. My —* Az, My By congruence
ST (Ax. My) My —* (Ax. M{) My By congruence
Sy i My —* M By ind. hyp. on Ry
S5' i (Ax. M) My —* (Az. My) M} By congruence
Sy (Az. M{) M}y — [M/x| M| By beta;
S* it (Ax. My) My —* [My/x]|M{ By transitivity from S}”, S5', and Ss.

The implementation of this case is a fairly direct translation of the above algorithm. Since
M is in the scope of x we need to make an appropriate assumption about reductions from
x to z, namely that x = x is translated to id; as indicated in the previous case. Appeals
to congruence use the admissible rules from Lemma 2, depending on which congruence is
required.

eql_beta : eql (beta R1 R2) Sx
<- ({x:term} {egx : x => x}
eql egx idl -> eql (Rl x eqx) (Si1* x))
<- 1mlx S1x Six’
<- apli* S1*’ S1%’’
<- eql R2 82
<- aprl* S2% S52x%’
<- appd S2x%’ (stepl betal idl) Sx*’
<- appd S1%’’ S*’ Sx.

Case:
Ry Ry
R= M = M{ My — Mé ap
M, My — M{ Mé
St My —* M| By ind. hyp.
S* i My My —* M| Mo By congruence
Sy i My —* M By ind. hyp.
S*' i M My —* M7 M, By congruence

S* i My My —* M7 M By transitivity from S* and S*”

Equivalence of Ordinary and Parallel Reduction 31

eql_ap : eql (ap R1 R2) S*
<- eql R1 S1x
<- apllx S1x% Sx’
<- eql R2 S82x%
<- aprl* S2% Sx*’’
<- appd S*’ S*’’ Sx.

Case:
Ry
m
Ar. M1 = Az. M{
St My —* M| By ind. hyp.
S* i dhx. My —* Az Mj By congruence

In the implementation, we once again have to make the proper assumption for the variable
x, which may be reduced to itself.

eql_1m : eql (1m R1) S=*
<- ({x:term} {eqx : x => x}
eql eqx idl -> eql (Rl x eqgx) (Six* x))
<- 1ml* S1x Sx.

O

The next lemma goes in the opposite direction, but this time we directly replace ordinary
single-step reduction by parallel single-step reduction.

Lemma 11 If M — N then M = N.

Proof: The proof is by induction on R :: M — N. In each case we explicitly construct an
S @ M = N. In an ordinary reduction fewer subterms are reduced, so we need to “pad” the
reductions with identities to obtain the parallel reductions. For this, we employ Lemma 3 which
states the reflexivity of parallel reduction.

eg2 : M-->N -> M =N -> type.

Case:
R = beta;
- ()\.’l? Ml) My — [MQ/.’B]Ml
Then
L I
S = M, = M, My = M>

beta
()\.’l? Ml) M2 — [Mg/.’l?]Ml

where I; and Iy exist by reflexivity of parallel reduction.

Recall the type of the implementation of Lemma 3:

Equivalence of Ordinary and Parallel Reduction 32

identity : {M:term} M => M -> type.

Since we have chosen to make the argument M explicit we now need to supply appropriate
terms wherever we appeal to reflexivity.

eq2_betal : eq2 (betal) (beta I1 I2)
<- ({x:term} {egqx : x => x}
identity x egx -> identity (M1 x) (Il x eqgx))
<- identity M2 I2.

Case:

Ry
R = M1—>M{

Im1
AT. M1 — Ax. M{

By the induction hypothesis on R; we know there exists an S; :: My = Mj. By an
application of the Im rule we conclude that A\z. My = \z. Mj.

In the Elf implementation we need to introduce a new parameter for the bound variable zx.
Note that this variable does not reduce to itself, since ordinary reduction has no case r — x.

eq2_1mi : eq2 (Im1 R1) (Im ([x:term] [egx : x => x] S1 x))
<- {x:term} eq2 (R1 x) (S1 x).
Case:
Ry
R = M1 — M{

aply
M1 M2 — M{ M2

By induction hypothesis there is an S :: M7 = M; and from the reflexivity of parallel
reduction we know there is an Iy :: My = Ms. Thus we can let

S I
S = M1 — M{ M2 — M2

ap
My My — M{ Mo

eq2_apll : eq2 (apll R1) (ap S1 I2)
<- eq2 R1 St
<- identity M2 I2.

Case:

Ry
R = M2—>Mé

apr;
M1 M2 — M1 Mé

This is symmetric to the previous case.

Equivalence of Ordinary and Parallel Reduction 33

eq2_aprl : eq2 (aprl R2) (ap I1 S2)
<- eq2 R2 S2
<- identity M1 I1.

O

From Lemmas 10 and 11 the equivalence of the generated multi-step reduction relations can be
proved easily.

Theorem 12 M —* N iff M =" N.

Proof: In both directions by simple inductions over reduction sequences. We will leave the informal
proof to the reader and give only the implementation in Elf. Recall the type families

eql : M=>N -> M -->x N -> type.
eg2 : M-->N -> M =N -> type.

which implement Lemmas 10 and 11, respectively. The families eq3 and eq4 implement the two
claimed implications.

eq3 : M -—>x N -> M =>x N -> type.

eq3_id : eq3 idl id.

eq3_step : eq3 (stepl R1 R2%) (S1 ; S2%)
<- eq2 R1 S1
<- eq3 R2* 52,

eqgd : M=>* N -> M -->x N -> type.

eq4_id : eq4 id idil.
eq4_step : eq4 (R1 ; R2*) Sx
<- eql R1 S1x
<- eq4 R2x 352
<- appd S1* S2* Sx*.

O

From the equivalence of the reduction relations, the equivalence of conversion also follows almost
immediately.

Lemma 13 If M <= N then M +— N.

Proof: By induction on the structure of C' :: M <= N. In each case, we explicitly construct
a C' :: M +— N, taking advantage of Theorem 12. Since the proof is trivial, we only give its
implementation in Elf. Recall that «+— is defined as the equivalence closure of —>, while <= is
defined as a reduction, expansion (inverse of reduction) or composition of two conversions.

eqb : M <=>N -> M<->N -> type.

eqb_red : eqgb (reduce R*) (red Sx)

Equivalence of Ordinary and Parallel Reduction 34

<- eq4 Rx S*.

eq5_exp : eqb (expand Rx) (sym (red S%*))
<- eq4 Rx S*.

eqb_trans : egb (C1 ;; C2) (trams C1’ C27)
<- eq5 C1 C1’
<- eq5 C2 C2’.

O

Because of the definition of parallel conversion via reduction and expansion instead of symmetry
and transitivity, we need to explicitly show the symmetry of parallel conversion as a simple lemma.

Lemma 14 If M <= N then N < M.

Proof: The proof is a simple induction on the structure of C' :: M <= N. We only show the
implementation of this proof in EIf.

sym_pconv : M <=>N -> N <=>M -> type.

spc_red : sym_pconv (reduce R*) (expand R*).
spc_exp : sym_pconv (expand R*) (reduce Rx).
spc_trans : sym_pconv (Cl ;; C2) (C2’ ;; C1%)

<- sym_pconv C1 C1’
<- sym_pconv C2 C2’.

Lemma 15 If M <— N then M < N.

Proof: By induction on the structure of C' :: M <— N. In each case we explicitly construct a
C’ :: M <= N. The implementation is as a type family

eg6 : M <->N -> M<=>N -> type.

Case:
— refl
C= MM
Then we let d
—
C/ . M :>* M
— —— reduce
M<<— M
eq6_refl : eq6 refl (reduce id).
Case:

C1

C= N<+—M
S —— Y
M<+— N

By induction hypothesis there exists a C :: N <= M. By symmetry of parallel conversion
(Lemma 14) we obtain a C" :: M <= N.

Equivalence of Ordinary and Parallel Reduction 35

eq6_sym : eq6 (sym C1l) C’
<- eq6 C1 C1’
<- sym_pconv C1’ C’.
Case:

C 1 C’2
C—= M— M M «— N

trans
M<+— N

Then C’ follows from the induction hypothesis on C; and Cs and the transitivity rule for
parallel conversion.

eq6_trans : eq6 (trans C1 C2) (C1’ ;; C2?)
<- eq6 C1 C1’
<- eqb C2 C2°.
Case:
R*
= M-—*N

—— red
M<+— N

By Theorem 12 there exists an $* :: M =* N and we let

S*
' = M =*N
reduce
M <<= N
eq6_red : eq6 (red R*) (reduce S*)

<- eq3 Rx Sx.

O

Now we can prove the Church-Rosser theorem for ordinary conversion by translating to parallel
reduction. Not all of the lemmas above are actually necessary to prove this theorem.

Theorem 16 (Church-Rosser) If M <— M’ then there exists an N such that M —* N and
M —* N.

Proof: By Lemma 15, there exists a C' :: M <= M’. By the Church-Rosser theorem for parallel
conversion (Theorem 9) we obtain an N and parallel multi-step reduction R* :: M =* N and
R* :: M’ =* N. By Theorem 12 there exist S* :: M —* N and S* :: M/ —* N.

cr.ord : M <> M -> M-->%N -> M -->x N -> type.

cr_all : cr_single C S* Sx’

<- eq6 C C’
<- cr C’ Rx Rx’
<- eq4 Rx S*

<- eq4 Rx’ S%’.

Conclusion 36

7 Conclusion

We have demonstrated the use of the logical framework LF and its realization in the Elf program-
ming language for the implementation of abstract syntax, semantics, and meta-theory of an object
language, the untyped A-calculus. The main meta-theorem, the Church-Rosser property under (-
reduction, is non-trivial and its implementation in Elf illustrates various representation techniques
such as higher-order abstract syntax, judgments-as-types, and proofs of meta-theorems as higher-
level judgments. These techniques permit the user to concentrate on the mathematical content of a
proof and largely ignore details of variable naming and capture-avoiding substitution as is usually
done in informal proofs. This and the power of term reconstruction in Elf lead to a remarkably close
correspondence between informal and formal proof. Starting from an understanding of the basic
idea of parallel reduction and the substitution lemma, the formalization of the core of this proof
was done by the author in one afternoon, cleanup work and the relation to ordinary reduction took
up another day. We hope to have convinced the reader that with some practice, representation of
non-trivial languages and their properties is possible with a resonable amount of effort.

It is interesting to compare this representation with the proof by Shankar [Sha88| in the Boyer-
Moore theorem prover [BM79]. While the basic mathematical ideas are very similar, Shankar
expends much effort to develop an appropriate representation (using de Bruijn numbers [dB72])
and proving it correct. Many of the actual proofs are not even explicitly represented, since they
are found automatically once the right series of lemmas has been developed. In contrast, in our
representation almost all the details of the informal proof are present in the formalization (with
the exception of the details inferred by type reconstruction). Thus the representations are of
comparable length in the two implementations, but the content of what is actually written down is
very different. In future work we hope to consider the question how much of the construction of the
meta-level judgments which implement induction proofs can be automated. Intuitively, they often
are straightforward from the stringent constraints imposed by type dependencies. This indicates
that there is a great potential for the automation of meta-theory which has yet to be explored.

Acknowledgments

I would like to thank John Reynolds who wrote the IATX macros I used for drawing the diagrams,
and Ekkehard Rohwedder for proof-reading a draft of this report.

Summary of the Representation 37

A Summary of the Representation in EIf

In this appendix we summarize the Elf code shown in various places throughout the report for
easy reference. The source is also labeled with the name of the file in which it appears in the
implementation which is available via anonymous ftp.*

A.1 The untyped A-calculus

%hh File: lam.elf
%%% Untyped lambda-calculus

term : type. Yname term M

lam : (term -> term) -> term.
app : term -> term -> term.

A.2 Ordinary reduction
%%% File: ord-red.elf

%h% Ordinary reduction for the untyped lambda-calculus

--> : term -> term -> type. %infix none 10 -->
%name --> R

betal : (app (lam M1) M2) --> M1 M2.
1ml : ({x:term} M x --> M’ x)

-> (lam M) --—> (lam M’).
apll : M1 --> M1’

-> (app M1 M2) --> (app M1’ M2).

aprl : M2 --> M2’
-> (app M1 M2) --> (app M1 M2’).

% Multi-step reduction

-=>% : term -> term -> type. %infix none 10 -->%
%name —->* Rx

id1 : M -->x M.
stepl : M--> M
-> M -->x M7
-> M -->% M7,

% Conversion

<-> : term -> term -> type. %infix none 10 <->
Jiname <-> C

“Please send electronic mail to the author at fp@cs.cmu.edu for further information.

Summary of the Representation

refl : M <-> M.

sym : M <> M
-> M’ <> M.

trans: M <> M
-> M’ <-> M
-> M <-> M’

red : M —-->x M’
-> M<-> M.

A.3 Parallel reduction

%ht% File: par-red.elf

%h% Parallel reduction in the untyped lambda calculus

=> : term -> term -> type. %infix none 10 =>

beta : ({x:term} x => x

->

-> (app (lam
ap : M1 =>

-> M2 =>

-> (app M1 M2) =>

1m : ({x:term} x => x
->

Yname => R

-> M1 x => M1’ x)
M2 => M2’
M1) M2) => M1’ M2’.

M1’
M2°
(app M1’ M2°).

> Mx => M x)
lam M => lam M’.

% Parallel, multi-step reduction

=>% : term -> term -> type. %infix none 10 =>%

Yname =>% Rx*

id : M =>%x M.
; : M=>M
-> M2 =>% M
-> M =>x M’’. Yinfix right 10 ;

% Parallel conversion

<=> : term -> term -> type. %infix none 10 <=>

reduce : M =>x M’
-> M <=> M.

expand : M =>x M’
-> M’ <=> M.

Yname <=> C

38

Summary of the Representation

H : M <=M
-> M’ <=> M’
-> M <=> M’’, Y%infix none 8 ;;

A.4 Lemmas about parallel reduction

%%% File: par-lemmas.elf
%h% Basic lemmas concerning parallel reductions

% Every term reduces to itself (in parallel)
identity : {M:term} M => M -> type.

id_lam : identity (lam M1) (Im R1)
<- {x:term} {eqx: x => x} identity x egx -> identity (M1 x) (Rl x eqgx).

id_app : identity (app M1 M2) (ap R1 R2)
<- identity M1 R1
<- identity M2 R2.

% Parallel multi-step reduction is transitive.
append : M =>x M’ -> M’ =>x M’’ -> M =>x M’’ -> type.

append_id : append id S* Sx.
append_step : append (R1 ; R2*) Sx (R1 ; S2%’)
<- append R2* S* S2x%’.

A.5 The Church-Rosser theorem for parallel reduction

%hth File: par-cr.elf
%h% The Church-Rosser theorem for parallel reduction

% Substitution lemma for parallel reduction

subst : ({x:term} x => x -> M x => M’ x)
-> N => N’
-> MN => M N’
-> type.

subst_idx : subst ([x:term] [idx: x => x] idx) S S.

subst_beta : subst ([x:term] [idx: x => x] beta (Rl x idx) (R2 x idx))
S (beta R1’ R2’)
<- ({y:term} {idy: y => y}
subst ([x:term] [idx: x => x] idy) S idy
-> subst ([x:term] [idx: x => x] Rl x idx y idy)
S (R1’ y idy))
<- subst R2 S R2’.

39

Summary of the Representation

subst_ap : subst ([x:term] [idx: x => x] ap (Rl x idx) (R2 x idx))
S (ap R1’ R27)
<- subst R1 S R1’
<- subst R2 S R2’.

subst_1m : subst ([x:term] [idx: x => x] 1m (R1 x idx))
S (Im R1’)
<- ({y:term} {idy: y => y}
subst ([x:term] [idx: x => x] idy) S idy
-> subst ([x:term] [idx: x => x] Rl x idx y idy)
S (R1’ y idy)).

% Diamond property for parallel reduction
dia : M=>M -> M=>M?’> -> M =>N -> M’ =>N -> type.

% Proof by induction on the structure of the first two derivations.
% We consider the various possible cases.
% b = beta, a = ap, 1 = 1m,

dia_bb : dia (beta R1’ R2’) (beta R1’’ R2’’) S’ S’

<- ({x:term} {idx: x => x}

dia idx idx idx idx

-> dia (R1’ x idx) (R1’’ x idx)

(S1’ x idx) (S1’’ x idx))

<- dia R2’ R2’’ 82’ 82’
<- subst S1’ 82’ §’
<- subst S1’’ S2’’ S’’.

dia_bal : dia (beta R1’ R2’) (ap (Im R1’’) R2’’)

S’ (beta S1’’ 82°7)

<- ({x:term} {idx: x => x}
dia idx idx idx idx
-> dia (R1’ x idx) (R1’’ x idx)

(S1’ x idx) (S1’’ x idx))
<- dia R2’ R2’’ 82’ S2’°
<- subst S1’ S2’ S’.

dia_alb : dia (ap (1m R1’) R2’) (beta R1’’ R2’’)
(beta S1° 82°) 8°
<- ({x:term} {idx: x => x}
dia idx idx idx idx
-> dia (R1’ x idx) (R1’’ x idx)
(S1’ x idx) (S1’’ x idx))
<- dia R2’ R2’’ 82’ S2’°
<- subst S1’’ S2’’ S’’.

dia_aa : dia (ap R1’ R2’) (ap R1’’ R2’’) (ap S1’ S2’) (ap S1’’ S2’°)
<- dia R1’ R1’’ S1’ S1°°
<- dia R2’ R2’’ S2’ S82’’.

Summary of the Representation

dia_11 : dia (Im R1’) (Im R1’’) (Im S1’) (I1m S1°’’)
<- ({x:term} {idx: x => x}
dia idx idx idx idx
-> dia (R1’ x idx) (R1’’ x idx) (S1’ x idx) (S1’’ x idx)).

% The strip lemma for parallel reduction.

strip : M => M’ -> M =>x M’ -> M’ =>x N -> M’’ => N -> type.
strip_id : strip R’ id id R’.
strip_step : strip R’ (R1’’ ; R2x’’) (81’ ; S2x’) S”?

<- dia R’ R1’’ S1’ 81’
<- strip S1’’ R2x%’’ 82x%’ §’’.

% Confluence for parallel multi-step reduction.

conf : M =>x M’ -> M =>x M’ -> M’ =>x N -> M’’ =>x N -> type.
conf_id : conf id Rx’’ Rx’’ id.
conf_step : conf (R1’ ; R2%’) R*’’ S*’ (S1’’ ; S2%’’)

<- strip R1’ R*x’’ S1x’ §1°’
<- conf R2%’ S1x%’ S*’ S2%’7,

% Church-Rosser Theorem for parallel reduction
cr : M<=>M -> M=>xN -> M =>x N -> type.

cr_reduce : cr (reduce R*) R* id.
cr_expand : cr (expand Rx) id Rx.
cr_compose : cr (C1l ;; C2) S* S*’
<- cr C1 S1x% R1x
<- cr C2 R2x* S2x
<- conf R1* R2x Ti1x T2
<- append S1x T1x S*
<- append S2% T2x% Sx*’.

A.6 Lemmas about ordinary reduction

%h% File: ord-lemmas.elf
%h% Lemmas concerning ordinary multi-step reduction

% Transitivity of multi-step reduction

appd : M -->x M’ -> M’ -->x M’ -> M -->x M’’ -> type.
appd_id : appd idl S* Sx.
appd_step : appd (stepl R1 R2*) S* (stepl R1 S2x’)

<- appd R2* S* S2x’.

% Multi-step reduction is a congruence
Imix : ({x:term} M x -->* M’ x)

-> (lam M) -->x (lam M’)
-> type.

Summary of the Representation

Imi*x_id : Imix ([x:term] idl) id1l.
Imi*_step : lml* ([x:term] stepl (R1 x) (R2* x)) (stepl (1ml R1) S2x)
<- 1mlx R2*% S2x.

aplix : M1 -->% M1’
-> (app M1 M2) -->* (app M1’ M2)
-> type.

apli*_id : aplix idl idi.

apll*_step : apllx (stepl R1 R2%) (stepl (apll R1) S2x)
<- aplix R2x% S2x.

aprix : M2 -->% M2’
-> (app M1 M2) -->* (app M1 M2’)
-> type.

april*_id : aprilx* idl idl.
april*_step : aprlx (stepl R1 R2%) (stepl (aprl R1) S2x)
<- aprilx R2x% S2x.

A.7 Equivalence of ordinary and parallel reduction

%kt File: equiv.elf
%h% Equivalence of ordinary and parallel reduction.

% If M => N then M -->* N.
eql : M=>N -> M -->* N -> type.

eql_beta : eql (beta R1 R2) S*
<- ({x:term} {egx : x => x}
eql egx idl -> eql (R1 x egx) (Six x))
<= Imlx* S1% Six’
<- apli* S1%’ S1x’’
<- eql R2 S2x
<- aprilx S2% S2x%’
<- appd S2*’ (stepl betal idl) S’
<- appd S1%’’ S*x’ Sx.

eql_ap : eql (ap R1 R2) S*
<- eql R1 Si1x
<- aplil* S1x* Sx*’
<- eql R2 S2x
<- april* S2% Sx’’
<- appd S*’ S*x’’ Sx.

eql_1m : eql (Im R1) S
<- ({x:term} {egx : x => x}
eql egx idl -> eql (R1 x egx) (Six x))
<- Iml* S1x* Sx.

42

Summary

% If M —-

eq2 : M -

eg2_betal :

eq2_1mil

eq2_aplil

eq2_april

% If M —-

eq3 : M -

eq3_id :

eq3_step :

% If M =>
eqd : M =

eq4_id :

eqé4_step :

% If M <=
eqb : M <
eqb_red

eqb_exp

eqb_trans :

of the Representation

> N then M => N.
->N -> M=>N -> type.

eq2 (betal) (beta I1 I2)
<- ({x:term} {egx : x => x}

identity x eqx -> identity (M1 x) (Il x egx))
<- identity M2 I2.

: eq2 (Iml R1) (Im ([x:term] [eqx : x => x] S1 x))
<- {x:term} eq2 (R1 x) (S1 x).

: eq2 (apll R1) (ap S1 I2)
<- eqg2 R1 S1
<- identity M2 I2.
: eq2 (aprl R2) (ap Il S2)
<- eq2 R2 82
<- identity M1 I1.
> N then M =>* N.
->x N -> M => N -> type.
eq3 idl id.
eq3 (stepl R1 R2x) (S1 ; S2%)
<- eq2 R1 S1
<- eq3 R2x* S52x.
* N then M -->* N.
>N -> M -->% N -> type.
eg4 id idil.
eq4 (R1 ; R2x) Sx
<- eql R1 Si1x
<- eqg4 R2x 32
<- appd S1* S2% Sx.
> N then M <-> N.

=>N -> M<->N -> type.

: eq5 (reduce Rx) (red Sx)

<- eq4 R*x Sx.
: eqb (expand Rx) (sym (red Sx))
<- eq4 R*x Sx.

eqb (C1 ;; C2) (trams C1’ C27)
<- egb C1 C1’

<- eqgb C2 C2’.

43

Summary of the Representation

% If M <=> N then N <=> M.

sym_pconv : M <=> N -> N <=>M -> <type.

spc_red : sym_pconv (reduce R*) (expand Rx).
spc_exp : sym_pconv (expand R*) (reduce Rx).
spc_trans : sym_pconv (C1 ;; C2) (C2’ ;; C1’%)

<- sym_pconv C1 C1’
<- sym_pconv C2 C2’.

% If M <-> N then M <=> N.
eqg6 : M <->N -> M<=>N -> type.

eqb6_refl : eq6 refl (reduce id).
eq6_sym : eq6 (sym C1) C’

<- eqg6 C1 C1°
<- sym_pconv C1’ C’.
eq6_trans : eq6 (trams Cl1 C2) (C1’ ;; C2?)
<- eqg6 C1 C1°
<- eqg6 C2 C2’.
eq6_red : eq6 (red R*) (reduce S*)
<- eq3 Rx Sx.

A.8 The Church-Rosser theorem for ordinary reduction

%%%h File: ord-cr.elf
%%% The Church-Rosser theorem for ordinary reduction

cr.ord : M<->M -> M-->xN -> M’ -->x N -> type.

cr_all : cr_ord C S*x Sx’

<- eg6 C C’
<- cr C’ R* Rx’
<- eg4 Rx* Sx

<- eq4 Rx’ Sx’.

References 45

References

[Bar80]
[BM79]

[CF58]
[CR36]

[dB72]

[Fel89)]

[Han91]

[Har90]

[HHP]

[HP92]

[Mey82]

[MLSO0]

[MPY1]

[NMSS]

[Pau86]

H. P. Barendregt. The Lambda-Calculus: Its Syntax and Semantics. North-Holland, 1980.

Robert S. Boyer and J. Strother Moore. A Computational Logic. ACM monograph series.
Academic Press, New York, 1979.

H. B. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam, 1958.

Alonzo Church and J.B. Rosser. Some properties of conversion. Transactions of the
American Mathematical Society, 36(3):472-482, May 1936.

N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for automatic
formula manipulation with application to the Church-Rosser theorem. Indag. Math.,
34(5):381-392, 1972.

Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic Pro-
gramming Language. PhD thesis, Department of Computer and Information Science,
University of Pennsylvania, July 1989.

John Hannan. Investigating a Proof-Theoretic Meta-Language for Functional Programs.
PhD thesis, University of Pennsylvania, January 1991. Available as MS-CIS-91-09.

Robert Harper. Systems of polymorphic type assignment in LF. Technical Report CMU-
CS-90-144, Carnegie Mellon University, Pittsburgh, Pennsylvania, June 1990.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM, 1997 To appear. Available as Technical Report CMU-CS-89-173,
Carnegie Mellon University. A preliminary version appeared in Symposium on Logic in
Computer Science, pages 194-204, June 1987.

John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov, editor,
Seventh Annual IEEE Symposium on Logic in Computer Science, pages 407—418, Santa
Cruz, California, June 1992. IEEE Computer Society Press.

Albert R. Meyer. What is a model of the lambda calculus. Information and Control,
52:87-122, 1982.

Per Martin-Lof. Constructive mathematics and computer programming. In Logic,
Methodology and Philosophy of Science VI, pages 153-175. North-Holland, 1980.

Spiro Michaylov and Frank Pfenning. Natural semantics and some of its meta-theory
in Elf. In L.-H. Eriksson, L. Hallnés, and P. Schroeder-Heister, editors, Proceedings of
the Second International Workshop on Extensions of Logic Programming, pages 299-344,
Stockholm, Sweden, January 1991. Springer-Verlag LNAT 596.

Gopalan Nadathur and Dale Miller. An overview of AProlog. In Robert A. Kowalski
and Kenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth Interna-

tional Conference and Symposium, Volume 1, pages 810-827, Cambridge, Massachusetts,
August 1988. MIT Press.

Lawrence Paulson. Natural deduction as higher-order resolution. Journal of Logic Pro-
gramming, 3:237-258, 1986.

References 46

[Pfe91lal

[Pfe91b]

[Plo75]

[PR92]

[Sha88]

[Wad76]

Frank Pfenning. An implementation of the Elf core language in Standard ML. Available
via ftp over the Internet, September 1991. Send mail to elf-request@cs.cmu.edu for further
information.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet and
Gordon Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge University Press,
1991.

G. D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer
Science, 1:125-159, 1975.

Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of deductive
systems. In D. Kapur, editor, Proceedings of the 11th International Conference on Auto-
mated Deduction, pages 537-551, Saratoga Springs, New York, June 1992. Springer-Verlag
LNATI 607.

N. Shankar. A mechanical proof of the Church-Rosser theorem. Journal of the Association
for Computing Machinery, 35(3):475-522, July 1988.

Christopher P. Wadsworth. The relation between computational and denotational proper-
ties for Scott’s Doo-models of the lambda-calculus. STAM Journal of Computing, 5(3):488—
521, September 1976.

