
The Practice of Logical Frameworks

To appear in the proceedings of CAAP’96, Linköping, Sweden, April 1996

Frank Pfenning

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

fp@cs.cmu.edu

1 Introduction

Deductive systems, given via axioms and rules of inference, are a common con-
ceptual tool in mathematical logic and computer science. They are used to spec-
ify many varieties of logics and logical theories as well as aspects of programming
languages such as type systems or operational semantics. A logical framework
is a meta-language for the specification of deductive systems. Research on log-
ical frameworks is still in its infancy. Nonetheless, different frameworks have
been proposed, implemented, and applied to a variety of problems. In addi-
tion, some general reasoning systems have been used to study deductions as
mathematical objects, without specific support for the domain of deductive sys-
tems. This short survey cannot be complete, but we will try to highlight the
major themes, concepts, and design choices for logical frameworks and provide
some pointers to the literature. We concentrate on systems designed specifi-
cally as frameworks and among them on those that have the most mature
and most heavily exercised implementations: hereditary Harrop formulas (im-
plemented in λProlog and Isabelle) and the LF type theory (implemented in
Elf). The interested reader is referred to the homepage on logical frameworks at
http://www.cs.cmu.edu/~fp/lfs.html for a more complete bibliography, and
pointers to papers, implementations and researchers in the area.

Logical frameworks are subject to the same general design principles as other
programming or specification languages. They should be as simple and uniform
as possible, yet they should provide concise means to express the concepts and
methods of the intended application domain. Meaningless expressions should be
detected statically, yet the language must remain effectively implementable. It
should be possible to structure large specifications. There are also concerns spe-
cific to logical frameworks. Perhaps most importantly, an implementation must
be able to check deductions for their validity with respect to the specification
of a deductive system. Secondly, it should be feasible to prove (informally) that
the representations of deductive systems in the framework are correct. Our task
will be to exhibit some of the central principles underlying logical frameworks
and discuss them in terms of their practical consequences. This will help us to
motivate what we consider the major challenges faced by the field at present.

Historically, the first logical framework was Automath [NGdV94] and its var-
ious languages, developed during the late 60’s and early 70’s. The goal of the



Automath project was to provide a tool for the formalization of mathemat-
ics without foundational prejudice. Therefore, the logic underlying a particular
mathematical development was an integral part of its formalization. Many of the
ideas underlying the Automath languages have found their way into modern sys-
tems. The main experiment conducted within Automath was the formalization
of Landau’s Foundations of Analysis [Jut77].

In the early 80’s the importance of constructive type theories for computer
science was being recognized through the pioneering work of Martin-Löf [ML80,
ML85a, ML85b]. On the one hand, this led to a number of systems for construc-
tive mathematics and the extraction of functional programs from constructive
proofs (for example, Nuprl [C+86, CH90], LEGO [Pol94], and Coq [DFH+93]).
On the other hand, it strongly influenced the design of LF [HHP93], also called
the Edinburgh Logical Framework (ELF). Concurrent with the development of
LF, frameworks based on higher-order logic and resolution were designed in
the form of generic theorem provers [Pau86, Pau89, NP92] and logic program-
ming languages [NM88, MNPS91]. The type-theoretic and logic programming
approaches were later combined in the Elf language [Pfe89, Pfe91a, Pfe92a,
Pfe94]. At this point around 1988, there seems to have been in a pause in the
development of new frameworks, while the potential and limitations of exist-
ing systems were explored in numerous experiments. This hiatus has recently
come to a close with implementations of frameworks based on inductive defi-
nitions such as FS0 [Fef88, MSB93] and ALF [Mag95], partial inductive defini-
tions [Hal91, Eri93, Eri94] and substructural logics [SH91, Gir93, Mil94, Cer96].
There is a different approach to logical frameworks based on equational rather
than deductive reasoning. While one can be interpreted in the other without
much difficulty, the meta-languages based on equational reasoning take a rather
different form and we will not discuss them here. The interested reader is re-
ferred to [MOM93, KKV93, Hab94]. Another approach derives from the notion
of labelled deductive system due to Gabbay [Gab94]. Here the meta-logic is a
classical logic with equality [Gab93].

Two further notes on terminology. Some researchers distinguish logical frame-
works from meta-logical frameworks [BC93], the latter being intended as a meta-
language for reasoning about deductive systems rather than within them. Clearly,
the latter is more general, since meta-logical frameworks must first provide means
for specifying deductive systems before one can reason about them. We view this
as just another application which may or may not be supported in a given frame-
work. Secondly, some researchers prefer the term general logic for systems not
based on type theory. We do not make this distinction, but we will point out
the differences between the methodologies based on logical and type-theoretic
frameworks.

This survey is organized along the specific tasks that are carried out within
logical frameworks, from the representation of expressions (Section 2) and deriva-
tions (Section 3) to methods for search and meta-programming (Section 4) and
development of the meta-theory of encoded systems (Section 5). We specifically
do not discuss the meta-theory of the logical frameworks themselves.

2



2 Representing Syntax

The specification of a deductive system usually proceeds in two stages: first
we define the syntax of the object language and then its judgments via axioms
and rules of inference. In order to concentrate on the meanings of expressions
we ignore issues of concrete syntax and parsing and concentrate on specifying
abstract syntax. Different framework implementations provide different means
for modifying or customizing the parser in order to embed the desired object-
language syntax.

One of the simplest meta-languages is the language of Horn clauses. In such
a framework the expressions of the object language are represented by ordinary
first-order terms. This uni-typed approach (with one universal type of individ-
uals) requires that we axiomatize explicitly, via a set of Horn clauses, when a
given first-order term actually represents an expression of the object language.
Similarly, in a functional meta-language like Scheme, we would have to write a
function to check if a given s-expression denotes an expression of the object lan-
guage. Such definitions are inductive, which has advantages for the development
of the meta-theory as discussed in Section 5, but they are also external to the
representation itself.

A standard method for transforming an external validity condition into an
internal property of the representation is to introduce types. By designing the
type system so that type checking is decidable, we turn a dynamic invocation of
a predicate or function into a static check. In the functional and logic program-
ming communities, many type systems have been proposed, but few of them
interact well with higher-order features needed later. We begin with Church’s
simply typed λ-calculus λ→. The representation introduces a new type a for each
syntactic category of the object language. The adequacy theorem states that
the representation function p·q is a bijection between expressions of the object
language and canonical meta-language objects M of type a. In the realm of log-
ical frameworks, the appropriate notion of canonical form is usually the long
βη-normal form.

A critical issue for meta-languages in general is the representation of vari-
ables. In informal practice we pervasively use the so-called variable convention,
that is, we identify expressions that differ only in the names assigned to their
bound variables. This can be achieved in the meta-language by using de Bruijn
indices [dB72] where a variable occurrence is replaced by a pointer to the corre-
sponding binder.

Another approach, which remains closer to informal practice, reduces all
binding operators to a single one, namely λ-abstraction in the meta-language.
This entails that object language variables are represented by variables in the
meta-language, and variables bound in the object language are bound with cor-
responding scope in the meta-language. This is the fundamental idea of higher-
order abstract syntax [HHP93, PE88] which goes back to Martin-Löf’s system
of arities [NPS90]. Higher-order abstract syntax identifies expressions that dif-
fer only in the names assigned to their bound variables through α-conversion
in the meta-language. It also supports substitution through β-reduction in the

3



meta-language: Since the representation expresses the scope of all variables,
capture-avoiding substitution is automatically available and does not need to
be implemented on a language-by-language basis.

While representation of syntax is relatively well understood, current ap-
proaches are limited in that they do not permit subsorting. With larger examples
it is frequently the case that syntactic categories are not completely disjoint, but
that some are subclasses of others. In a first-order meta-language this problem
can be addressed by using an order-sorted type system, but in higher-order lan-
guages these interact, sometimes in undesirable ways, with other features. Pre-
liminary theoretical work to extend order-sorted techniques to logical frameworks
is reported in [Pfe93, KP93], but to our knowledge none has been implemented
on a realistic scale.

The variable convention is just one example where syntax is considered mod-
ulo a certain equivalence. In classical logic, for example, it is sometimes conve-
nient to think of ¬(A∧B) as the same formula as ¬A∨¬B. Building equations
into the representation of syntax has been recognized as a significant challenge
and investigated in the context of logical frameworks by [Nip91] with a rapidly
increasing literature regarding its operational properties [ALS94, Kah95, LP95,
Pre95].

Finally, substitutions are often used in informal developments. Some work on
incorporating them directly into frameworks has been done [Dug94, Mag95], but
further theoretical and practical issues regarding explicit substitutions remain
to be explored.

3 Representing Derivations

The next step is to represent the judgments and the defining axioms and infer-
ence rules of the deductive system under consideration. These might be the type
system and operational semantics of a programming language, or the inference
rules of a logical system in natural deduction, sequent, or axiomatic formulation.
We will generally think of axioms as inference rules with no premises, thus no
formal distinction between them is required. Important recurring notions from
informal practice are parametric and hypothetical judgments, that is, reasoning
from hypotheses and reasoning with parameters as in the implication and uni-
versal introduction rules in natural deduction. We should therefore take care to
support these notions directly in the framework.

The first choice that arises is if derivations should be modelled as objects,
or if we are interested only in derivability. In the latter case we can follow an
approach which is analogous to the first one pursued in the representation of
syntax: We define derivability via axioms in a meta-logic. Using this technique,
a judgment (such as A is true) is represented by a formula (such as true(pAq)).
Each inference rule defining a judgment is turned into an axiom in the meta-
language. The adequacy theorem states that we can prove true(pAq) in the meta-
logic iff we can derive A is true.

4



An appropriate language that supports parametric and hypothetical judg-
ments is the language of hereditary Harrop formulas, which forms the basis of
the logic programming language λProlog and the generic theorem prover Is-
abelle. Variations of this approach to encoding derivability have been devised by
Paulson [Pau86] and Felty and Miller [FM88]. Quantifiers in hereditary Harrop
formulas are typed and range over simply-typed λ-terms, thus permitting the
technique of higher-order abstract syntax.

With a general implementation of the meta-logic, we can now reason within
the object language and interpret the results via the adequacy theorem. Many
experiments have been carried out following this methodology, including type
inference [Pfe88], equational reasoning [Nip89], theorem proving [Fel89], func-
tional programming [HM90, Han93], specification languages [MM93], VLSI de-
sign [Ros92], set theory [Pau93, Noë93], interpreter verification [BHN+94] and
the Church-Rosser theorem [Nip95, Ras95].

However, in many applications we need to go a step further and design a
representation of derivations themselves as objects in the meta-language. A nat-
ural first choice for this representation is also the simply-typed λ-calculus. We
introduce a new type for derivations, where each inference rules becomes a con-
structor of objects of the new type. Functional constructors can be used to model
parametric and hypothetical judgments. This technique has been investigated by
Felty [Fel89] for representing derivations in first-order logic.

One drawback of this representation is that the validity of derivations must
be axiomatized explicitly. This is because the system of simple types is not
accurate enough to capture the expressions which are part of a judgment. Fortu-
nately, it is possible to refine the simply-typed λ-calculus so that validity of the
representation of derivations becomes an internal property, without destroying
the decidability of the type system. This is achieved by introducing type families
indexed by the syntactic constituents of the judgment. Simple function types
must be generalized to dependent function types to capture the dependencies
between an argument to a function and its role as an index object. This rep-
resentation technique is often summarized with the phrases judgments-as-types
and derivations-as-objects.

Dependent types create the need for a rule of type conversion which drasti-
cally alters the character of the type theory. The pure type system λΠ preserves
decidability of type-checking, which is very easily lost for language extensions.
λΠ is the basis of the LF logical framework [HHP93] which also systematizes
the representation techniques for various judgment forms and the proofs of ade-
quacy of these representations [Gar92]. Applications of LF have been numerous,
first with pencil and paper [HHP93, AHMP92], then in the context of the Elf
language which implements LF (see Section 5).

A significant challenge in the area of meta-representation are modal and
other non-local side conditions in the formulation of deductive systems, as they
occur, for example, in the presentation of linear logic. A higher-order classi-
cal linear meta-logic to address some of these problems has been proposed by
Miller [Mil94], a conservative extension of LF by Cervesato [Cer96]. Implemen-

5



tation projects for these languages have just begun. Besides linear and related
logics, these frameworks also enable a whole new class of languages to be rep-
resented concisely, namely those involving state and concurrency [Chi95]. Also
relevant is the work on labelled deductive systems [Gab93, Gab94].

Another challenge is the development of appropriate structuring principles to
achieve modular presentation of deductive systems. This has been studied in the
abstract [HST94] and in the context of the Elf language [HP92b], but only proto-
type implementations exist. The ALF framework employs explicit substitutions
in a similar structuring role [Mag95].

It is straightforward to encode systems of equational reasoning in any of
the logical frameworks we have discussed [Nip89, Fel91]. The granularity and
efficiency of reasoning in such explicit encodings is generally too low to allow
complex developments—we must look for ways to incorporate equational the-
ories directly into the underlying meta-logic or type theory without sacrificing
decidability and other desirable properties. Some promising work in this direc-
tion includes reflection [Con94] and dependently typed rewriting [Vir95].

4 Search and Meta-Programming

The representation of a deductive system in a logical framework may be used
for a variety of purposes. The obvious application is to construct derivations
within a deductive system, with the support of the framework implementation.
For example, after specifying a logic for reasoning about programs in a particu-
lar programming language, we may now want to prove the correctness of some
program. This process typically involves a mixture of interactive and automatic
deduction. A related, but qualitatively different task, is the implementation of
specific algorithms for the deductive system at hand. For example, after specify-
ing a type system for a programming language as a deductive systems, we may
want to implement algorithms for type checking or reconstruction. Similarly, we
may wish to implement an abstract machine and a compiler after specifying a
high-level semantics for a programming language. A third application is the in-
vestigation of the meta-theory of the deductive systems we have encoded. In this
section we consider search and meta-programming applications and postpone the
meta-theory until Section 5.

It is beyond the reach of current implementations and even undesirable in
many circumstances to conduct completely automatic search. We cannot expect
to obtain an efficient and powerful automatic theorem prover merely from the
specification of a logic as a deductive system, nor can we expect an automatic
theorem prover to find good derivations, which is, of course, a subjective notion.
Instead, we must look for methods that support interactive deduction while per-
mitting heuristic searches to be programmed and automatic methods to be used
when they exist. Tactics and Tacticals provide a popular mechanism to structure
and program search. Tactics and tacticals arose out of the LCF theorem proving
effort [GMW79, Pau83] and are used in such diverse systems as NuPrl [C+86],
Coq [DFH+93], Isabelle [NP92], and λProlog [NM88, Fel93]. In all but the last

6



one, they are programmed in ML which was originally developed to support
theorem proving for LCF.

Logic programming offers a different approach to meta-programming. Rather
than meta-programming in a language in which the logical framework is imple-
mented (typically ML), we endow the logical framework itself with an operational
interpretation via goal-directed search in the spirit of Prolog. This means that
we are working in a uniform language for specifications and implementations
of algorithms, but it should be clear that a specification of a logic under this
approach does not automatically give rise to a theorem prover. Two frameworks
to date have pursued this approach: λProlog, which gives an operational inter-
pretation to hereditary Harrop formulas, and Elf, which gives an operational
interpretation to λΠ .

Unification is a central and indispensable operation in traditional first-order
theorem provers and logic programming languages. It plays a critical role in the
implementations of tactics and tacticals in Isabelle and λProlog [Fel93, FH94].
Unification allows the search algorithm to postpone existential choices until more
information becomes available as to which instances may be useful. Since most
logical frameworks go beyond first-order terms, traditional first-order unification
is insufficient.

Despite its undecidability, Huet [Hue75] devised a practical algorithm for
higher-order pre-unification, a form of unification where solvable equations of
a certain form are postponed as constraints. Huet’s algorithm has been used
extensively in λProlog and Isabelle and generally seems to have good compu-
tational properties. It also generalizes smoothly from the simply-typed to the
dependently typed case, as discovered independently by Elliott [Ell89, Ell90]
and Pym [Pym90, Pym92].

The practical success of Huet’s algorithm seems to be in part due to the
fact that difficult, higher-order unification problems rarely arise in practice. An
analysis of this observation led Miller [Mil91] to discover higher-order patterns, a
sublanguage of the simply-typed λ-calculus with restricted variable occurrences.
For this fragment, most general unifiers exist. In fact, the theoretical complexity
of this problem is linear [Qia93], just as for first-order unification. Miller pro-
posed it as the basis for a lower-level language Lλ similar to λProlog, but one
where unification does not branch, since only higher-order patterns are permit-
ted as terms. An empirical study of this restriction [MP92, MP93] showed that
most dynamically arising unification problems lie within this fragment, but that
a syntactic restriction rules out some useful programming idioms, since the op-
eration of substitution of terms for bound variables has to be reprogrammed for
each syntactic category.

For this reason, the logic programming language Elf uses neither Huet’s al-
gorithm nor a static pattern restriction, but a general higher-order constraint
simplification algorithm [Pfe91a, Pfe91b]. This algorithm directly solves prob-
lems within Miller’s decidable fragment, while other equations are postponed
as constraints. On the positive side, this can drastically reduce backtracking
compared to higher-order unification and imposes no restrictions on variable oc-

7



currences. On the negative side, unsolvable constraints may remain until the end
of the computation, in which case the answer must be considered a conditional
solution.

From the considerable practical experience it seems that logic programming
is often superior to implement specific algorithms such as for type inference, eval-
uation, or compilation, while tactics and tacticals work well for general reasoning
and search within a specified logic.

Methods for general proof search for LF have been investigated [PW90], but
a general and practically efficient theorem proving procedure for a logical frame-
work remains an important area for further research.

Generality, as found in a logical framework, often comes at the price of effi-
ciency. For example, compare the undecidability of higher-order unification with
the efficiency of first-order unification. One way to recapture efficiency would be
to compile or specialize the general search procedure to specific encoded logics.
Only very preliminary work on this has been done [NJ89, MP93].

5 Representing Meta-Theory

Since logical frameworks are designed to express the language and inference rules
of deductive systems at a very high level of abstraction, one rightly suspects that
they should be amenable to an investigation of the meta-theory of deductive sys-
tems. By far the most common proof technique is induction, both over the struc-
ture of expressions and derivations. Thus one naturally looks towards frameworks
that permit inductive definitions of judgments and support the corresponding
induction principles. Unfortunately, induction conflicts with the representation
technique of higher-order abstract syntax. For example, expressions of the un-
typed λ-calculus would be represented by constructors lam : (exp→ exp)→ exp
and app : exp → exp → exp. This cannot be considered as an inductive type,
because of the negative occurrence of exp in the type of lam. An attempt to
formulate a valid induction principle for the type exp fails.

Several options have been explored to escape this dilemma. The first, for
example used in [BC93, Fef88, MN94, Pol95] is to reject the notion of higher-
order abstract syntax and use inductive representations directly. This is en-
genders a complication of the encoding and consequently of the meta-theory,
which now has to deal with many lemmas regarding variable naming. Using
de Bruijn indices [dB72] alleviates this problem somewhat. In fact, this repre-
sentation was designed in order to be able to give a completely rigorous proof
of the Church-Rosser theorem for the untyped λ-calculus. It has subsequently
been used in formalizations of this proof in NQTHM [Sha88], Coq [Hue94] and
Isabelle [Nip95, Ras95].

Instead of completely rejecting higher-order abstract syntax, we can also relax
the notion of inductive definition to obtain partial inductive definitions [Hal91].
These have been used as the basis for a logical framework [Eri93], implemented
in the Pi derivation editor [Eri94], but its potential for formalizing meta-theory
remains largely unexplored.

8



A third option is to externalize the induction. This reflects one of the ideas
behind Gödel’s system T in the context of type theory: Instead of proving a
statement ∀x. ∃y. A(x, y) explicitly by induction over x, we can exhibit a primi-
tive recursive functional f such that ∀x. A(x, f(x)). Since all primitive recursive
functionals are total (which we prove once and for all), the required y is thus
guaranteed to exist. An extension of this idea beyond primitive recursion to gen-
eral pattern matching (without the notion of higher-order abstract syntax) has
been explored in the ALF system [Mag95, MN94, Coq92, CNSvS94]. The empir-
ical evidence suggests that this shortens developments considerably [Coq92] and
also allows the formulations of functions in a manner which is closer to functional
programming practice.

Adding such functions to the simply-typed λ-calculus or LF still leads to
inadequate encodings. To eliminate the paradoxes we can formulate functions
of this sort as higher-level judgments relating derivations so that they cannot
interfere with the encodings themselves. They can still be executed due to
the computational interpretation of meta-language Elf via logic programming
search. This technique has been applied in a number of case studies such as
program derivation [And93, And94a, And94b], type preservation [MP91], com-
piler verification [HP92a], CPS conversion [DP95], partial evaluation [Hat95],
theorem proving [Pfe92b], the Church-Rosser theorem [Pfe92c], and cut elimi-
nation [Pfe95].

With this technique we can implement and execute meta-theoretic proofs, but
LF type checking alone cannot guarantee that a higher-level type family actually
represents a meta-theoretic proof. The design of an appropriate external validity
condition for these relations and its implementation is the subject of current
research described in [PR92, RP96, Roh96]. Presently, the external argument
guaranteeing the meta-theorem has been carried out mechanically only for some
of these above-mentioned experiments.

An important challenge for logical frameworks is to reconcile induction prin-
ciples with higher-order abstract syntax. Two approaches, using existing induc-
tive calculi, are presented in [DH94, DFH95]. Another approach, pursued by the
author in joint work with Joëlle Despeyroux and Carsten Schürmann, employs
modal restrictions to separate closed from arbitrary expressions, thereby recov-
ering adequacy of encodings in conjunction with a system of primitive recursive
functionals for higher-order data representations.

Termination orderings and higher-order, dependently typed rewriting provide
tools which should significantly extend the scope of the methods sketched here.
Some work along these lines can be found in [Geh95, Kah95, LP95, vdPS95].

High-level representations of deductive systems allow proofs of their prop-
erties to be implemented quickly and efficiently. Yet the current degree of au-
tomation is not satisfactory. We should look for ways to apply techniques from
inductive theorem proving in the realm of logical frameworks to automate some
of these proofs.

9



References

[AHMP92] Arnon Avron, Furio A. Honsell, Ian A. Mason, and Robert Pollack. Using
typed lambda calculus to implement formal systems on a machine. Jour-
nal of Automated Reasoning, 9(3):309–354, 1992. A preliminary version
appeared as University of Edinburgh Report ECS-LFCS-87-31.

[ALS94] Jürgen Avenhaus and Carlos Loŕıa-Sáenz. Higher order conditional rewrit-
ing and narrowing. In J.-P. Jouannaud, editor, Proceedings of the First
International Conference on Constraints in Computational Logics, pages
269–284, Munich, Germany, September 1994. Springer-Verlag LNCS 845.

[And93] Penny Anderson. Program Derivation by Proof Transformation. PhD the-
sis, Carnegie Mellon University, October 1993. Available as Technical Re-
port CMU-CS-93-206.

[And94a] Penny Anderson. Program extraction in a logical framework setting. In
Frank Pfenning, editor, Proceedings of the 5th International Conference
on Logic Programming and Automated Reasoning, pages 144–158, Kiev,
Ukraine, July 1994. Springer-Verlag LNAI 822.

[And94b] Penny Anderson. Representing proof transformations for program opti-
mization. In Proceedings of the 12th International Conference on Auto-
mated Deduction, pages 575–589, Nancy, France, June 1994. Springer-Verlag
LNAI 814.

[BC93] David A. Basin and Robert L. Constable. Metalogical frameworks. In
G. Huet and G. Plotkin, editors, Logical Environments, pages 1–29. Cam-
bridge University Press, 1993.

[BHN+94] Manfred Broy, Ursula Hinkel, Tobias Nipkow, Christian Prehofer, and Bir-
git Schieder. Interpreter verification for a functional language. In P.S.
Thiagarajan, editor, Proceedings of the 14th Conference on Foundations
of Software Technology and Theoretical Computer Science, pages 77–88.
Springer-Verlag LNCS 880, 1994.

[C+86] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

[Cer96] Iliano Cervesato. A Linear Logical Framework. PhD thesis, Dipartimento
di Informatica, Università di Torino, 1996. Forthcoming.

[CH90] Robert Constable and Douglas Howe. NuPrl as a general logic. In
P. Odifreddi, editor, Logic and Computation. Academic Press, 1990.

[Chi95] Jawahar Lal Chirimar. Proof Theoretic Approach to Specification Lan-
guages. PhD thesis, University of Pennsylvania, May 1995.

[CNSvS94] Thierry Coquand, Bengt Nordström, Jan M. Smith, and Björn von Sydow.
Type theory and programming. Bulletin of the European Association for
Theoretical Computer Science, 52:203–228, February 1994.

[Con94] Robert L. Constable. Using reflection to explain and enhance type theory.
In Proof and Computation, NATO ASI Series. Springer-Verlag, 1994.

[Coq92] Catarina Coquand. A proof of normalization for simply typed lambda
calculus written in ALF. In Proceedings of the Workshop on Types for
Proofs and Programs, pages 85–92, B̊astad, Sweden, 1992.

[dB72] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool
for automatic formula manipulation with application to the Church-Rosser
theorem. Indag. Math., 34(5):381–392, 1972.

[DFH+93] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy,
Catherine Parent, Christine Paulin-Mohring, and Benjamin Werner. The

10



Coq proof assistant user’s guide. Rapport Techniques 154, INRIA, Roc-
quencourt, France, 1993. Version 5.8.

[DFH95] Joëlle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order ab-
stract syntax in Coq. In M. Dezani-Ciancaglini and G. Plotkin, editors,
Proceedings of the International Conference on Typed Lambda Calculi and
Applications, pages 124–138, Edinburgh, Scotland, April 1995. Springer-
Verlag LNCS 902.

[DH94] Joëlle Despeyroux and André Hirschowitz. Higher-order abstract syntax
with induction in Coq. In Frank Pfenning, editor, Proceedings of the 5th
International Conference on Logic Programming and Automated Reasoning,
pages 159–173, Kiev, Ukraine, July 1994. Springer-Verlag LNAI 822.

[DP95] Olivier Danvy and Frank Pfenning. The occurrence of continuation para-
meters in CPS terms. Technical Report CMU-CS-95-121, Department of
Computer Science, Carnegie Mellon University, February 1995.

[Dug94] Dominic Duggan. Logical closures. In Frank Pfenning, editor, Proceedings
of the 5th International Conference on Logic Programming and Automated
Reasoning, pages 114–129, Kiev, Ukraine, July 1994. Springer-Verlag LNAI
822.

[Ell89] Conal Elliott. Higher-order unification with dependent types. In
N. Dershowitz, editor, Rewriting Techniques and Applications, pages 121–
136, Chapel Hill, North Carolina, April 1989. Springer-Verlag LNCS 355.

[Ell90] Conal M. Elliott. Extensions and Applications of Higher-Order Unification.
PhD thesis, School of Computer Science, Carnegie Mellon University, May
1990. Available as Technical Report CMU-CS-90-134.

[Eri93] Lars-Henrik Eriksson. Finitary Partial Inductive Definitions and General
Logic. PhD thesis, Department of Computer and System Sciences, Royal
Institute of Technology, Stockholm, 1993.

[Eri94] Lars-Henrik Eriksson. Pi: An interactive derivation editor for the calculus
of partial inductive definitions. In A. Bundy, editor, Proceedings of the 12th
International Conference on Automated Deduction, pages 821–825, Nancy,
France, June 1994. Springer Verlag LNAI 814.

[Fef88] Solomon Feferman. Finitary inductive systems. In R. Ferro, editor, Pro-
ceedings of Logic Colloquium ’88, pages 191–220, Padova, Italy, August
1988. North-Holland.

[Fel89] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-
Order Logic Programming Language. PhD thesis, University of Pennsylva-
nia, August 1989. Available as Technical Report MS-CIS-89-53.

[Fel91] Amy Felty. A logic programming approach to implementing higher-order
term rewriting. In Lars-Henrik Eriksson, Lars Hallnäs, and Peter Schroeder-
Heister, editors, Proceedings of the Second International Workshop on Ex-
tensions of Logic Programming, pages 135–161, Stockholm, Sweden, Janu-
ary 1991. Springer-Verlag LNAI 596.

[Fel93] Amy Felty. Implementing tactics and tacticals in a higher-order logic pro-
gramming language. Journal of Automated Reasoning, 11(1):43–81, August
1993.

[FH94] Amy Felty and Douglas Howe. Tactic theorem proving with refinement-tree
proofs and metavariables. In Alan Bundy, editor, Proceedings of the 12th
International Conference on Automated Deduction, pages 605–619, Nancy,
France, June 1994. Springer-Verlag LNAI 596.

11



[FM88] Amy Felty and Dale Miller. Specifying theorem provers in a higher-order
logic programming language. In Ewing Lusk and Ross Overbeek, editors,
Proceedings of the Ninth International Conference on Automated Deduction,
pages 61–80, Argonne, Illinois, May 1988. Springer-Verlag LNCS 310.

[Gab93] Dov M. Gabbay. Classical vs non-classical logics: The universality of clas-
sical logic. Technical Report MPI-I-93-230, Max-Planck-Institut für Infor-
matik, Saarbrücken, Germany, August 1993.

[Gab94] Dov M Gabbay. Labelled deductive systems, volume 1 — foundations.
Technical Report 465, Max-Planck-Institut für Informatik, Saarbrücken,
Germany, 1994.

[Gar92] Philippa Gardner. Representing Logics in Type Theory. PhD thesis, Uni-
versity of Edinburgh, July 1992. Available as Technical Report CST-93-92.

[Geh95] Wolfgang Gehrke. Problems in rewriting applied to categorical concepts by
the example of a computational comonad. In Jieh Hsiang, editor, Proceed-
ings of the Sixth International Conference on Rewriting Techniques and Ap-
plications, pages 210–224, Kaiserslautern, Germany, April 1995. Springer-
Verlag LNCS 914.

[Gir93] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic,
59:201–217, 1993.

[GMW79] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edin-
burgh LCF. Springer-Verlag LNCS 78, 1979.

[Hab94] Marianne Haberstrau. ECOLOG: An environment for constraint logics. In
J.-P. Jouannaud, editor, Proceedings of the First International Conference
on Constraints in Computational Logics, pages 237–252, Munich, Germany,
September 1994. Springer-Verlag LNCS 845.

[Hal91] Lars Hallnäs. Partial inductive definitions. Theoretical Computer Science,
87(1):115–142, September 1991.

[Han93] John Hannan. Extended natural semantics. Journal of Functional Pro-
gramming, 3(2):123–152, April 1993.

[Hat95] John Hatcliff. Mechanically verifying the correctness of an offline partial
evaluator. In Proceedings of the Seventh International Symposium on Pro-
gramming Languages, Implementations, Logics and Programs, pages 279–
298, Utrecht, The Netherlands, September 1995. Springer-Verlag LNCS 982.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery, 40(1):143–
184, January 1993. A preliminary version appeared in the Proceedings of
the Symposium on Logic in Computer Science, pages 194–204, June 1987.

[HM90] John Hannan and Dale Miller. From operational semantics to abstract ma-
chines: Preliminary results. In M. Wand, editor, Proceedings of the 1990
ACM Conference on Lisp and Functional Programming, pages 323–332,
Nice, France, 1990.

[HP92a] John Hannan and Frank Pfenning. Compiler verification in LF. In Andre
Scedrov, editor, Seventh Annual IEEE Symposium on Logic in Computer
Science, pages 407–418, Santa Cruz, California, June 1992.

[HP92b] Robert Harper and Frank Pfenning. A module system for a programming
language based on the LF logical framework. Journal of Logic and Compu-
tation. To appear. A preliminary version is available as Technical Report
CMU-CS-92-191.

[HST94] Robert Harper, Donald Sannella, and Andrzej Tarlecki. Structured pre-
sentations and logic representations. Annals of Pure and Applied Logic,

12



67:113–160, 1994.
[Hue75] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical

Computer Science, 1:27–57, 1975.
[Hue94] Gérard Huet. Residual theory in λ-calculus: A formal development. Journal

of Functional Programming, 4(3):371–394, July 1994. Preliminary version
available as INRIA Technical Report 2009, August 1993.

[Jut77] L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the AU-
TOMATH System. PhD thesis, Eindhoven University of Technology, 1977.

[Kah95] Stefan Kahrs. Towards a domain theory for termination proofs. In Jieh
Hsiang, editor, Proceedings of the Sixth International Conference on Rewrit-
ing Techniques and Applications, pages 241–255, Kaiserslautern, Germany,
April 1995. Springer-Verlag LNCS 914.

[KKV93] Claude Kircher, Hélène Kirchner, and Marian Vittek. Implementing compu-
tational systems with constraints. In P. van Hentenryck and V. Saraswat,
editors, Proceedings of the First Workshop on Principles and Practice of
Constraints Programming, Newport, Rhode Island, April 1993. MIT Press.

[KP93] Michael Kohlhase and Frank Pfenning. Unification in a λ-calculus with
intersection types. In Dale Miller, editor, Proceedings of the International
Logic Programming Symposium, pages 488–505, Vancouver, Canada, Octo-
ber 1993. MIT Press.

[LP95] Olav Lysne and Javier Piris. A termination ordering for higher order rewrite
systems. In Jieh Hsiang, editor, Proceedings of the Sixth International Con-
ference on Rewriting Techniques and Applications, pages 26–40, Kaiser-
slautern, Germany, April 1995. Springer-Verlag LNCS 914.

[Mag95] Lena Magnusson. The Implementation of ALF—A Proof Editor Based on
Martin-Löf ’s Monomorphic Type Theory with Explicit Substitution. PhD
thesis, Chalmers University of Technology and Göteborg University, Janu-
ary 1995.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification. Journal of Logic and Computation,
1(4):497–536, 1991.

[Mil94] Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor,
Ninth Annual IEEE Symposium on Logic in Computer Science, pages 272–
281, Paris, France, July 1994.

[ML80] Per Martin-Löf. Constructive mathematics and computer programming.
In Logic, Methodology and Philosophy of Science VI, pages 153–175. North-
Holland, 1980.

[ML85a] Per Martin-Löf. On the meanings of the logical constants and the justifi-
cations of the logical laws. Technical Report 2, Scuola di Specializzazione
in Logica Matematica, Dipartimento di Matematica, Università di Siena,
1985.

[ML85b] Per Martin-Löf. Truth of a propositions, evidence of a judgement, validity
of a proof. Notes to a talk given at the workshop Theory of Meaning, Centro
Fiorentino di Storia e Filosofia della Scienza, June 1985.

[MM93] D. Méry and A. Mokkedem. Crocos: an integrated environment for inter-
active verification of SDL specifications. In G. v. Bochmann and D. K.
Probst, editors, Computer Aided Verification: Fourth International Work-
shop, CAV ’92. Springer-Verlag LNCS 663, 1993.

[MN94] Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof
engine. In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs

13



and Programs, pages 213–237. Springer-Verlag LNCS 806, 1994.
[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uni-

form proofs as a foundation for logic programming. Annals of Pure and
Applied Logic, 51:125–157, 1991.

[MOM93] Narciso Mart̀ı-Oliet and Jose Meseguer. Rewriting logic as a logical and
semantical framework. Technical Report SRI-CSL-93-05, SRI International,
August 1993.

[MP91] Spiro Michaylov and Frank Pfenning. Natural semantics and some of its
meta-theory in Elf. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister,
editors, Proceedings of the Second International Workshop on Extensions
of Logic Programming, pages 299–344, Stockholm, Sweden, January 1991.
Springer-Verlag LNAI 596.

[MP92] Spiro Michaylov and Frank Pfenning. An empirical study of the runtime
behavior of higher-order logic programs. In D. Miller, editor, Proceedings
of the Workshop on the λProlog Programming Language, pages 257–271,
Philadelphia, Pennsylvania, July 1992. University of Pennsylvania. Avail-
able as Technical Report MS-CIS-92-86.

[MP93] Spiro Michaylov and Frank Pfenning. Higher-order logic programming as
constraint logic programming. In Position Papers for the First Work-
shop on Principles and Practice of Constraint Programming, pages 221–229,
Newport, Rhode Island, April 1993. Brown University.

[MSB93] Seán Matthews, Alan Smaill, and David Basin. Experience with FS0 as
a framework theory. In Gérard Huet and Gordon Plotkin, editors, Logical
Environments, pages 61–82. Cambridge University Press, 1993.

[NGdV94] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Pa-
pers on Automath, volume 133 of Studies in Logic and the Foundations of
Mathematics. North-Holland, 1994.

[Nip89] Tobias Nipkow. Equational reasoning in Isabelle. Science of Computer
Programming, 12:123–149, 1989.

[Nip91] Tobias Nipkow. Higher-order critical pairs. In G. Kahn, editor, Sixth An-
nual IEEE Symposium on Logic in Computer Science, pages 342–349, Am-
sterdam, The Netherlands, July 1991.

[Nip95] Tobias Nipkow. More Church-Rosser proofs (in Isabelle/HOL). Unpub-
lished manuscript, July 1995.

[NJ89] Gopalan Nadathur and Bharat Jayaraman. Towards a WAM model for
λProlog. In Ewing Lusk and Ross Overbeek, editors, Proceedings of
the North American Conference on Logic Programming, pages 1180–1198,
Cleveland, Ohio, October 1989.

[NM88] Gopalan Nadathur and Dale Miller. An overview of λProlog. In Kenneth A.
Bowen and Robert A. Kowalski, editors, Fifth International Logic Program-
ming Conference, pages 810–827, Seattle, Washington, August 1988. MIT
Press.

[Noë93] Philippe Noël. Experimenting with Isabelle in ZF set theory. Journal of
Automated Reasoning, 10(1):15–58, 1993.

[NP92] Tobias Nipkow and Lawrence C. Paulson. Isabelle-91. In D. Kapur, editor,
Proceedings of the 11th International Conference on Automated Deduction,
pages 673–676, Saratoga Springs, NY, 1992. Springer-Verlag LNAI 607.
System abstract.

[NPS90] B. Nordström, K. Petersson, and J.M. Smith. Programming in Martin-
Löf ’s Type Theory: An Introduction. Oxford University Press, 1990.

14



[Pau83] Lawrence Paulson. Tactics and tacticals in Cambridge LCF. Technical
Report 39, University of Cambridge, Computer Laboratory, July 1983.

[Pau86] Lawrence C. Paulson. Natural deduction as higher-order resolution. Jour-
nal of Logic Programming, 3:237–258, 1986.

[Pau89] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal
of Automated Reasoning, 5(3):363–397, 1989.

[Pau93] Lawrence C. Paulson. Set theory for verification: I. From foundations to
functions. Journal of Automated Reasoning, 11(3):353–389, 1993.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Pro-
ceedings of the ACM SIGPLAN ’88 Symposium on Language Design and
Implementation, pages 199–208, Atlanta, Georgia, June 1988.

[Pfe88] Frank Pfenning. Partial polymorphic type inference and higher-order unifi-
cation. In Proceedings of the 1988 ACM Conference on Lisp and Functional
Programming, pages 153–163, Snowbird, Utah, July 1988. ACM Press.

[Pfe89] Frank Pfenning. Elf: A language for logic definition and verified meta-
programming. In Fourth Annual Symposium on Logic in Computer Sci-
ence, pages 313–322, Pacific Grove, California, June 1989. IEEE Computer
Society Press.

[Pfe91a] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149–
181. Cambridge University Press, 1991.

[Pfe91b] Frank Pfenning. Unification and anti-unification in the Calculus of Con-
structions. In Sixth Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 74–85, Amsterdam, The Netherlands, July 1991.

[Pfe92a] Frank Pfenning. Computation and deduction. Unpublished lecture notes,
revised May 1994, May 1992.

[Pfe92b] Frank Pfenning. Dependent types in logic programming. In Frank Pfen-
ning, editor, Types in Logic Programming, chapter 10, pages 285–311. MIT
Press, Cambridge, Massachusetts, 1992.

[Pfe92c] Frank Pfenning. A proof of the Church-Rosser theorem and its representa-
tion in a logical framework. Journal of Automated Reasoning. To appear. A
preliminary version is available as Carnegie Mellon Technical Report CMU-
CS-92-186, September 1992.

[Pfe93] Frank Pfenning. Refinement types for logical frameworks. In Herman Geu-
vers, editor, Informal Proceedings of the Workshop on Types for Proofs and
Programs, pages 285–299, Nijmegen, The Netherlands, May 1993.

[Pfe94] Frank Pfenning. Elf: A meta-language for deductive systems. In A. Bundy,
editor, Proceedings of the 12th International Conference on Automated De-
duction, pages 811–815, Nancy, France, June 1994. Springer-Verlag LNAI
814. System abstract.

[Pfe95] Frank Pfenning. Structural cut elimination. In D. Kozen, editor, Proceed-
ings of the Tenth Annual Symposium on Logic in Computer Science, pages
156–166, San Diego, California, June 1995. IEEE Computer Society Press.

[Pol94] Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended
Calculus of Constructions. PhD thesis, University of Edinburgh, 1994.

[Pol95] Robert Pollack. A verified typechecker. In M. Dezani-Ciancaglini and
G. Plotkin, editors, Proceedings of the International Conference on Typed
Lambda Calculi and Applications, pages 365–380, Edinburgh, Scotland,
April 1995. Springer-Verlag LNCS 902.

15



[PR92] Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory
of deductive systems. In D. Kapur, editor, Proceedings of the 11th In-
ternational Conference on Automated Deduction, pages 537–551, Saratoga
Springs, New York, June 1992. Springer-Verlag LNAI 607.

[Pre95] Christian Prehofer. Solving Higher-Order Equations: From Logic to Pro-
gramming. PhD thesis, Technische Universität München, March 1995.

[PW90] David Pym and Lincoln Wallen. Investigations into proof-search in a system
of first-order dependent function types. In M.E. Stickel, editor, Proceedings
of the 10th International Conference on Automated Deduction, pages 236–
250, Kaiserslautern, Germany, July 1990. Springer-Verlag LNCS 449.

[Pym90] David Pym. Proofs, Search and Computation in General Logic. PhD thesis,
University of Edinburgh, 1990. Available as CST-69-90, also published as
ECS-LFCS-90-125.

[Pym92] David Pym. A unification algorithm for the λΠ-calculus. International
Journal of Foundations of Computer Science, 3(3):333–378, September
1992.

[Qia93] Zhenyu Qian. Linear unification of higher-order patterns. In M.-C. Gaudel
and J.-P. Jouannaud, editors, Proceedings of the Colloquium on Trees
in Algebra and Programming, pages 391–405, Orsay, France, April 1993.
Springer-Verlag LNCS 668.

[Ras95] Ole Rasmussen. The Church-Rosser theorem in Isabelle: A proof porting
experiment. Technical Report 364, University of Cambridge, Computer
Laboratory, March 1995.

[Roh96] Ekkehard Rohwedder. Verifying the Meta-Theory of Deductive Systems.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1996.
Forthcoming.

[Ros92] Lars Rossen. A Relational Approach to Sequential VLSI Design. PhD
thesis, Department of Computer Science, Technical University of Denmark,
1992.

[RP96] Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking
for higher-order logic programs. In Hanne Riis Nielson, editor, Proceedings
of the European Symposium on Programming, Linköping, Sweden, April
1996. Springer-Verlag LNCS. To appear.

[SH91] Peter Schroeder-Heister. Structural frameworks, substructural logics, and
the role of elimination inferences. In Gérard Huet and Gordon Plotkin,
editors, Logical Frameworks, pages 385–403. Cambridge University Press,
1991.

[Sha88] N. Shankar. A mechanical proof of the Church-Rosser theorem. Journal of
the Association for Computing Machinery, 35(3):475–522, July 1988.

[vdPS95] J. van de Pol and H. Schwichtenberg. Strict functionals for termination
proofs. In M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of the
International Conference on Typed Lambda Calculi and Applications, pages
350–364, Edinburgh, Scotland, April 1995. Springer-Verlag LNCS 902.

[Vir95] Roberto Virga. Higher-order superposition for dependent types. Technical
Report CMU-CS-95-150, Carnegie Mellon University, 1995.

16


