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Abstract—Session types are widely accepted as a useful expres-
sive discipline for structuring communications in concurrent and
distributed systems. In order to express infinitely unbounded
sessions, as required to model the behaviour of realistic dis-
tributed systems, session typed languages often introduce general
recursion operators at both the program and the type level.
Unfortunately, general recursion, in particular when combined
with name passing and mobility, may easily introduce undesirable
divergence, e.g., infinite unobservable reduction sequences.

In this paper we address, by means of typing, the challenge
of ensuring non-divergence in a session-typed m-calculus with
general (co)recursion, while still allowing interesting infinite
behaviours to be definable, as necessary to model realistic open
process networks and distributed systems. Our approach builds
on a Curry-Howard correspondence between our type system
and a standard system of linear logic extended with co-inductive
types, for which our non-divergence property implies consistency.

We prove type safety for our framework, implying protocol
compliance and global progress of well-typed processes. Remark-
ably, we also establish - through a logical relations argument -
that well-typed processes are compositionally non-divergent, in
the sense that no well-typed composition of processes, including
compositions dynamically assembled through name passing, can
result in divergent behaviour, a property of practical relevance.

I. INTRODUCTION

This work addresses, by means of a logically motivated
typing discipline, the problem of ensuring compositional non-
divergence in session-based process systems with infinite
behaviour defined using (co)recursive types.

We live in an age of concurrent and distributed software,
meant to run not only as local applications but as cooperating
parts of larger, distributed and mobile services, meant to run
indefinitely with multiple independent clients, which are hard
to build and ensure correct. Process models combined with
techniques for precisely characterising and analysing system
behavior have been exploited to verify properties such as
deadlock freedom, protocol compliance, and availability of
distributed and service based systems. Among type-based
approaches to verification, a rather successful technique has
been that of session types [1], [2], [3].

Session types structure message-based concurrency around
the notion of a session, which is a precise description of the
interaction patterns of two (or more) communicating agents
with an intrinsic notion of protocol state (e.g. input a string
and then output an integer) and duality. Thus, session types are
a form of protocol descriptions that can be statically checked
for compliance. The recent discovery of a correspondence be-
tween (all linear and shared features of) session types and pure
Linear Logic in the style of Curry-Howard [4], linking proofs
with typed processes and proof reduction as communication,

has sparked a renewed interest in session types and their foun-
dations [5], and in the idea of exploiting logically motivated
approaches for providing powerful reasoning techniques about
concurrent and distributed systems. This line of work has
addressed concepts such as value-dependent types [6], proof-
carrying code [7] behavioural polymorphism [8], and higher-
order computation [9], approaching a general type theory for
session-based concurrency, with strong guarantees by virtue
of typing such as deadlock freedom and session fidelity.

Although in the untyped case infinite behavior is potentially
encodable using replication in the m-calculus, to express
infinitely unbounded session exchanges, as required to model
the behaviour of realistic distributed systems, session typed
languages often introduce general recursion operators at both
the program and the type level. In a typed setting, replication
can only capture finite session behavior that can be replicated
(shared) arbitrarily often. It is not rich enough to model infinite
session behavior, nor repeating behavioral patterns that depend
on evolving state.

Unfortunately, existing session type systems for (channel-
passing, higher-order) systems equipped with general recur-
sion operators do not avoid validating systems exhibiting un-
desirable divergence, e.g., infinite sequences of unobservable
internal reduction steps. While this issue already arises at the
level of individual systems, it but becomes more serious when
one needs to consider realistic dynamically linked distributed
systems. For example, plugging together subsystems, e.g. as a
result of dynamic channel passing or of linking downloaded
(higher-order) code to local services, may undesirably result
in a system actually unable to offer its intended services due
to divergent behavior, even if the component subsystems are
well-typed and divergence-free, and this may be caused by
simple programming error or by malicious intentions (e.g. a
denial of service attack).

In this work, we tackle the challenge of reconciling general
recursion, thus enabling potentially infinite behaviour to be
expressed, with local termination and strong normalization
within a session typed framework. As a toy example, consider
a web service from Twitter offering a replicated service trends
which is intended to produce a stream of current trends,
according to some custom metrics. To that end, the service
is parametrized by a filter process that given a stream of
tweets produces a stream of trends. The code implementing
the service is:

Serv £ ltrends(x).z(f).(vy) f(y).(TweetSrc, | [f < z])

When invoked, the Serv replicated service creates a new



session on fresh channel x, inputs on session z the appropriate
filter function f, links it to the internal tweet source TweetSrc,
and then repeatedly forward the results back on session z. The
session types involved are:

TrendService £ !((Tweets —o Trends) —o Trends)
Tweets = vX.(tweet A X) Trends = vY.(trend A Y)

A possible client for the service Serv is
Joe £ (vx)trends(x).(vk)x(k).(Fy|(corec Z.z(y).p(y).2))

This process invokes the shared server, resulting in a fresh
session in channel x, sends (access to) a custom analytics
package Fy, and then sits in a loop printing out (on session p)
each trend received from the server in session z. In our type
system, we may derive the typing judgment

trends:TrendService F Joe :: p:Trends

Notice that we build on the intuitionistic formulation of
linear logic based session types [4], where typing judgments
have the form I'; A = P :: x:U. This states of process P
that it provides a session of type U at x, when composed
with services / sessions as specified by I'; A. Using the cut
rule, we may compose the server with a client in a system
Sys £ (vtrends)(Serv | Joe). System Sys will (unboundedly)
print out trends on channel p, actually, system Sys is typed as
k= Sys :: p:Trends. Being typed in our system, and although it
generates an infinite stream of trends at p, involves higher-
order name passing, dynamic linking, and occurrences of
recursive calls, Sys will never get into internal divergence. It
is challenging to obtain an expressive typing discipline ensur-
ing the compositional non-divergence property. For instance,
consider the very similar looking processes

corec L(c).c(z).(vd)(L(d) | d{n).[d <> ¢])
corec G(¢).c(z).(vd)(G(d) | ¢(n).[d < ¢])

These two processes do not autonomously eventually diverge.
It is possible to type Good, thus ensuring that it will never
diverge, even when composed with arbitrary (well-typed)
processes. However, this is not the case for process Loop,
which gets into an infinite internal reduction sequence after
the first communication on ¢, and (of course) is not typeable
in our type system.

Our work has important practical and foundational con-
sequences. From a foundational perspective, we proceed by
developing a theory of coinductive session types, fully pre-
serving the connections with linear logic in the sense of [4].
In this context, non-divergence implies termination of cut-
elimination, and therefore we establish logical consistency
of our framework. From a practical perspective, we provide
a typing discipline for session types supporting rich infinite
interactive behaviour, while rejecting systems that may engage
into autistic internal divergence. More precisely, our typing
discipline ensures, together with global progress (actually,
lock-freedom) and protocol fidelity, the compositional non-
divergence of infinite behaviors (i.e. that there is no well-typed
process context under which a well-typed process will evolve

Loop £
Good £

to a divergent behavior), an important property out of the scope
of existing session type systems with recursive types.
We summarise the contributions of our work:

e« We introduce a session type system for our process
calculus based on linear logic with coinductive types, as-
sociating corecursive process definitions with coinductive
session types which encode potentially infinite session
behavior.

e« We show that well-typed processes enjoy very strong
safety properties such as type preservation (or session
fidelity) and progress, even in the presence of corecursion.

o We prove that well-typed processes are compositionally
non-divergent by employing a logical relations argument,
extended to coinductive session types, which combined
with type safety ensures that any well-typed, distributed
service implemented in our calculus will not only never
“get stuck”, but will also never become unavailable
through divergent behavior.

II. PROCESS MODEL

In this section we introduce our process calculus, essentially
consisting of a (synchronous) w-calculus with basic data types
for convenience, input-guarded replication, labelled choice and
selection and corecursion. The syntax of processes is given
below:

M,N :=
PQ

... (basic data constructors)

n= a(M).P|a(y).P|z(y).P | (vy)P
| lz(y).P| P|Q|x.case(l; = P;) | x.l;; P
|  (corec X(y).P)c| X(@)|[x+y]|O0

We range over basic data with M, N and processes with P, Q.
We write 3y and ¢ for a list of variables and channels, respec-
tively. We write fn(P) for the free names of process P. Basic
data type constructors include the typical constructs for ma-
nipulating data such as numbers, strings and lists. The process
language is a synchronous 7-calculus with term input z(y).P
and output z(M).P, channel output c¢(y).P, input-guarded
replication !z(y).P, n-ary labelled choice x.case(l; = P;)
and selection x.l;; P, channel forwarding [z <+ y| and, cru-
cially, a parametrized corecursion operator (corec X ().P) ¢,
enabling corecursive process definitions (the variables 7 are
bound in P). The parameters are used to instantiate channels
(and values) in recursive calls accordingly.

The operational behavior of processes is given in terms of
reduction and labelled transitions, both defined modulo struc-
tural congruence (written =) which captures basic structural
identities of processes (Fig. 1). Reduction P — @ is defined
by the rules in Fig. 2. Term communication is only done
in value form, meaning that all terms are reduced to values
before communication takes place (we omit the reduction rules
for terms and the compatible closure rules for conciseness).
We note the standard unfolding semantics for corecursive
definitions. Channel communication is always fresh. In the
epilogue, we write = for the reflexive transitive closure of
— and P |} iff P is non-divergent (i.e. there is no infinite
reduction sequence starting with P).



z & fn(P) = Pl(vz)Q = (v2)(P|Q) P=Q=P=Q
PI(QIR)=(P|Q)|R PlQ=Q|P
(va)(vy)P = (vy)(ve)P ly ¢ a] = [z ¢ y]
P|o=P (vz)0=0
Fig. 1. Structural Congruence

c(V).Plc(x).Q — P Q{V/z}

c(y).P | c(z).Q — P | Q{y/z}

c(y).P |le(z).Q — P | Q{y/x} | le(2).Q

ccase(l; = P;) | cli;Q — P | Q

(va)(Py | [y <> ]) — Ply/a} (z #y)

(corec X(y).P) ¢ — P{c/y}{(corec X (y).P)/ X}

fQ—Q then P|Q— P|Q

If P — @ then (vy)P — (vy)Q

If P=P and PP — Q and Q' = Q then P — Q
Fig. 2. Reduction

The labelled transition system is defined by the rules of
Fig. 3, consisting of a typical early transition system with
internal actions 7, output z(y) and its dual input z(z) action,
bound output (vy)x(y), label selection x.l and choice =.1.

III. TYPE SYSTEM

In this section we motivate and present our type system
based on intuitionistic linear logic. The syntax of types is given
in Fig. 4. We distinguish the types of basic data 7,0 from
session types A, B, C.

The language of session types covers the standard session
constructs: data input and output (7 O A and 7 A A), (fresh)
session input and output (A — B and A ® B), termination
(1), labelled choice and selection (&{{;:A;} and &{(;:A,}),
replication (!A) and coinductive session behavior (v X.A).

A. From General Recursion to Corecursion

While both recursive and coinductive session types de-
note (potentially) infinite session behavior, the fundamental
distinction is that using general recursion a process might
generate an infinite sequence of infernal actions, whereas
a valid coinductive definition of a session typed process is
guaranteed to always have a finite sequence of internal actions
before offering some observable behavior. It is this external,
observable behavior that may be infinite in a coinductively de-
fined, session typed process. This is of paramount importance
since it ensures that a well-typed process offering a coinductive
session type will always be able to truly offer its specified
service in a divergence-free way, even if the type specifies
an infinite sequence of observable actions. Moreover, this
non-divergence result is compositional: well-typed coinductive
sessions may be safely composed, ensuring that the resulting
system is itself non-divergent.

To rule out divergence we must impose a discipline on the
occurrence of the recursion variable in processes, in line with
the work on coinduction in implementations of dependent type
theories such as Coq [10] or Agda [11], but here mapped to a

concurrent process setting. Essentially, we must ensure that a
corecursive process definition is productive — there is always a
finite sequence of internal actions between observable actions.

In our setting, observable actions are those that take place
on the session channel that is being offered by a given (well-
typed) process, whereas internal actions are those generated
through interactions with ambient sessions. Given our defini-
tion of productivity, a natural restriction is to require an action
on the offered channel before allowing recursive calls to take
place (i.e. recursive calls must be guarded by an observable
action). For instance, the process corec P.c{0).P, is guarded if
we assume that c is the session channel that is being offered.
However, as known from type theory, guardedness alone is not
sufficient to ensure productivity. Process Loop from Section I
is guarded but produces divergent behavior when composed
with a process that provides it with an output. The problem
with the definition of Loop is that after the input along c,
we have an occurrence of the recursion variable in parallel
with a process that interacts with the recursive occurrence
locally, essentially destroying the productivity of the original
definition.

Thus, ensuring non-divergence in a compositional way
requires not only ensuring guardedness but also disallowing
interactions with corecursive calls within corecursive defini-
tions, a property we call co-regular recursion. In functional
type theories, such restrictions typically consist of disallowing
pattern matching over the result of recursive calls, or passing
such results as arguments to other functions. In our process
setting, interactions are generated by communication and so
we must impose that processes that are placed in parallel with
the corecursive call may not communicate with it, although
they may themselves perform other actions. As we discuss at
the end of this section, our type system ensures this form of
non-interference by not exposing the communication interface
of corecursive calls internally, which ensures that processes
composed with corecursive calls may perform communication,
but not with the corecursive call itself.

B. Typing Coinductive Sessions

Having made the informal case for the kinds of restrictions
on general recursion that are needed in order to eliminate
divergent computation, we now present the type system for
our language, essentially made up of the rules of linear logic
plus the rules that pertain to corecursive process definitions,
coinductive session types and the corecursion variable.

We define the typing judgment: ¥;IA -, P z:A
denoting that process P offers the session behavior typed with
A along channel z, when composed with the (linear) session
behaviors specified in A, with the (unrestricted, or shared)
session behaviors specified in I' and where 7 is a mapping
from (corecursive) type variables to typing contexts (we detail
this further below). We note that the names in I, A and z are
all pairwise distinct. We assume typing to be defined modulo
structural congruence by definition. The context W tracks the
free variables in P that pertain to basic data values that are
to be sent and received. We make use of a second judgment



(vz)([z <> y] | P) = P{y/=}

_ z(y)
P%Q PSP QY% ¢ P%Q P—Q
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Fig. 3. Labelled Transition System

1A provide replicable service A
vX.A|X

T, O = nat | string | ... (basic data types)
A, B,C == 17DA input value of type 7 and continue as A
| TAA output value of type 7 and continue as A
| A—B input channel of type A and continue as B
| A®B output fresh channel of type A and continue as B
| 1 terminate
| &{l:A;} offer choice between [; and continue as A;
| ®{l:A;} provide one of the [; and continue as A;
|

coinductive session type

Fig. 4. The Syntax of Types

W | M:7 to denote that term M, denoting a value that is to
be communicated, is well typed under the assumptions in W.

The rules that define our type system are given in Fig. 5,
consisting essentially of those of [4] with the identity rule,
value input and output (present in [9]) and coinductive types,
which are associated with corecursion in the process cal-
culus. We note that coinductive types have strictly positive
occurrences of the type variable, also excluding coinductive
types that have no associated session behavior before the type
variable occurrence (such as vX.X). Moreover, we require
coinductive types to mention the type variable.

We refrain from a detailed presentation of every rule for the
sake of conciseness, highlighting instead the rules pertaining
to corecursive processes and coinductive session types. We
begin with the right rule for coinductive sessions, which types
(parameterized) corecursive process definitions:

U 5A R,y PraA o =nX©®) = U;T;AF Y
U:T; A b, (corec X(y).P{y/z}) z :: cvY. A

(v¥R)

In the rule above, the process P may use the recursion variable
X and refer to the parameter list y, which is instantiated
with the list of (distinct) names z which may occur in W,
A, T' or c¢. Moreover, we keep track of the contexts ¥, T"
and A in which the corecursive definition is made, as well
as the channel name along which the coinductive behavior is
offered and the type variable associated with the corecursive
behavior, by extending the mapping 1 with a binding for X
with the appropriate information. This is necessary because,
intuitively, each occurrence of the corecursion variable stands
for P itself (modulo the parameter instantiations) and therefore
we must check that the necessary ambient session behaviors

are available for P to execute in a type correct way, respecting
linearity. P itself simply offers along channel c the session
behavior A (which is an open type). To type the corecursion
variable we use the following rule:

n(X @) =v;I;AFdY p={z/7}
p(W); p(I); p(A) by X(2) =2 p(d):Y

We type a process corecursion variable X by looking up in 7
the binding for X, which references the typing environments
W, I" and A under which the corecursive definition is well
defined, the coinductive type variable Y associated with the
corecursive behavior and the channel name d along which the
behavior is offered. The corecursion variable X is typed with
the type variable Y if the parameter instantiation is able to
satisfy the typing signature (by renaming available linear and
exponential resources or term variables). We also allow for the
offered session channel to be a parameter of the corecursion.
Finally, the left rule for coinductive session types simply
unfolds the type accordingly:

(VAR)

U T A cA{vX.A/X} F, Q = d:D
A cvX A, Q d:D

(vL)

While the rules look fairly straightforward, they turn out to
introduce quite subtle restrictions on what constitutes a well-
formed (i.e. well-typed) corecursive process definition. First,
observe that the introduction form for corecursive definitions
does not directly unfold the coinductive type in its premise
and thus references an open type, which means that the
(corecursive) definition of P provides the behavior specified
in A up to occurrences of the coinductive type variable Y.
On the other hand, using a coinductive session type (which is
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U IsA by PuasA UG Ag,eA, Qd:D UG-y PuxA U T wA;AFQ o d:D

U5 A, Ag by (V) (P Q) d:D

U A E, (vu)(lu(z).P| Q) = d:D

Fig. 5. Typing Rules

achieved by the left rule vL) entails unfolding the coinductive
type as expected, and so a user of a coinductive behavior may
use as many unfoldings of vY.A as required.

Up to this point, we have yet to discuss how our type system
enforces the necessary restrictions to ensure non-divergence.
It turns out that these restrictions are imposed by the variable
rule in quite subtle ways, due to its interaction with the ¥R
rule. First, observe that we enable multiple occurrences of
the recursion variable in a well-typed process, for instance in
different branches of a case construct, through cuts or the ®R
rule (e.g. Fig 6). Moreover, we do not syntactically exclude
processes without terminal recursion (for instance, process
Good from Section I).

However, a well-typed corecursive definition cannot interact
with its corecursive calls (which could potentially destroy
productivity). To see why this is the case, consider how such
an interaction might be allowed in our type system: in order
for a corecursive definition to interact with its own corecursive
call in a well-typed manner, the system would require some
form of parallel composition where we obtain a handle to the
corecursive call. This would only be possible through a cut,
given that the right rule for ® ensures that the two parallel

processes cannot interact. However, since the coinductive type
is never unfolded when offering a coinductive definition, the
session interface of the corecursive occurrence is not visible
internally. Thus, a cut of the corecursion variable with some
other process ) will generate a fresh channel ¢ that offers
the coinductive type variable, but not the coinductive type,
meaning that no left rules that interact with the unfolding
of the recursive definition can be applied. In fact, the only
rule that can use c: X is the identity rule, which will forward
the corecursively defined session. This does not prohibit ¢
from having additional behavior besides forwarding, it simply
excludes (potentially) problematic internal interactions with
corecursive calls.

IV. EXAMPLES

In this section we discuss three examples: the Loop process
and the hypothetical Twitter web service, combining replica-
tion and recursion, from Section I, and a coordinated process
network implementing a binary numeral.

A. Excluding Unobservable Divergence

Elaborating on the process Loop given in Section I, we show
how it can result in divergent behavior when interacting with a

n(X@)=YT;ARdY p={z/7}



(var)

FX(z):z2Y (var)

FX(y) = y:Y
F1:nat F (vy)z(y).

(®R)

(X)) | X(2) s 2Y QY
F2z(1).(vy)z(y).(X(y) | X(2)) :: zznat A (Y ®Y)

(AR)

F (corec X (2).2(1).(vy)z(y).(X(y) | X(2))) z :: zzvYinat A (Y ®Y)

(¥R)

Fig. 6. Example Typing Derivation

client. We also show why Loop is not typeable in our system.
Recall the definition of Loop:

Loop = corec L(c).c(x).(vd)(L(d) | d{(n).[d ¢ c])

The intended behavior of Loop is to continuously input
along the channel ¢, which is represented by the session
type vX.nat O X. Consider a process P that provides an
output along ¢, composed with Loop. We have the following
reduction(s):

(ve)(Loop | P) = (ve)(vd)(Loop{c/d} | d(n).[d <> c] | P")

In the process to the right of the arrow, there is an internal syn-
chronization between the output along d and the input along
the unfolding of Loop, resulting in the following process:

(ve)(wd)((vd')(Loop{d'/c} | d'(n).[d" <+ d]) | [d <> ] | P')

The infinite internal reduction is now made clear, where
regardless of the behavior of P’ we always have available
an internal reduction that produces an additional unfolding of
Loop and may repeat this process an infinite number of times.

It is easy to see that Loop is not well-typed in our system:
if we try to type the process bottom-up, we first apply the vR
rule, followed by the DR rule. We are then left with trying to
type the following cut:

FL):dX dXEdn)|d+d:
F (vd)(L(d) | d(n).[d < c]) = X

c:X

It is then obvious that the right premise of the cut cannot be
typed, since all that is known about session d is that it has
type X, so no communication along d can be well-typed. A
type-correct version of the behavior c:vX.nat D X is:

Ins £ corec L(c).c(z).L(c)

Note however that a process that is meant to interact with
Ins by just outputting continuously along c is not well-typed
in our system. To use the behavior of Ins in this way, we
must necessarily define a corecursive process, and thus a
process that offers a coinductive session type. However, the
continuous user of Ins that just outputs along c offers no
observable behavior and thus no valid coinductive session
type can be assigned to it (recall that valid coinductive types
need to be strictly positive and non-trivial). We exclude such
processes from our system since the composition of such a
continuous user process with Ins would result in a process
with no observable actions, but with infinite internal actions:

(ve)(Ins | corec S.¢(0).S) = (vc)(Ins | corec S.¢(0).5) = ...

Morally, such a user process must offer some observable
behavior to be useful (even a divergent process should be
receptive to a “kill” signal). For instance, the process P =
corec S’.¢(0).d(0).5" is a well-typed process offering behavior
d:vX.nat A X in a context where Ins is available, and so the
composition of Ins and P is well-typed:

F (ve)(Ins| P) :: divXonat A X

B. Replication and Corecursion

A web service such as Twitter offers a persistent (and thus
replicated) service trends which is intended to produce a
stream of current trends, according to some custom metrics. To
do this, the service is parametrized by a filter process (of type
Tweets — Trends) that given a stream of tweets produces a
stream of trends. Such a protocol is captured via the following

type(s):

TrendService £ !((Tweets —o Trends) —o Trends)
Tweets 2 vX.(tweet A X)
Trends £ Y. (trend AY)

The use of the exponential ! in TrendService ensures that
each invocation of the service provides access to a fresh,
independent session. Any such session expects to receive a
session of type Tweets — Trends able to transduce a stream of
tweets to a stream of trends. This is the usual way to represent
higher-order communication (e.g., sending an “object” of type
Tweets — Trends) in a communication) in the 7-calculus.
The service will use this session to finally provide the stream
of trends, after connecting it to a (private) source of tweets
TweetSrc,. The code implementing the service is:

Serv £ ltrends(x).x(f).(vy) f (y).(TweetSrc, | [f < x])

Given that - TweetSrc, :: y: Tweets, we can derive the typing
F Serv :: trends:TrendService.

Possible client code for such a service is:

Cl 2 (vx)trends(z).(vk)x(k).(Analytics, | [z < tr])
This process interacts by first invoking the (replicated) trends
service, and afterwards interacting with the freshly generated
replica (at x). It first provides access to the appropriate
analytics process, and afterwards forwards the resulting trend
stream (from k) on channel ¢r. Assuming = Analytics, :
k:Tweets — Trends we derive

trends : TrendService = Cl :: ¢r:Trends



C. Little Endian Bit Counter

We illustrate how our framework can express fairly general
process networks with nodes interacting according to struc-
tured session protocols. We consider the implementation of a
binary counter, where each bit of a (arbitrary length) binary
numeral is implemented by a process node which can only
communicate with its neighbouring processes in the network
(in [9] we discussed a similar example, but expressed using
non co-regular recursion, and not typeable in our system. We
present here a version using co-regular recursion, and requiring
more sophisticated handshaking). Overall, the network imple-
ments a protocol offering three operations: poll the counter
for its current integer value; increment the counter value,
or terminate the counter. The corresponding session type is
expressed coinductively, as we do not want to limit a priori
the counter size:

Counter £ vX. &{valint A X, inc: X, halt:1}

Our implementation of Counter is based on a coordinator pro-
cess that keeps a (linear) network of communicating processes,
representing the counter value in little endian form (the tail
process in the network holds the least significant bit). Each
network node communicates with its two adjacent bit represen-
tations, whereas the coordinator communicates with the most
significant bit process (and with the counter’s external client),
spawning new bits as needed. Overall, the coordinator works
as follows. To halt the counter, the coordinator halts every node
before halting itself. To provide the value of the counter, the
coordinator propagates a val message along the network, which
will compute the value as an integer. To increment the counter,
the coordinator injects an inc message into the network, which
will be propagated to the least significant bit process, and, in
a second phase, propagated back as a carry message travelling
back in the opposite direction, incrementing each bit (modulo
2) as needed. If the carry message, instead of a done message,
reaches the coordinator, a new bit process will be dynamically
spawned.

The behavior of each node is as follows. When a node
receives a val message it receives the integer value computed
by all the nodes encoding more significant bits, updates it
with its own contribution and propagates the val message to
the less significant bit nodes. When it gets a inc message it
forwards it to its less significant bit neighbour, and waits for
it to send back either a carry or done message. In the latter
case, it will just forward the done message network along the
most significant bit node up to the coordinator, signalling that
nothing more needs to be done. In the former case, it will flip
its value and either send a carry or a done message to its most
significant bit neighbour. When a carry message reaches the
coordinator, it generates a new bit, as mentioned above.

So, the type for each node Node(b, x,n) will be given by
the judgment x : Clmpl - Node(b, z,n) :: n:Clmpl where

Clmpl £ vX.&{valint Dint A X,
inc: @ {carry: X, done: X }, halt:1}

In Node(b, 2, n), b holds the bit value, z is the session channel
connecting to the less significant node (or to the terminal node)
and n is the channel connecting to the most significant node
(or to the coordinator). Code for Node(b, z,n) is as follows:
Node(b,z,n) £ corec X(b,x,n).n.case(
val = z.val;n(m).x{(2 x m + b)).
X(b7 x’ n)?
inc = x.inc;
x.case(carry =
if (b =1) then n.carry; X(0,z,n)
else n.done; X (1, z,n),
done = X(1,z,n),
halt = x.halt; 0) (b, z,n)

The coordinator process code interfaces with clients and wraps
the bit process network, generating new bit nodes as needed.

Coord(z,2) = corec X(z,z).
z.case(val = z.val; 2(0).
xz(n).z(n). X (z, z),
inc = z.inc;
x.case(carry = (vn')(Node(1,z,n') |
Coord(n/, 2)),
done = X(z, 2))
halt = z.halt; 0) (z, 2)

To complete the system we provide the implementation of the
empty bit string epsilon, which will be a closed process of type
CImpl, expressing the “base case” of the protocol. For reading
the value, it ping pongs the received value. For incrementing,
it emits the (first) carry message. The Counter system is then
produced by composing epsilon and Coord.

corec X (x).z.case(val = z(n).z(n). X (z),
inc = x.carry; X (x),
halt = 0) z

(ve)(epsilon(e) | Coord(e,c))

epsilon(z) £

Counter(c) =
The several relevant typings are

e : Clmpl F Coord(e, ¢) :: c:Counter
F epsilon(e) :: e:Clmpl
F Counter(c) :: c:Counter

The two examples above showcase the interaction between
corecursive session types, which denote potentially infinite
interactions (such as streams) on one session channel; and
replication, which denotes the potential for an arbitrary number
of copies of a given session, but on different channels.

V. MAIN RESULTS

In this section, we establish type safety for our calculus, en-
tailing session fidelity and deadlock freedom. We also develop
our main result of compositional non-divergence by extending
the linear logical relations of [8], [12] to the coinductive
setting, fully restoring the connection of our framework with
the logical interpretation.



A. Type Safety

Following [4], our proof of type preservation relies on a
simulation between reductions in the session-typed m-calculus
and proof reductions from logic.

Theorem 5.1 (Type Preservation): If ;I A =, P 2 z:A
and P — @ then ;I AR, Q o2 2 A

The proof of progress also follows the lines of [4], but with
some additional caveats due to the presence of corecursive
definitions. The key technical aspects of the proof are a
series of inversion lemmas and a notion of a live process,
consisting of a process that has not yet fully carried out its
ascribed session behavior, and thus is a parallel composition
of processes where at least one is a non-replicated process,
guarded by some action. We define live(P) if and only if
P = (vn)(7.Q | R), for some process R, sequence of names
7 and a non-replicated guarded process 7.Q).

Theorem 5.2 (Progress): If U;I'; A+ P :: z:A and live(P)
then there is Q with P — @) or one of the following holds:

(a) A = A’,y:B, for some A’ and y:B. There exists

;A" FR:y:Bst (vy)(R|P)— Q.
(b) Exists I';2:4, A’ F R :: w:C s.t. (wz)(P|R) — Q.
(¢) T'=T",u:B, for some I'" and u:B. There exists I';- -
R:: x:B st (vu)(lu(z).R| P) = Q.
Our notion of progress states that well-typed processes never
get stuck even in the presence of infinite session behavior.
Either the process progresses outright via internal computation,
awaits on an interaction with its environment ((a) or (c)) or
is waiting for an interaction along its offered channel ((b)).

B. Compositional Non-Divergence

To prove the key property of compositional non-divergence,
we develop a (linear) logical relations argument for coinduc-
tive session types. As in prior work for languages without re-
cursion [12], [8], we build on Girard’s technique of reducibility
candidates: a set of non-divergent, well-typed terms, closed
under reduction and expansion (backward reduction), adapted
to the setting of our process calculus.

Definition 5.3 (Reducibility Candidates): Given a type A
and a name z, a reducibility candidate at z: A, written R[z:A]
is a set of processes satisfying the following properties:

1) If P € R[z:A] then +; ;- b, P z:A.

2) If P € R[z:A] then P |.

3) If P € R[z:A] and P = P’ then P’ € R[z:A]

4) If for all P; such that P = P; we have P; € R[z:A]

then P € R[z:A4].

We refer to R[—:A] as the collection of all sets of reducibil-
ity candidates at (closed) type A. Our definition of the logical
predicate identifies processes up to the compatible extension
of structural congruence with the well-known sharpened repli-
cation axioms [13], written =,. The replication axioms express
strong behavioral equivalences in our typed setting [12].

Definition 5.4: We write =) for the least congruence relation
on process expressions resulting from extending structural
congruence = with the following axioms:

D (vu)(tu(z).P | (vy)(@ | R)) =

(v9) (vu)(u(2).P | Q) | (vu)(tu(2).P | R))

2 (vu)(tuly).P | (70)(w(=).Q | R))

=1 (vo)((0(2)-(vu)(tu(y).PlQ)) | (vu)(lu(y).-P|R))

3) (vu)(u(y).Q| P)= P if ug fu(P)

Intuitively, axioms (1) and (2) represent the distribution of
shared servers among “client” processes, and (3) garbage
collects shared servers which can no longer be invoked.

1) Logical Predicate: We define a logical predicate on
processes by induction on types and the size of typing con-
texts in the case of processes. The predicate captures the
computational behavior of non-divergent processes, as defined
by their typing. In the development below, we make use of
L[7], which denotes the logical interpretation of the values
exchanged in communication (i.e. sets for well-typed values
of the appropriate type). We omit this definition due to its
simplicity and for the sake of conciseness.

Definition 5.5 (Logical Predicate - Open Process Expres-
sions): Given ¥;I'; A -, T with a non-empty left hand side
environment, we define L[¥;T;A -, T|, where w is a
mapping from type variables to reducibility candidates, as the
set of processes inductively defined by the rules of Fig. 7.

The definition of the logical interpretation for open pro-
cesses inductively composes the process with the appropriate
witnesses in the logical interpretation at the types specified in
the three contexts, following [12].

The key part of our development is the definition of the
logical predicate for closed processes. Similar to the treatment
of type variables in logical relations for polymorphic languages
(c.f. [8]), we employ a mapping from type variables to candi-
dates at a given type. More precisely, we map type variables
to candidates at the appropriate coinductive type, representing
the unfolding of coinductive types.

We interpret a coinductive session type vX.A as the union
of all reducibility candidates v of the appropriate coinductive
type that are in the interpretation of the open type A, when
X is mapped to ¥ itself, enabling a principle of proof by
coinduction.

Definition 5.6 (Logical Predicate - Closed Process Expres-
sions): For any type T = z:A we define £L¥[T] as the set of
all processes P such that PJ} and -;-;- =, P :: T satisfying
the rules of Fig. 8.

We elide several technical aspects and focus mainly on
the intuitions behind the development. The key observation
is that for open types, we may view our logical predicate as
a mapping between sets of reducibility candidates, of which
the interpretation for coinductive session type turns out to be
a greatest fixpoint.

Definition 5.7: Let vX.A be a strictly positive type. We
define: 4 (s) £ LYX75][2:A]

Theorem 5.8 (Greatest Fixpoint): L¥[z:vX.A] is a greatest
fixpoint of ¢ 4.

Using Theorem 5.8 we can show an unfolding lemma for
coinductive session types, relating type unfolding with the
interpretation of open types.

Lemma 5.9 (Unfolding): P € LY[z:A{vX . A/X}]|iff P €
Cw[X»—)L',“’[—:VX.A]][Z:A]



Pe VoA, T iff VM e Lir].P{M/z} € LYW T A R, T

Pe YA y:Ab, T iff VR e Ly:A]l.(vy)(R| P) e LY A, T

Pe L uwA; A, T iff VR e L£¢y:A].(vu)(lu(y).R | P) € LY[T; A+, T

Fig. 7. Logical Predicate - Open Processes
L[z X A] L2 NP eR[-wX.A] | ¥ C LKV A}
L¥]z:X] 2 w(2)(X)
L¥]z:1] £ [P|VP.(P= P' AP /=)= P =0}
L£¥[2:A —o B] 2 (P |vPy. (P P)=vQ e L9y Al (vy)(P'| Q) € £2[=:B]}
L9[zA® B 2 (p|vpy.p Y pry =
3P1,P2.<P/ = P | Po\NP € Ew[yA} NPy e ,CW[ZBD}
L¥]z:1A] £ {P|VP.(P= P')=3P,.(P' = 2(y).PL A P, € L¥[y:A])}
. 2

(PN, (YP.(PZ5 Py = P e £¥]2A))}

[

[
e {li= A 2 (PN, (WP.(PES P)= P e £¥2A)}
Loz A A 2 qp|vP (P pry o (M e L[r] AP € £9]2:A)))
Loz S Al 2 qp|vP, M.(Me L[] AP pry o pre gl

Fig. 8. Logical Predicate - Closed Processes

The combination of these results enables us to show the
fundamental lemma: all well-typed processes are in the logical
predicate, from which follows that all well-typed processes are
compositionally non-divergent.

Theorem 5.10 (Fundamental Lemma): If W;T;A =, P :
z:A then P C L] T A b, z:A].

The proof proceeds by induction on typing. The case for
rule vL follows from Lemma 5.9. The most interesting case is
the one for the vR rule. Since the interpretation of coinductive
types vX.A is a greatest fixpoint (Theorem 5.8), we proceed
by coinduction: we produce a set of processes Cps, containing
the body of the corecursive definition P’ closed under com-
position with representatives for the linear and exponential
contexts, where the corecursion variable has been instantiated
with an unfolding of the corecursive definition (let us refer
to this process a P”). Cp. is also closed under reduction and
expansion. We show that Cps is a reducibility candidate at
vX.A and that Cpr C L9X7Crl[2: A]. This is a sufficient
condition since L[c:vX.A] is the largest such set. We need
essentially focus on P”.

Showing that Cp/ satisfies this condition relies crucially on
type preservation, progress and the fact that type variables are
ultimately offered by the unfolding of the corecursive defini-
tion. The crucial points are the occurrences of the corecursion
variable in P’, which in P” are instantiated with P’ itself: if
its a terminal occurrence the property is immediate, since the
corecursion variable is typed with the type variable X, which
is mapped to Cps, containing P’. If the corecursion variable
occurs in the left branch of a cut, we know that the only
possible use of the fresh channel (typed with the type variable)
by the right branch of the cut is to eventually forward it,
potentially after a number of internal reductions or observable
actions as specified by the session A. When the forwarder is
triggered, we must necessarily be at the type variable X and
we can conclude since the resulting process is P’, in Cps.

We remark that if the corecursion variable is guarded in the
left branch of a cut, these guards must be consumed by the
right branch of the cut (this follows by the well-typedness and
progress) through internal reductions.

Corollary 5.11 (Non-Divergence):
then P |}

Combining type safety (Theorem 5.1 and Theorem 5.2)
and non-divergence (Corollary 5.11) we conclude that typing
enables strong guarantees on programs written in our calculus.
A well-typed program will always be able to fulfil its protocol:
no divergence can take place, nor can any deadlocks occur.
Moreover, these properties are compositional, ensuring that
any (well-typed) composition of services produces a deadlock-
free, non-divergent service.

IfU AR, PzA

VI. RELATED WORK AND CONCLUDING REMARKS

Forms of general recursion have been often introduced in
session typed languages, but without much concern on how to
conciliate unbounded behaviour with local termination (e.g,
[2], [14]). From the perspective of more traditional work on
session typed languages, [15] establishes a strong normal-
ization result for action types, which are similar to session
types, but without addressing recursive types. Still within the
logic based approach to session typed programming, our work
is related to [5], which develops a logical interpretation of
session types using second-order classical linear logic and
a polymorphic session-typed functional language similar to
that of [16], but does not consider coinductive sessions. In
prior work, we have studied strong normalisation for session
types based on linear logic, including extensions to behavioral
polimorphism [12], [8], however, this work is the first to
address general (co)recursion in the framework.

Expressiveness relationships between replication and recur-
sion in the context of m-calculi have been investigated (e.g,
see [17]); in general such constructs are not reducible to each
other, in particular in the presence of name scoping constructs.



In our context, they are fundamentally separated by the typing
discipline, which reflect different behavioral usages.

The particular issues related to coinductive session types
have to the best of our knowledge been overlooked in the
literature, which typically deals with general recursive types
and definitions [2], [3], [16] and so is inherently non-divergent.
In this regard our work is closer to that on termination for A-
calculi with inductive and coinductive types [18]. For instance,
[19] develops a strong normalization result for the second-
order A-calculus with explicit inductive and coinductive types
using logical relations. The restrictions imposed by our type
system to ensure non-divergence are related to those developed
in [20], [21] for the Coq proof assistant, but with obvious
distinctions given the very different settings. Our interpretation
of coinductive types as greatest fixed points is also related to
the work of Baelde [22]. The main differences are that his
work uses classical linear logic and doesn’t consider a proof
term assignment. The former makes the system and logical
relation techniques substantially different since they rely on
orthogonality, whereas ours do not; the latter leads Baelde’s
work towards proof search related techniques, which is in
sharp contrast to our work.

The work on type-based methods for ensuring termination
has been generalized to include inductive and coinductive
definitions in the style of Coq [23] (although the proof of
strong normalization is substantially more complex due to the
expressive power of CIC and type annotations). It is not clear
how to adapt these type-based methods to our setting since
type annotations are a measure of the size of “values”, which
do not immediately apply to processes. Similar difficulties
arise when considering copatterns [24], which seem to be
inherently tied to the term structure.

A. Concluding Remarks

We have developed a theory of coinductive definitions
for synchronous w-calculus processes with corecursion, es-
tablishing a strong logical foundation based on intuitionistic
linear logic which provides guarantees of deadlock freedom,
session fidelity and, crucially, compositional non-divergence
by typing, ensuring that services implemented in our calculus
do not “get stuck”, and never become unavailable through
divergent behavior.

Our type system ensures termination by restricting the
occurrences of the corecursion variable in corecursive process
definitions. While the restrictions we impose are not particu-
larly oppressive, they naturally still exclude processes that are
non-divergent (for instance, the binary counter example of [9]),
as often is the case in these settings given that productivity
is undecidable in general. Having set forth a first significant
benchmark, it is certainly a challenge for future work to find
less restrictive or more general conditions for guaranteeing
productivity in this setting, potentially adapting type-based
termination techniques (viz. [23], [24]).

By establishing a logical foundation for coinductive session-
typed processes, the work set forth in this paper is an impor-
tant stepping stone towards the development of a dependent
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type theory rich enough to allow us to express and reason
about concurrent session-based concurrency. These concurrent
programs are often coinductive in nature, and are typically
studied using coinductive proof techniques. Since we establish
typed processes as coinductive objects, we may be able to
use processes as witnesses to coinductive proofs. A sound
(wrt an extensional typed equivalence, c.f. [8], [12]) notion
of definitional equality of corecursive processes is also part of
future work.
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