System Description: Twelf — A Meta-Logical
Framework for Deductive Systems

Frank Pfenning and Carsten Schiirmann*

Department of Computer Science
Carnegie Mellon University
fp@cs.cmu.edu carsten@cs.cmu.edu

Abstract. Twelf is a meta-logical framework for the specification, im-
plementation, and meta-theory of deductive systems from the theory of
programming languages and logics. It relies on the LF type theory and
the judgments-as-types methodology for specification [HHP93], a con-
straint logic programming interpreter for implementation [Pfe91], and
the meta-logic M2 for reasoning about object languages encoded in
LF [SP98]. It is a significant extension and complete reimplementation
of the EIlf system [Pfe94].

Twelf is written in Standard ML and runs under SML of New Jersey
and MLWorks on Unix and Window platforms. The current version
(1.2) is distributed with a complete manual, example suites, a tuto-
rial in the form of on-line lecture notes [Pfe], and an Emacs interface.
Source and binary distributions are accessible via the Twelf home page
http://www.cs.cmu.edu/ " twelf.

1 The Twelf System

The Twelf system is a tool for experimentation in the theory of programming
languages and logics. It supports a variety of tasks which we explain in this
section: specification of object languages and their semantics, implementation of
algorithms manipulating object-language expressions and deductions, and for-
mal development of the meta-theory of an object language. Several extensive
experiments have been conducted with Twelf, such as the formal development
of the theory of logic and functional programming languages and various logics.

Specification. Twelf employs the representation methodology and underlying
type theory of the LF logical framework. Expressions are represented as LF ob-
jects using the technique of higher-order abstract syntax whereby variables of an
object language are mapped to variables in the meta-language. This means that
common operations, such as renaming of bound variables or capture-avoiding
substitution are directly supported by the framework and do not need to be
programmed anew for each object language.

* This work was supported by NSF Grant CCR-9619584.



For semantic specification LF uses the judgments-as-types representation
technique. This means that a derivation is coded as an object whose type rep-
resents the judgment it establishes. Checking the correctness of a derivation
is thereby reduced to type-checking its representation in the logical framework
(which is efficiently decidable).

Algorithms. Generally, specification is followed by implementation of algorithms
manipulating expressions or derivations. Twelf supports the implementation of
such algorithms by a constraint logic programming interpretation of LF signa-
tures, a slight variant of the one originally proposed in [Pfe91] and implemented
in Elf [Pfe94]. The operational semantics is based on goal-directed, backtracking
search for an object of a given type.

Meta-Theory. Twelf provides two related means to express the meta-theory of
deductive systems: higher-level judgments and the meta-logic M.

A higher-level judgment describes a relation between derivations inherent in
a (constructive) meta-theoretic proof. Using the operational semantics for LF
signatures sketched above, we can then execute a meta-theoretic proof. While
this method is very general and has been used in many of the experiments men-
tioned below, type-checking a higher-level judgment does not by itself guarantee
that it correctly implements a proof.

Alternatively, one can use an experimental automatic meta-theorem proving
component based on the meta-logic My for LF [SP98]. It expects as input a
11, statement about closed LF objects over a fixed signature and a termination
ordering and searches for an inductive proof. If one is found, its representation
as a higher-level judgment is generated and can then be executed.

Even though a number of the theorems in the example suites described below
can be proven automatically, we consider the meta-theorem prover to be in a
preliminary state. Its main current limitations are the lack of automatic appeal
to lemmas and the restriction to reasoning only about closed expressions. We are
presently extending both the meta-logic My and its implementation to overcome
these limitations.

FEzample Suites. Twelf has been employed for a number of experiments in the
area of programming languages and logics [Pfe96]. Many of these are contained
in the example suite which is distributed with the Twelf system. Some of the
examples contain fully automated proofs, others only their implementations as
higher-level judgments.

One of the most well-developed case studies is Mini-ML. We prove value
soundness, type preservation, and compiler correctness with respect to different
abstract machines. This case study is fully explained and developed in [Pfe],
as is a related development of pure logic programming. Other examples include
natural deduction, axiomatic logical systems, sequent calculi for classical and
intuitionistic logic, proofs of cut-elimination, Cartesian closed categories, and a
proof of the Church-Rosser theorem.



2 Implementation

The implementation of Twelf comprises three major parts which we sketch in this
section. At the heart is the core type theory which provides the necessary infras-
tructure for the representation of specifications, algorithms, and meta-theory.
Algorithms can be executed by the constraint logic programming engine, and
the development of the meta-theory is supported by the meta-theorem proving
component.

Core Type Theory. The core of the implementation consists of a dependently
typed A-calculus A extended with notational definitions and existential vari-
ables. In contrast to earlier implementations, terms are represented in spine nota-
tion [PS98] with explicit substitutions, where we take advantage of normal forms
in the Ao-calculus. Composition of substitutions is a defined function rather than
a constructor subject to rewrite rules. Presently, we have not yet undertaken the
empirical analysis necessary for optimization, but we found explicit substitutions
to be a useful organizing force in the structure of the implementation.

The most frequently used operations are weak head reduction and unification;
they are employed for type reconstruction, logic program execution, and theo-
rem proving. The simply-typed case of our unification algorithm is described
in [DHKP96]; the dependently typed case is very similar. In short, equations
which fall within the fragment of higher-order patterns are solved eagerly, while
all other equations are postponed as constraints. Such constraints are indexed on
their head variable and are reawakened when this variable is instantiated, which
means no overhead for dormant constraints. Instantiation of variables during
unification is implemented as an effect which is trailed so it can be undone
during backtracking.

Twelf supports notational, non-recursive definitions. They are typically used
as syntactic sugar for expressions or to abbreviate derivations of lemmas and
theorems. Definitions are checked for strictness [PS98], which means we can
often avoid expanding them during unification without sacrificing soundness or
completeness. Briefly, a definition is strict if its expansion cannot discard any of
its arguments. This guarantees that during unification definitions must only be
expanded in the case that the heads of two expressions clash.

A separately implemented type checker is designed to verify the validity
of terms in the core type theory without relying on complex algorithms for
unification or search. It has been internally employed during the development of
the Twelf system, and can be activated upon request when using Twelf.

Constraint Logic Programming. The logic programming interpreter for LF sig-
natures works with a rudimentary compiled form. A compiled signature may
be executed on an abstract machine based on a continuation-passing interpreter
which maintains higher-order equational constraints. The implementation of this
interpreter is presently straightforward and less efficient then the previous Elf
implementation.



Twelf provides two tools to verify that the operational reading of a signature
as a logic program is consistent: a mode checker and a termination checker.
Both are helpful in the implementation of algorithms, since they allow static
detection of common programming errors which escape the type-checker, such
as misspelled variable names or incorrect subgoal ordering.

The mode checker verifies that the roles of input and output arguments to
a predicate are respected throughout the program. The termination checker is
given an extension of the subterm ordering on higher-order terms [RP96] and
verifies that each well-moded query eventually either fails or yields a solution.
Extensions can either be lexicographic or simultaneous. The implementation also
allows termination orderings across several mutually recursive predicates.

A third tool to check that all cases for a set of input variables to a predicate
are covered is currently in preparation. Together with mode and termination
checking this can verify that a predicate implements a possibly non-deterministic
function.

Meta- Theorem Proving. The meta-theorem proving module implements a special-
purpose inductive theorem prover for deductive systems [SP98]. It requires the
meta-theorem and a termination ordering which expresses the induction order-
ing, but is otherwise completely automatic. In particular, it does not support
tactic-style or interactive theorem proving.

The prover chains together three basic operations: filling, splitting, and re-
cursion. Filling uses an iterative-deepening variant of the constraint logic pro-
gramming interpreter to perform direct search. Splitting performs complete case
analysis based on the (possibly dependent) type of a variable. It requires uni-
fication and exploits a static subordination relation on type families to remove
spurious parameter dependencies. Finally, there is recursion which appeals to
the available induction hypotheses according to the given induction ordering.

The theorem prover generates explicit representations of the proofs it finds
as higher-order judgments in LF. These are guaranteed to satisfy mode, termi-
nation, and coverage properties and can be safely executed as logic programs.

3 Environment

While Twelf is implemented in ML it is executed as a stand-alone program rather
than within the ML top-level loop. This is feasible, since meta-programming is
carried out in type theory itself via a logic programming interpretation, rather
than in ML as in many other proof development environments. The most effec-
tive way to interact with Twelf is as an inferior process to Emacs. The Emacs
interface, which has been tested under XEmacs, FSF Emacs, and NT Emacs,
provides an editing mode for Twelf source files and commands for incremen-
tal type checking, logic program execution, and theorem proving. Moreover it
provides utilities for jumping to error locations and tagging and maintaining
configurations of source files.

The most sophisticated feature of the front end is type reconstruction, which
is based on a duality between implicit quantification and implicit arguments,



thereby reducing a type reconstruction problem to unification. With the unifica-
tion algorithm sketched above, this means our system will always either report
a principal type, a type error, or, in the case of unresolved constraints, an indi-
cation that the source term contained insufficient type annotations. This simple
technique has shown itself to be surprisingly effective and often leads to precise
error location information.

Acknowledgements. We would like to thank Iliano Cervesato for his contributions
to the logic programming component of Twelf.

References

[DHKP96] Gilles Dowek, Thérese Hardin, Claude Kirchner, and Frank Pfenning. Uni-

[HHP93]

[Pfe]

[Pfe91]

[Pfe94]

[Pfe96]

[PS98]

[RPY6]

[SP98]

fication via explicit substitutions: The case of higher-order patterns. In
M. Maher, editor, Proceedings of the Joint International Conference and
Symposium on Logic Programming, pages 259-273, Bonn, Germany, Septem-
ber 1996. MIT Press.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery, 40(1):143—
184, January 1993.

Frank Pfenning. Computation and Deduction. Cambridge University Press.
In preparation. Draft from April 1997 available electronically.

Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149—
181. Cambridge University Press, 1991.

Frank Pfenning. Elf: A meta-language for deductive systems. In A. Bundy,
editor, Proceedings of the 12th International Conference on Automated De-
duction, pages 811-815, Nancy, France, June 1994. Springer-Verlag LNAI
814. System abstract.

Frank Pfenning. The practice of logical frameworks. In Hélene Kirchner,
editor, Proceedings of the Colloguium on Trees in Algebra and Programming,
pages 119-134, Linkdping, Sweden, April 1996. Springer-Verlag LNCS 1059.
Invited talk.

Frank Pfenning and Carsten Schiirmann. Algorithms for equality and
unification in the presence of notational definitions. In T. Altenkirch,
W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs.
Springer-Verlag LNCS, 1998. To appear.

Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking
for higher-order logic programs. In Hanne Riis Nielson, editor, Proceedings
of the FEuropean Symposium on Programming, pages 296-310, Linkoping,
Sweden, April 1996. Springer-Verlag LNCS 1058.

Carsten Schiirmann and Frank Pfenning. Automated theorem proving in a
simple meta-logic for LF. In Claude Kirchner and Héléne Kirchner, editors,
Proceedings of the 15th International Conference on Automated Deduction
(CADE-15), pages 286-300, Lindau, Germany, July 1998. Springer-Verlag
LNCS 1421.



