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ABSTRACT
Adjoint logic provides a schematic way to combine multiple logics,

some of which may be substructural, through modal operators

that are adjoint to each other. We provide a simple formulation

for adjoint logic with explicit structural rules. The adjoint logic

is parameterized by a preorder of modes of truth characterizing

(potential) dependence between the modes. We demonstrate that

suitable choices of this preorder allow us to directly embed various

logics including lax logic, judgmental S4, LNL, and intuitionistic

subexponential linear logic into adjoint logic.

Under the proofs-as-programs paradigm, proofs correspond to

concurrent processes and cut reduction to synchronous communi-

cation. We show how to restructure the sequent calculus so that cut

reduction entails asynchronous communication and give an opera-

tional interpretation that provides session-typed communication

extended with multicast and distributed garbage collection.

1 INTRODUCTION
How do we combine logics? One approach is to embed a less expres-

sive into a more expressive logic. This is the approach, for example,

taken by Girard [1987] who represents the usual intuitionistic impli-

cation A→ B as linear implication !A ⊸ B through the use of the

exponential modality !A that controls weakening and contraction.

The rules of the source logic then become derived or admissible

rules in the target logic. If we are interested in the computational

interpretation of proofs via proof reduction, we then have to recon-

sider or reconstruct the meaning through the translation.

An alternative is to keep the original logics intact and provide

modal operators we call shifts to switch between them. This is the

approach, for example, taken by Benton [1994]. As we will see,

Girard’s approach can be seen as a special case of Benton’s.

Of course, the properties satisfied by the shifts cannot be ar-

bitrary or the result will not be a proper combination of the two

logics. In this paper we restrict our attention to intuitionistic logics

and, in particular, we take the verificationist perspective [Dummett

1991; Gentzen 1935] where the meanings of the logical connectives

in each logic are defined by the left and right rules of the sequent

calculus. Cut elimination and identity expansion are necessary to
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justify this point of view. As we will see in Section 4, taking the in-

tuitionistic point of view will provide the opportunity for a uniform

operational interpretation of all logics under consideration.

All logics we consider satisfy associativity and exchange among

the antecedents, and may or may not satisfy weakening or con-

traction. We identify a logic by its mode of truth m and write

σ (m) ⊆ {W,C} for the structural rules satisfied by modem. We

use the same definition for the logical connectives at all modes. For

example, Am ⊸m Bm denotes implication, which could be linear

(σ (m) = { }), structural (σ (m) = {W,C}), affine (σ (m) = {W}), or
strict (σ (m) = {C}). We often drop the subscript on the logical

connective when it can be uniquely determined from context.

We give a variation of Reed’s first and unpublished definition of

adjoint logic [Reed 2009] by using explicit structural rules where

allowed by the mode and just a single pair of left and right rules for

each of the logical connectives and shifts. This formulation allows

an elegant proof of cut elimination closely modeled upon Gentzen’s

original proof [Gentzen 1935] using the rule of multicut. Cut elimi-

nation immediately yields a conservative extension result for the

combined logic over all of its modes of truth. We then annotate

sequents with process expressions extending prior work by Caires

and Pfenning [2010]; Caires et al. [2016] and Pfenning and Griffith

[2015]. Pleasingly, in this formulation the process expressions for

the analogous connectives at different modes have exactly the same

simple form. Modes satisfying contraction permit multicast when

sending. Moreover, we find that separating out the structural rules

together with several logical transformations exploiting multicut

leads to a precise operational semantics in which there are no un-

tethered processes that need to be garbage-collected at the end of a

computation despite the presence of weakening and contraction.

We now introduce our formulation of adjoint logic, including

proofs of cut elimination and identity expansion (Section 2); define

process expressions, define typing, and provide an operational se-

mantics (Section 4); and prove preservation and progress (Section 5).

We close with some remarks on related work (Section 6) and a brief

conclusion.

2 ADJOINT LOGIC
Adjoint logic can be thought of as a schema to define particular

logics. The schema is parameterized by a set of modes of truthm,

where each proposition and logical connective is indexed by its

mode. Furthermore, each mode intrinsically carries a set of struc-

tural properties σ (m) ⊆ {W,C} whereW stands for weakening and
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C stands for contraction. As a concession to simplicity of the presen-

tation, in this paper we always allow exchange, although nothing

stands in the way of an even more general framework [Pfenning

2016]. In addition, an instance requires a preorder between modes,

wherem ≥ k expresses that the proof of a proposition of mode k
may depend on a hypotheses of modem. This preorder embodies

the declaration of independence:

A proof of Ak may only depend on hypotheses Bm for
m ≥ k .

The form of a sequent is

Ψ ⊢ Ak where Ψ ≥ k

where Ψ is a collection of antecedents of the form (xi : Bimi
) with

eachmi ≥ k , where all the variables xi are distinct. This critical
presupposition is abbreviated as Ψ ≥ k . Furthermore, the order of

the antecedents does not matter since we always allow exchange.

In addition, we require the preorder between modes to be com-

patible with their structural properties: that is, m ≥ k implies

σ (m) ⊇ σ (k). This is necessary to guarantee cut elimination (see

Example 2.4).

Finally, we may define fragments by restricting the set of propo-

sitions we consider for a given mode.

The propositions at each mode are constructed uniformly, re-

maining within the same mode, except for the shift operators that
move between modes. They are ↑mk Ak (pronounced up), which is

a proposition at modem and requires m ≥ k ; and ↓ℓmAℓ (down),
which is also a proposition at modem, and which requires ℓ ≥ m.

At this point we can already write out the syntax of propositions.

Am ,Bm F pm | Am ⊸m Bm | Am ⊗m Bm | 1m
| ⊕m
i ∈I

Aim | Nm
i ∈I

Aim | ↑
m
k Ak | ↓

ℓ
mAℓ

Here pm stands for atomic propositions at modem. Anticipating

the needs of our operational interpretation, we have generalized

internal and external choice to n-ary constructors parameterized

by an index set I . So we write A1

m ⊕ A
2

m = ⊕
i ∈{1,2}

Aim .

Remarkably, the right and left rules in the sequent calculus defin-

ing the logical connectives are the same for each mode and are

complemented by the permissible structural rules.

2.1 Judgmental and structural rules
The rules for adjoint logic can be found in Figure 1. We begin

with the judgmental rules of identity and cut, which express the

connection between antecedents and succedents. Identity says that

if we assume Am we are allowed to conclude Am . Cut says the

opposite: if we can conclude Am we are allowed to assume Am as
long as the declaration of independence is respected.

As is common for the sequent calculus, we read the rules in the

direction of bottom-up proof construction. This is also the direction

of type checking, once we have assigned process expressions to the

judgments. For the cut rule, this means we should assume that the

conclusion Ψ Ψ′ ⊢ Ck is well-formed and, in particular, that Ψ ≥ k
and Ψ′ ≥ k . Therefore, if we check thatm ≥ k , then we know that

the second premise, (x : Am ) Ψ
′ ⊢ Ck , will also be well-formed. For

the first premise to be well-formed, we need to check outright that

Ψ ≥ m.

The structural rules of weakening and contraction just need to

verify that the mode of the principal formula permits the rule.

2.2 Additive and multiplicative connectives
The logical rules defining the additive and multiplicative connec-

tives are simply the linear rules for all modes, since we have sep-

arated out the structural rules. Except in one case, ⊸L, the well-
formedness of the conclusion implies the well-formedness of all

premises.

As for⊸L, we know from the well-formedness of the conclusion

that Ψ ≥ k , Ψ′ ≥ k , andm ≥ k . These facts by themselves already

imply the well-formedness of the second premise, but we need to

check that Ψ′ ≥ m in order for the first premise to be well-formed.

2.3 Shifts
The shifts represent the most interesting aspects of the rules. Recall

that in ↑mk Ak and ↓mk Am we require thatm ≥ k . We first consider

the two rules for ↑. We know from the conclusion of the right rule

that Ψ ≥ m and from the requirement of the shift that m ≥ k .
Therefore, as ≥ is transitive, Ψ ≥ k and the premise is always well-

formed. This also means (although we do not prove it here) that

this rule is invertible.
From the conclusion of the left rule, we know Ψ ≥ ℓ, m ≥ ℓ,

andm ≥ k . This does not imply that k ≥ ℓ, which we need for the

premise to be well-formed and thus needs to be checked. Therefore,

this rule is non-invertible.

The downshift rules are constructed analogously, taking only

the declaration of independence and properties of the preorder ≤

as guidance. Note that in this case the left rule is always applicable

(that is, invertible), while the right rule is non-invertible.

2.4 Logic Examples
We now describe how adjoint logic can be used to embed various

other logics, and provide some examples to justify our presentation.

Example 2.1 (Linear logic). Weobtain intuitionistic linear logic [Bar-

ber 1996; Girard 1987] by using two modes, U (for structural) and L
(for linear) with U > L. Moreover, σ (U) = {W,C} and σ (L) = { },
and the structural layer contains only the shifted proposition.

AU F ↑ULAL

AL,BL F pL | AL ⊸ BL | AL ⊗ BL | 1 | ⊕
i ∈I

AiL | N
i ∈I

AiL | ↓
U
LAU

In this representation the exponential modality is decomposed into

shift modalities !AL = ↓
U
L ↑

U
LAL. Unlike Chang et al. [2003], our

sequent calculus employs explicit structural rules of weakening

and contraction on unrestricted propositionsAU. We do not state an

explicit correctness theorem because it follows from the embedding

of LNL (Theorem 2.3) and Benton’s results [Benton 1994].

Example 2.2 (LNL). We obtain LNL [Benton 1994] just like linear

logic with two modes U > L, but we populate the unrestricted

layer with additional propositions, where we write × = ⊗U and

→ =⊸U.

AU,BU F pU | AU → BU | AU × BU | 1U | ↑
U
LAL

AL,BL F pL | AL ⊸ BL | AL ⊗ BL | 1L | ↓ULAU

Benton’s notation for shifts is F = ↓UL and G = ↑UL . Our formula-

tion then combines the various versions of the rules by combining
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(x : Am ) ⊢ Am
id

Ψ ≥ m ≥ k Ψ ⊢ Am (x : Am ) Ψ
′ ⊢ Ck

Ψ Ψ′ ⊢ Ck
cut

W ∈ σ (m) Ψ ⊢ Ck
Ψ (x : Am ) ⊢ Ck

weaken
C ∈ σ (m) Ψ (y : Am ) (z : Am ) ⊢ Ck

Ψ (x : Am ) ⊢ Ck
contract

ℓ ∈ I Ψ ⊢ Aℓ
m

Ψ ⊢ ⊕
i ∈I

Aim
⊕Rℓ

Ψ (y : Aim ) ⊢ Ck for each i ∈ I

Ψ (x : ⊕
i ∈I

Aim ) ⊢ Ck
⊕L

Ψ ⊢ Aim for each i ∈ I

Ψ ⊢ N
i ∈I

Aim
NR

ℓ ∈ I Ψ (y : Aℓ
m ) ⊢ Ck

Ψ (x : N
i ∈I

Aim ) ⊢ Ck
NLℓ

Ψ ⊢ Am Ψ′ ⊢ Bm
Ψ Ψ′ ⊢ Am ⊗ Bm

⊗R
Ψ (y : Am ) (z : Bm ) ⊢ Ck
Ψ (x : Am ⊗ Bm ) ⊢ Ck

⊗L
· ⊢ 1m

1R
Ψ ⊢ Ck

Ψ (x : 1m ) ⊢ Ck
1L

(x : Am ) Ψ ⊢ Bm
Ψ ⊢ Am ⊸ Bm

⊸R
Ψ′ ≥ m Ψ′ ⊢ Am Ψ (y : Bm ) ⊢ Ck

Ψ Ψ′ (x : Am ⊸ Bm ) ⊢ Ck
⊸L

Ψ ⊢ Ak
Ψ ⊢ ↑mk Ak

↑R
k ≥ ℓ Ψ (y : Ak ) ⊢ Cℓ

Ψ (x : ↑mk Ak ) ⊢ Cℓ
↑L

Ψ ≥ m Ψ ⊢ Am
Ψ ⊢ ↓mk Am

↓R
Ψ (y : Am ) ⊢ Cℓ

Ψ (x : ↓mk Am ) ⊢ Cℓ
↓L

Figure 1: Rules of Adjoint Logic

the two contexts, using the declaration of independence instead

to force that unrestricted succedents depend only on unrestricted

antecedents. A small difference arises only in the ×-left rules where
our version has both components in the premise, which is of course

logically equivalent to LNL in the presence of weakening and con-

traction.

Theorem 2.3. If we let τ embed propositions of LNL into the in-
stance of adjoint logic described above, then
(a) Θ ⊢C X in LNL iff τ (Θ) ⊢ τ (X ) in adjoint logic.
(b) Θ; Γ ⊢L A in LNL iff τ (Θ),τ (Γ) ⊢ τ (A) in adjoint logic.

Example 2.4 (Counterexample for independence). Consider linear
logic or LNL and consider the following faulty(!) “proof” showing
that contraction for linear propositions is derivable:

(x : AL) ⊢ AL
id

(x : AL) ⊢
?? ↑ULAL

↑R

(y : AL) (z : AL) ⊢ CL

(y : AL) (w : ↑ULAL) ⊢ CL

↑L

(v : ↑ULAL) (w : ↑ULAL) ⊢ CL

↑L

(u : ↑ULAL) ⊢ CL
contract

(x : AL) ⊢ CL
cut

The fallacy lies with the sequent marked ⊢?? because it violates

our declaration of independence: the succedent ↑ULAL of mode U
depends on an antecedent of mode L, and L ≱ U.

If we wanted to blame a particular inference, it would be ei-

ther cut, viewed bottom-up, or ↑R, viewed top-down. In our case,

the bottom-up construction of this proof would fail because the

condition (x : AL) ≥ U of the cut rule is violated.

It is an immediate corollary that cut elimination fails if the dec-

laration of independence is not enforced. For example, using the

above faulty reasoning, we could prove AL ⊢ AL ⊗ AL, which in

general has no cut-free proof.

Example 2.5 (Judgmental S4). The (♦-free portion of) judgmental

modal logic S4 [Pfenning and Davies 2001] arises from two modes

V (validity) and U (truth) with V > U. The declaration of inde-

pendence here expresses that validity is categorical with respect to
truth—that is, a proof of AV may not depend on any hypotheses

of the form BU. Previously, this had been enforced by segregating

the antecedents into two zones and managing their dependence

accordingly.

AV F ↑VUAU

AU,BU F pU | AU ⊸ BU | AU ⊗ BU | 1 | ⊕
i ∈I

AiU | N
i ∈I

AiU | ↓
V
UAV

Analogous to the encoding of linear logic, we only need to allow

↑VUAU in the validity layer. Under that interpretation, we encode

2AU = ↓
V
U ↑

V
UAU, which is entirely analogous to the representation

of !A in linear logic.

The adjoint reconstruction now gives rise to a richer logic where

additional connectives speaking about validity can be decomposed

directly via their left and right rules.

Theorem 2.6. If we let τ embed propositions of judgmental S4 into
the instance of adjoint logic described above, then

(a) ∆; Γ ⊢ A in judgmental S4 iff ↑VUτ (∆),τ (Γ) ⊢ τ (A) in adjoint logic.
(b) ∆; · ⊢ A in judgmental S4 iff ↑VUτ (∆) ⊢ ↑

V
Uτ (A) in adjoint logic.

Example 2.7 (Lax logic). Lax logic [Fairtlough and Mendler 1997;

Pfenning and Davies 2001] encodes a weaker form of truth called

lax truth. We can represent it as a substructural adjoint logic with

two modes, U > X, where both modes satisfy weakening and con-

traction. We restrict the lax layer to a single connective and omit

additive connectives for simplicity.

AU,BU F pU | AU → BU | AU × BU | 1U | ↑
U
XAX

AX F ↓UXAU

Now the lax modality is defined as ⃝AU = ↑
U
X ↓

U
XAU.

We can now add further connectives directly operating on the

lax layer and obtain consistent left and right rules for them.

Theorem 2.8. If we let τ embed propositions of lax logic into the
instance of adjoint logic described above, then

(a) Γ ⊢ A true in lax logic iff τ (Γ) ⊢ τ (A) in adjoint logic.
(b) Γ, Γ′ ⊢ A lax in lax logic iff τ (Γ),↓UXτ (Γ

′) ⊢ ↓UXτ (A) in adjoint
logic.
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2.5 Multicut
Because we have an explicit rule of contraction, cut elimination does

not follow by a simple structural induction. However, we can follow

Gentzen [1935] and allow multiple copies of the same proposition

to be removed by the cut, which then allows a structural induction

argument. In anticipation of the operational interpretation, we have

labeled our antecedents with unique variables, so the generalized

form of cut called multicut (see, for example, Negri and von Plato

[2001]) can remove n ≥ 0 copies. Of course, such cuts are only legal

if the propositions that are removed satisfy the necessary structural

rules. For n = 0, we require that the modem support weakening.

Ψ ≥ m ≥ k W ∈ σ (m) Ψ ⊢ Am Ψ′ ⊢ Ck
Ψ Ψ′ ⊢ Ck

cut(∅)

For n = 1, we obtain the usual cut rule and no special requirements

are needed.

Ψ ≥ m ≥ k Ψ ⊢ Am (x : Am ) Ψ
′ ⊢ Ck

Ψ Ψ′ ⊢ Ck
cut({x})

For n ≥ 2, the mode of the cut formula must admit contraction.

C ∈ σ (m)
Ψ ≥ m ≥ k Ψ ⊢ Am (S ∪ {x ,y} : Am ) Ψ

′ ⊢ Ck

Ψ Ψ′ ⊢ Ck
cut(S ∪ {x ,y})

Here, we have used the abbreviation ({x1, . . . ,xn } : Am ) to stand
for (x1 : Am ) . . . (xn : Am ).

Note that each of these rules has a side condition that can be

interpreted informally as stating that the number of antecedents cut

must be compatible with the modem: if there are no antecedents

removed,m must admit weakening, and if we remove two or more,

m must admit contraction. We write this as |S | ∼m where 0 ∼m if

W ∈ σ (m), 1 ∼m always, and k ∼m for k ≥ 2 if C ∈ σ (m).
This allows us to write down a single rule encompassing all three

of the above cases for multicut:

Ψ ≥ m ≥ k |S | ∼m Ψ ⊢ Am (S : Am ) Ψ
′ ⊢ Ck

Ψ Ψ′ ⊢ Ck
cut(S)

Note that the standard cut rule is the instance of the multicut rule

where |S | = 1, and so proving multicut elimination for adjoint logic

also yields cut elimination for the standard cut rule.

2.6 Identity Expansion and Cut Elimination
We present standard identity expansion and cut elimination results

as evidence for the correctness of the sequent calculus as capturing

the meaning of the logical connectives via their inference rules.

Cut-free proofs will always decompose propositions when read

from conclusion to premise and thus yield a conservative extension

result. Finally, the fine detail of the proof is significant because

(a) the cut reductions, which constitute the essence of the proof,

are the basis for the operational semantics, and (b) cut reductions

define a proof equivalence under which the adjunction property

for the shifts can be verified (see Section 2.7).

Theorem 2.9 (Identity Expansion). If Ψ ⊢ Am , then there exists
a proof that Ψ ⊢ Am using identity rules only at atomic propositions,
which is cut-free if the original proof is.

Proof. We begin by proving that for any formula Am , there is

a cut-free proof that (x : Am ) ⊢ Am using identity rules only at

atomic propositions. This follows easily from an induction on Am .

Now, we arrive at the theorem by induction over the structure

of the given proof that Ψ ⊢ Am . □

We use Ψ ⊢⊢ Am to stand for the statement that there is a cut-free

proof of Am from Ψ.

Theorem 2.10 (Cut Elimination). If Ψ ⊢ Am , then also Ψ ⊢⊢ Am .

Proof. This proof follows the structure of many cut-elimination

results. First we prove admissibility of multicut in the cut-free

system: ifD is a proof of Ψ ⊢⊢ Am and E is a proof of (S : Am ) Ψ
′ ⊢⊢

Ck , then we can construct a proof of Ψ Ψ′ ⊢⊢ Ck . This is established
by a straightforward nested induction, first on the proposition Am
and then simultaneously on the structure of the deductions D and

E. This is followed by a simple structural induction to prove cut

elimination, using the admissibility of cut when it is encountered. If

we ignore the modes, this proof is very similar to the original proof

of Gentzen [1935]. Some sample cases are provided in Appendix A.2.

□

Corollary 2.11. Adjoint logic is a conservative extension of each
of the logics at a fixed mode. That is, if Ψ ⊢ Am is a sequent purely
at modem (in that every type in Ψ is at modem and neither Am nor
the types in Ψ make use of shifts), then Ψ ⊢ Am is provable using the
rules of adjoint logic iff it is provable using the rules which define the
logic at modem.

Proof. By cut elimination, we have that if Ψ ⊢ Am is provable

in the adjoint logic, then so is Ψ ⊢⊢ Am . By the subformula property

of cut-free proofs, this cannot leave modem. □

2.7 Adjunction properties
As yet, we have not discussed the meaning of the name “adjoint
logic”. This can be justified by showing that for fixed k ≤ m, ↓mk and

↑mk yield an adjoint pair of functors ↓mk ⊣ ↑
m
k . Since prior results

(see Benton [1994] and Licata et al. [2017]) already establish this

property and we have little new to contribute here, a sketch of this

construction is relegated to Appendix A.3.

3 ASYNCHRONOUS ADJOINT LOGIC
As has been observed before, intuitionistic and classical linear logics

can be put into a Curry–Howard correspondence with session-

typed communicating processes [Caires and Pfenning 2010; Caires

et al. 2016; Wadler 2012]. A linear logical proposition corresponds

to a session type, and a sequent proof to a process expression. The

transition rules of the operational semantics derive from the cut

reductions.

Under the intuitionistic interpretation a sequent proof
1
of

(x1 : A
1

L) · · · (xn : AnL ) ⊢ (x : AL)

corresponds to a process P that provides channelx and uses channels
xi . The types of the channels prescribe the pattern of communica-

tion: in the succedent, positive types (⊕, ⊗, 1) will send and negative
types (N,⊸) will receive. In the antecedent, the roles are reversed.

1
for now on the linear fragment, and also labeling the succedent with a fresh variable

4
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Cut corresponds to parallel composition of two processes, with a

private channel between them, while identity simply equates two

channels.

3.1 Enforcing Asynchronous Communication
Under this interpretation, a cut of a right rule against a matching left

rule allows computation to proceed by mimicking the cut reduction

from the proof of Theorem 2.10. For example, a cut at type ⊕
i ∈I

AiL

is replaced by a cut at type Aℓ
L for some ℓ ∈ I . This corresponds

to passing a message (‘ℓ’) from the process providing x : ⊕
i ∈I

AiL to

the process using x . By its very nature, this form of cut reduction

is synchronous: both provider and client proceed simultaneously

because the channel x : Aℓ connects the two process continuations.

For realistic languages, and also for the paradigm to smoothly

extend to the case of adjoint logic where some modes permit weak-

ening and contraction, we would like to prescribe asynchronous
communication instead. Is this possible while remaining true to the

Curry–Howard interpretation whereby computation proceeds by

cut reduction? The answer is “yes”, but we need to reformulate the

sequent calculus.

We replace the right rules for the positive connectives (⊕, ⊗, 1)
and the left rules for the negative connectives (N,⊸) with new

zero-premise rules. In the restructuring we preserve provability,

but change the nature of cut reduction.

Consider the binary case of internal choice, A ⊕ B. Omitting

extraneous antecedents, one of two usual cut reductions is

D
⊢ A
⊢ A ⊕ B

⊕R1

E1
A ⊢ C

E2
B ⊢ C

A ⊕ B ⊢ C
⊕L

⊢ C
cutA⊕B

−→

D
⊢ A

E1
A ⊢ C
⊢ C

cutA

Now we replace the two right rules for disjunction with two zero-

premise rules (“axioms”):

A ⊢ A ⊕ B
⊕R0

1 B ⊢ A ⊕ B
⊕R0

2

Then the cut reduction above is transformed into the following:

A ⊢ A ⊕ B
⊕R0

1

E1
A ⊢ C

E2
B ⊢ C

A ⊕ B ⊢ C
⊕L

A ⊢ C
cutA⊕B

−→
E1

A ⊢ C

We see that the process representing the proof of A ⊢ A ⊕ B acts

like a message (perhaps ‘inl’) and the cut reduction absorbs the

message, in effect entirely eliminating the cut. To actually send
such a message we have to use a cut with the new zero-premise

rule. Since a cut always proceeds by spawning a new process, this

makes sending a message in effect asynchronous. The old rules are

trivially derivable using the new ones using this extra cut.

D
Ψ ⊢ A

Ψ ⊢ A ⊕ B
⊕R1

=

D
Ψ ⊢ A A ⊢ A ⊕ B

⊕R0
1

Ψ ⊢ A ⊕ B
cutA⊕B

In this restructured calculus (see Figure 2, ignoring for now the

process terms) cut elimination fails. For example, there cannot be a

cut-free proof of ⊢ 1⊕ B because no rule except cut actually applies.

With cut we obtain

⊢ 1 1R 1 ⊢ 1 ⊕ B
⊕R0

1

⊢ 1 ⊕ B
cut1

This proof in fact corresponds to the parallel composition of two

messages: one ‘⟨ ⟩’ to terminate communcation and one ‘inl’ to
select the first alternative of the internal choice.

Fortunately, the lack of cut elimination is not troublesome, since

computation rarely (if ever) corresponds to full normalization or

cut elimination. Functional programming languages, for example,

do not evaluate under λ-abstractions, and concurrent languages

(even those proposed for the Curry–Howard interpretation [Caires

and Pfenning 2010]) do not reduce under an input prefix. So we fall

back on the usual progress and preservation theorems which, in

the end, do derive from cut reductions, and carefully analyze the

structure of irreducible configurations.

3.2 Eliminating Weakening and Contraction
We have introduced multicut entirely with the standard motivation

of providing a simple proof of the admissibility of cut using struc-

tural induction. Surprisingly, we can streamline the system further

by using multicut to eliminate weakening and contraction from the

logic altogether.

Consider a modem with C ∈ σ (m). Then contraction is a simple

instance of multicut with an instance of the identity rule.

(x : Am ) ⊢ Am
id

Ψ (y : Am ) (z : Am ) ⊢ Ck
Ψ (x : Am ) ⊢ Ck

cut({y, z})

Similarly, for a mode m with W ∈ σ (m), weakening is also an

instance of multicut.

(x : Am ) ⊢ Am
id

Ψ ⊢ Ck
Ψ (x : Am ) ⊢ Ck

cut(∅)

Cut reductions in the presence of contraction entail many residual

contractions, as is evident already from Gentzen’s original proof.

Under our interpretation of contraction above, these residual con-

tractions simply become multicuts with the identity. The opera-

tional interpretation of identities then plays three related roles: with

one client, an identity achieves a renaming, redirecting communi-

cation; with two or more clients, an identity implements copying;

with zero clients, its effect is garbage collection. The central role

of identities can be seen in full detail in Figure 3, once we have

introduced our notation for processes and process configurations.

4 OPERATIONAL SEMANTICS
The pattern of communication along private channels (see Sec-

tion 3) is disturbed by the exponential modality !A of linear logic,

which requires a shared channel with multiple clients since it admits

weakening and contraction. The only operation supported is for the

client to obtain a fresh copy by sending it a fresh linear channel for
communication at type A. This was analyzed from the perspective

of adjoint logic with a fixed three-point partial order (structural,

5
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(a : Am ) ⊢ c ← a :: (c : Am )
id

Ψ ≥ m ≥ k |S | ∼m Ψ ⊢ P :: (x : Am ) (S : Am ) Ψ
′ ⊢ Q :: (c : Ck )

Ψ Ψ′ ⊢ S ← (x .P);Q :: (c : Ck )
cut(S)

ℓ ∈ I

(a : Aℓ
m ) ⊢ send c ℓ(a) :: (c : ⊕

i ∈I
Aim )

⊕R0
ℓ

Ψ (xi : A
i
m ) ⊢ Pi :: (c : Ck ) for each i ∈ I

Ψ (a : ⊕
i ∈I

Aim ) ⊢ case a {i(xi ) ⇒ Pi }i ∈I :: (c : Ck )
⊕L

Ψ ⊢ Pi :: (xi : A
i
m ) for each i ∈ I

Ψ ⊢ case c {i(xi ) ⇒ Pi }i ∈I :: (c : N
i ∈I

A
j
m )

NR ℓ ∈ I

(a : N
i ∈I

Aim ) ⊢ send a ℓ(c) :: (c : Aℓ
m )

NL0
ℓ

(a : Am ) (b : Bm ) ⊢ send c ⟨a,b⟩ :: (c : Am ⊗ Bm )
⊗R0

Ψ (x : Am ) (y : Bm ) ⊢ P :: (c : Ck )

Ψ (a : Am ⊗ Bm ) ⊢ ⟨x ,y⟩ ← recv a; P :: (c : Ck )
⊗L

· ⊢ close c :: (c : 1m )
1R

Ψ ⊢ P :: (c : Ck )

Ψ (a : 1m ) ⊢ wait a; P :: (c : Ck )
1L

(x : Am ) Ψ ⊢ P :: (y : Bm )

Ψ ⊢ ⟨x ,y⟩ ← recv c; P :: (c : Am ⊸ Bm )
⊸R

(a : Am ) (c : Am ⊸ Bm ) ⊢ send c ⟨a,b⟩ :: (b : Bm )
⊸L0

Ψ ⊢ P :: (x : Ak )

Ψ ⊢ shift(x) ← recv c; P :: (c : ↑mk Ak )
↑R

(a : ↑mk Ak ) ⊢ send a shift(c) :: (c : Ak )
↑L0

(a : Am ) ⊢ send c shift(a) :: (c : ↓mk Am )
↓R0

Ψ (x : Am ) ⊢ P :: (c : Cℓ)

Ψ (a : ↓mk Am ) ⊢ shift(c) ← recv a; P :: (c : Cℓ)
↓L

Figure 2: Process Assignment for Asynchronous Adjoint Logic

affine, and linear) by Pfenning and Griffith [2015]. No other struc-

tural connectives were supported, and a consistent operational

interpretation of those was left as an open question.

In this section, we propose an answer to this question, which

required a reformulation of adjoint logic by making the structural

rules explicit and using multicut instead of the ordinary cut. Re-

markably, we obtain two new operational phenomena: (1) a form of

multicast communication and (2) a logically justified form of explicit

garbage collection.

4.1 Static Semantics
We begin by providing proof terms for the rules in our sequent

calculus, as shown in Figure 2. We can then interpret the proof

terms as process expressions, and these rules are used to give the

typing judgment for such processes. Table 1 gives the informal

meaning of each such process term. Note that the process terms for

shifts are a special case of the process terms for ⊕ and N, and so are

combined in the figure. In general, the process syntax represents

an intermediate point between a programmer-friendly syntax and

a notation in which it is easy to describe the operational seman-

tics and prove progress and preservation. When compared to, say,

SILL [Toninho et al. 2013], the main revisions are that (1) we make

channel continuations explicit in order to facilitate asynchronous

communication while preserving message order [DeYoung et al.

2012], and (2) we distinguish between an internal name for the

channel provided by a process and external names connecting it to

multiple clients.

Process term Meaning

a ← c Identify channels a and c .
S ← (x .P);Q Spawn a new process P providing

channels S to be used by Q . Here, x
is the internal name in P for the chan-

nel offered by P , and S is the set of

external names of the same channel.

send c ℓ(a) Send the label ℓ and the channel a
along c .

case c{i(xi ) ⇒ Pi }i ∈I Receive a label i and a channel xi from
c , continue as Pi .

send c ⟨a,b⟩ Send the channels a and b along c .
⟨x ,y⟩ ← recv c; P Receive channels x and y from c to be

used in P .

close c End communication over c .
wait c; P Wait for c to be closed, continue as P .

Table 1: Informal Meanings of Process Terms

4.2 Some Simple Examples
At this point, we can write down some actual processes. We provide

here some small examples, along with their type information.

First, we have a process that can be written at anymodem, which

witnesses that ⊗m is commutative.

(x : Am ⊗ Bm ) ⊢ ⟨y,x
′⟩ ← recv x ; send z ⟨x ′,y⟩ :: (z : Bm ⊗ Am )

Ifm is a mode that admits contraction, we canwrite the following

process, which witnesses that Am N Bm proves Am ⊗ Bm in the

6
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presence of contraction. ‘%’ starts a comment, and a.(P) binds an
internal name a for the channel provided by P .

(p : Am N Bm ) ⊢ {p1,p2} ← q.(q ← p); % {p1,p2} ← copy p
x ← a.(send p1 π1(a));
y ← b .(send p2 π2(b));
send z ⟨x ,y⟩

:: (z : Am ⊗ Bm )

Ifm is a mode that admits weakening, we can write the following

process, which witnesses that Am ⊗ Bm proves Am N Bm in the

presence of weakening.

(x : A ⊗ B) ⊢ case p { π1(p1) ⇒ ⟨y, z⟩ ← recv x ;
∅ ← a.(a ← z); % drop z
p1 ← y

| π2(p2) ⇒ ⟨y, z⟩ ← recv x ;
∅ ← a.(a ← y); % drop y
p2 ← z }

:: (p : AN B)

Three further examples involving a recursive type can be found

in Section 5.3.

4.3 Dynamic Semantics
In order to describe the computational behavior of process expres-

sions, we need to first give some syntax for the computational

artifacts, which are running processes proc(. . .).
In this notation, proc(S,∆,a.P) represents a process P which

provides to clients S along a channel that it knows internally as a,
using channels in ∆. That is, ∆ consists of the free channels in P .

We will write Ψ for the set of variables declared in Ψ.
A process configuration is a multiset of processes:

C F (·) | C proc(S,∆,a.P)

where we require that all the channels provided by the processes

proc(S,∆,a.P) are distinct, i.e., given objects proc(S,∆1,a.P) and
proc(T ,∆2,b .Q) in the same process configuration, S and T are

disjoint. We will specify the operational semantics in the form of

multiset rewriting rules [Cervesato and Scedrov 2009]. That means

we show how to rewrite some subset of the configuration while leav-

ing the remainder untouched. This form provides some assurance

of the locality of the rules.

It simplifies the description of the operational semantics, if for

any process proc(S,∆,a.P), ∆ consists of exactly the free channels

in P . This requires that we restrict the labeled internal and external
choices, ⊕

i ∈I
Aim and N

i ∈I
Aim to the case where I , ∅. Since a channel

of empty choice type can never carry any messages, this is not a

significant restriction in practice.

4.3.1 Configuration typing. In order to understand the rules of

the operational semantics, it will be helpful to understand the typing

of configurations. The judgment has the form Ψ ⊨ C :: Ψ′ which
expresses that using the channels in Ψ, configuration C provides

the channels in Ψ′. This allows a channel that is not mentioned at

all in C to appear in both Ψ and Ψ′—we think of such a channel as

being “passed through” the configuration.

Note that while the configuration typing rules induce an ordering

on a configuration, the configuration itself is not inherently ordered.

The key rule is the first: for any formula proc(S,∆,a.P), a is the

internal name of the channel provided by P while S is the set of all

clients. An important restriction is that the number of clients must

be compatible with the modem of the offered channel, which is

exactly that |S | ∼m, as defined in Section 2.5.

|S | ∼m Ψ′ ⊢ P :: (a : Am )

Ψ Ψ′ ⊨ proc(S,Ψ′,a.P) :: Ψ (S : Am )

Ψ ⊨ (·) :: Ψ
Ψ ⊨ C :: Ψ′ Ψ′ ⊨ C′ :: Ψ′′

Ψ ⊨ C C′ :: Ψ′′

The identity and composition rules are straightforward. The

empty context (·) provides Ψ if given Ψ, since it does not use any
channels in Ψ or provide any additional channels. Composition

just connects configurations with compatible interfaces: what is

provided by C is used by C′.

The computation rules we discuss below can be found in Figure 3.

4.3.2 Judgmental rules. The identity rule (written as

id
=⇒) de-

scribes how an identity process proc(S, {c},a.(a ← c)) can interact

with other processes. We think of such a process as connecting the

provider of c to clients in S , and therefore sometimes call it a for-
warding process. A forwarding process interacts with the provider

of c , telling it to replace c with S in its set of clients. In adding S to

the set of clients, the forwarding process accomplishes its goal of

connecting the provider of c to S , and so it can terminate.

The cut rule steps by spawning a new process which offers

along a fresh set of channels S ′, all of which are used in Q , the
continuation of the original process. Here we write ∆P and ∆Q for

the set of free channels in P and Q , respectively.

4.3.3 Structural rules. As can be seen from the proof of cut

elimination (Appendix A.2), a principal multicut reduction creates

several new cuts: one with a smaller proposition (these are em-

bodied in rules (∗)C for each connective (∗)), possibly some with a

smaller proof, and possibly followed by some contractions.

We refactor these into several smaller steps. First, if the multicut

eliminates more than one copy of a proposition, we divide it into

two multicuts followed by some contractions. This way we isolate

the single proposition that is actually eliminated into a multicut on

the same proposition and a smaller proof, followed by a singleton

cut. The residual contractions are of course then again implemented

by cuts with the identity. The critical step here is the following,

assuming that C ∈ σ (m) and S and T nonempty:

Ψ ⊢ Am (S ∪T : Am ) Ψ
′ ⊢ C

Ψ Ψ′ ⊢ C
cut(S ∪T )

=⇒

Ψ ⊢ Am

Ψ ⊢ Am (S ∪T : Am ) Ψ
′ ⊢ C

(T : Am ) Ψ Ψ′ ⊢ C
cut(S)

Ψ Ψ Ψ′ ⊢ C
cut(T )

Ψ Ψ′ ⊢ C
contract∗

This is embodied in the rule

copy
=⇒ where ∆ = Ψ. The identity pro-

cesses here implement the residual contractions. We require P not

to be an identity in order to prevent circular reductions. The trans-

formation is entirely parametric in the client(s), which we therefore

do not need to make explicit.
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proc(T ∪ {c},∆,a.P)
proc(S, {c},a.(a ← c))

id
=⇒ proc(T ∪ S,∆,a.P)

proc(T ,∆P ∪ ∆Q ,a.(S ← (x .P);Q))
cut(S )
=⇒

proc(S ′,∆P ,x .P) (S ′ a fresh set of channels matching S)
proc(T ,∆Q ∪ {S ′},a.Q[S ′/S])

proc(∅,∆,a.P)
drop
=⇒ proc(∅, {b},a.(a ← b))b ∈∆ (P not an identity)

proc(S ∪T ,∆,a.P)
copy
=⇒

proc({b ′,b ′′}, {b},a.(a ← b))b ∈∆
proc(S, {b ′}b ∈∆,a.P) (P not an identity and S,T non-empty)

proc(T , {b ′′}b ∈∆,a.P)

proc({b}, {c},a.(send a ℓ(c)))
proc(S,∆ ∪ {b},a.(case b {i(di ) ⇒ Pi }i ∈I ))

⊕ C
=⇒ proc(S,∆ ∪ {c},a.Pℓ[c/dℓ])

proc({b},∆,a.(case a {i(di ) ⇒ Pi }i ∈I ))
proc({c}, {b},a.(send b ℓ(a)))

N C
=⇒ proc({c},∆,a.Pℓ[a/dℓ])

proc({b}, {c,d},a.(send a ⟨c,d⟩))
proc(S,∆ ∪ {b},a.(⟨x ,y⟩ ← recv b; P))

⊗ C
=⇒ proc(S,∆ ∪ {c,d},a.P[c/x ,d/y])

proc({b},∆,a.(⟨x ,y⟩ ← recv a; P))
proc({c}, {b,d},a.(send b ⟨d,a⟩))

⊸ C
=⇒ proc({c},∆ ∪ {d},a.P[d/x ,a/y])

proc({b}, ∅,a.(close a))
proc(S,∆ ∪ {b},a.(wait b; P))

1 C
=⇒ proc(S,∆,a.P)

proc({b},∆,a.(shift(x) ← recv a; P))
proc({c}, {b},a.(send b shift(a)))

↑ C
=⇒ proc({c},∆,a.(P[a/x]))

proc({b}, {c},a.(send a shift(c)))
proc(S,∆ ∪ {b},a.(shift(x) ← recv b; P))

↓ C
=⇒ proc(S,∆ ∪ {c},a.P[c/x])

Figure 3: Computation Rules for Asynchronous Adjoint Logic

A similar consideration in the case where a multicut eliminates

zero copies of a proposition justifies the

drop
=⇒ rule of computation.

In the copy rule, we use a few conventions for simplicity. First,

we implicitly assume that b ′ and b ′′ are fresh for each channel b.
We also use the shorthand ∆′ for {b ′ | b ∈ ∆}, and similarly for ∆′′.
The substitution P[∆′/∆] is the obvious pointwise substitution of

each b ′ for the corresponding b.

4.3.4 Additive and Multiplicative connectives. In the computa-

tion rule for ⊕, the process proc({b}, {c},a.(send a ℓ(c))) represents
the message ‘label ℓ with continuation c’. After this message has

been received, the process terminates since b was its only client.

The recipient selects the appropriate branch of the case construct
and also substitutes the continuation channel c for the continuation
variable dℓ .

The N computation rule is largely similar to that for ⊕, except

that communication proceeds in the opposite direction—messages

are sent to providers from clients, rather than from providers to

clients as in the case of ⊕.

Themultiplicative connectives ⊗ and⊸ behave similarly to their

additive counterparts, except that rather than sending and receiving

labels, they send and receive channels together with a continuation,

and so an extra substitution is required when receiving messages.

The rule for 1 behaves as a nullary ⊗, allowing us to signal that

no more communication is forthcoming along a channel, and to

wait for such a signal before continuing to compute.

4.3.5 Shifts. Operationally, ↑ behaves essentially the same as

unary N, while ↓ behaves as unary ⊕, and so these rules are similar

to the computation rules for those connectives. Their significance

lies in themode shift of the continuation channel that is transmitted,

which is required for the configuration to remain well-typed.

5 PRESERVATION AND PROGRESS
While in the logic we can prove cut elimination, in a programming

language we would support recursive types and recursive processes

which may not terminate. Moreover, from a programmer’s perspec-

tive we are not even interested in eliminating all cuts (which would

correspond to reducing under λ-abstractions in a functional lan-

guage) but we block when waiting to receive a message, analogous

to a λ-abstraction waiting for input before it can reduce.

What we prove instead are the typical progress and preservation

properties, adjusted to adjoint logic and to our specific operational

semantics. Type preservation is usually referred to as session fidelity

and progress as deadlock freedom.
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5.1 Preservation (Session Fidelity)
Theorem 5.1 (Preservation). If Ψ ⊨ C :: Ψ′ and C ⇒ C′, then

Ψ ⊨ C′ :: Ψ′.

Proof. This proceeds by a case analysis on the computation

rule used to get that C ⇒ C′.

The general structure of each case is to use Lemma A.18 to break

C down into the processes on which the computation rule acts and

some additional collections of processes which are irrelevant to

the computation. Once we have done this, we build a proof that

Ψ ⊨ C′ :: Ψ′ from these pieces. □

5.2 Global Progress (Freedom from Deadlocks)
The progress theorem for a functional language states that an ex-

pression is either a value or it can make a step. Here we do not have

values, but there is nevertheless a clear analogue between, say, a

value λx .e that waits for an argument, and a processy ← recv x ; P
that waits for an input. We formalize this in the definition below.

Definition 5.2. We say that a process proc(S,∆,a.P) is poised on

a if:

(1) it is a process proc(S,∆,a.P) that sends on a — that is, P is

of the form (send a _) or (close a), or
(2) it is a process proc(S,∆,a.P) that receives on a — that is, P

is of the form (case a _), (wait a ; _), or (_← recv a ; _).

Intuitively, proc(S,∆,a.P) is poised on a if it is blocked trying

to communicate along a. This definition allows us to state the

following progress theorem:

Theorem 5.3 (Progress). If (·) ⊨ C :: Ψ, then exactly one of the
following holds:

(1) There is a C′ such that C ⇒ C′.
(2) Every proc(S,∆,a.P) in C is poised on a.

Proof. This follows from an induction on the derivation of (·) ⊨
C :: Ψ, using the ⊨′ rules defined in Appendix A.4. Writing C =

C′ proc(S,Ψ′,a.P), we see that either C′ can step, in which case so

can C, or every process in C′ is poised.

Now we carefully distinguish cases on S (empty, singleton, or

greater) and apply inversion to the typing of P to see that in each

case the process either is poised, can take a step independently, or

can interact with provider of a channel in Ψ′. □

5.3 Garbage Collection
As we can see from the preservation theorem, the interface to a

configuration never changes.While new processes may be spawned,

they will have clients and are therefore not visible at the interface.

That is in contrast to the semantics of shared channels in prior

work (for example, in Caires and Pfenning [2010]) where shared

channels may show up as newly provided channels. Therefore they

may be left over at the end of a computation without any clients.

This cannot happen here. Initially, at the top level, we envision

starting with

· ⊨ proc({c0}, ·, c .P0) :: (c0 : 1)
Assuming this computation completes, by the progress property

and the definition of poised, computation could only halt with

· ⊨ proc({c0}, ·, c .(close c)) :: (c0 : 1)

In other words: no garbage!

One can generalize this theorem to allow some nontrivial output

by allowing any purely positive type (that is, one which only uses

the fragment of the logic with connectives ⊕, ⊗, 1, and ↓), such as

⊕{false : 1, true : 1}.
Perhapsmost interesting here is an extension, following SILL [Pfen-

ning and Griffith 2015; Toninho et al. 2013] in a straightforward

way, where we allow recursive types and recursive definition be-

yond the pure logic. For example, we can define binary numbers in

“little endian” representation (least significant bit first) as

bitsm = ⊕{b0 : bitsm , b1 : bitsm , e : 1m }

We do not specify here the modem because the examples below

will work for any mode, regardless of its structural properties! Then

the number 5 = (101)2 is represented by the following process:

· ⊢ five(x0) :: (x0 : bits)
five(x0) = x4 ← a.(close a);

x3 ← a.(send a e(x4));
x2 ← a.(send a b1(x3));
x1 ← a.(send a b0(x2));
send x0 b1(x1)

which evolves into five processes: three representing the bits 1, 0, 1;

one (e) for the end of the number; and one to close the channel. In

fact, by the progress and preservation theorems and inversion on

typing, we know that if any process · ⊢ P :: (x0 : bitsm ) terminates,

then P will represent a binary number with one process for each of

its bits and two more to mark the end of the number and close the

channel.

As a last example, the recursive process definition inc(x ,y) reads
a stream of bits along channel x and sends an incremented stream

along y.

(x : bits) ⊢ inc(x ,y) :: (y : bits)
inc(x ,y) = case x { b0(x ′) ⇒ send y b1(x ′)

| b1(x ′) ⇒ y′ ← a.(inc(x ′,a));
send y b0(y′)

| e(x ′) ⇒ y′ ← a.(send a e(x ′))
send y b1(y′) }

We can obtain the representation of 6 by incrementing 5.

· ⊢ six(x0) :: (x0 : bits)
six(x0) = x1 ← a.(five(a));

inc(x1,x0)

6 RELATEDWORK
Various items of related work have already been mentioned in the

preceding sections either in examples or technical cross-references.

The most closely related work and immediate inspiration comes

from the unpublished Reed [2009] which introduces an arbitrary

preorder on modes with a uniform logical language and sequent

calculus rules. It uses the notation Fq≥pAq = ↓
q
pAq andUq≥pAq =

↑
p
qAq . It mostly stays in the realm of structural logics, but Sec-

tion 4.4 sketches intuitionistic linear logic and LNL as examples. It

does not use explicit weakening and contraction rules (which are

incorporated into the other rules as is frequently done for sequent

calculi), and, while it uniformly proves cut elimination in the case

of structural modes, it does not provide an operational semantics.
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Recently, Licata et al. [2017] have further generalized Reed’s

adjoint logic by uniquely labeling antecedents and then controlling

their use through a resource annotation of a sequent. Their resource

annotations are made in an expressive mode theory which allows

a richer set of logics to be represented than in our system here,

including non-associative, ordered, and bunched logics. In addition,

Licata et al. view multiplicative connectives such as tensor (⊗) or

linear implication (⊸) as instances of a new generalized form of

the adjoint modal operators, which paves the way for yet additional

operators to be represented. In particular, their system allows ?aA
of intuitionistic subexponential logic (see Section A.1.4) and ♦A of

judgmental modal logic (see Example 2.5) to be encoded directly,

which, as far as we can tell, requires at least a 4-point lattice and

an additional distinguished atom ar [Reed 2009, Section 4.5] in our

setting.

This generality also comes at a price. The declaration of inde-

pendence is no longer a fundamental notion, but a roughly corre-

sponding strengthening lemma has to be proved and requires some

complex conditions on the mode theory [Licata et al. 2017, Lemma

7.1]. Adequacy of encodings also becomes more complicated. Fur-

thermore, Licata et al. do not provide an operational semantics;

their interest (like Reed’s) lies on the logical and categorical side.

In a different direction, there is some related work on the use of

linearity for garbage collection. The work of Wadler [1990] presents

a simple language which uses linearity for state change without a

need for garbage collection. Roughly contemporaneous with this

is work by Chirimar et al. [1992], which focuses more on the idea

of implementing garbage collection with linear logic, allowing the

programmer to “dispose” of variables which are not needed in a

type-safe fashion. Again, however, this focuses on a functional lan-

guage, with the intent to allow for easier reasoning about memory

optimizations in functional programming. More recently, [Igarashi

and Kobayashi 2000, 2002] deal with garbage collection (and the

more general problem of resource management) using linearity.

Yet again, this deals only with the case of sequential functional

programs. A major difference between the prior work and our

work, then, is that we work in a concurrent setting, and indeed our

garbage collection is concurrent as well.

7 CONCLUSION
At this point, our formulation of adjoint logic and its operational

semantics seem to fit well and provide a good explanation for multi-

cast communication and distributed garbage collection. Moreover, if

used linearly, the semantics coincides with the purely linear seman-

tics developed in prior work. In future work, we plan to investigate

if the logic also lends itelf to a shared memory implementation

(as the example in Section 5.3 suggests), and if the declaration of

independence is sufficient to allow a modular combination of dif-

ferent operational interpretations for different modes. Of particular

interest here would be the sharing semantics [Balzer and Pfenning

2017]. We also have not yet explored the full range of examples

suggested by instances of the adjoint logic framework, such as

potential concurrent programming application of judgmental S4

(comonads) or lax logic (strong monads).
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A APPENDIX
A.1 Logic Examples, Extended
Here, we provide more formal definitions of the embeddings τ from

various logics into instances of adjoint logic, as well as proofs of

their adequacy.

A.1.1 LNL. As described in Example 2.2, we will work with

an adjoint logic with two modes L < U, where σ (L) = ∅ and
σ (U) = {W,C}.

For this section, we will use the following subset of LNL, where

X 0,A0
are base propositions. Connectives other than⊸ and→ can

be translated similarly, and so in the interest of brevity, we omit

them.

Persistent Propositions X F X 0 | X1 → X2 | GA
Linear Propositions A F A0 | A1 ⊸ A2 | FX
Persistent Hypotheses Θ F · | Θ,X
Linear Hypotheses Γ F · | Γ,A

Definition A.1. We define an embedding τ of LNL into adjoint

logic as follows:

τ (X 0) = XU

τ (X1 → X2) = τ (X1)⊸U τ (X2)

τ (GA) = ↑ULτ (A)

τ (A0) = AL

τ (A1 → A2) = τ (A1)⊸L τ (A2)

τ (FX ) = ↓ULτ (X )

τ (·) = ·

τ (Θ,X ) = τ (Θ), (x : τ (X ))

τ (·) = ·

τ (Γ,A) = τ (Γ), (y : τ (A))

Theorem A.2.

(a) Θ ⊢C X in LNL iff τ (Θ) ⊢ τ (X ) in adjoint logic.
(b) Θ; Γ ⊢L A in LNL iff τ (Θ),τ (Γ) ⊢ τ (A) in adjoint logic.

Proof. First, we take advantage of cut-elimination for adjoint

logic to allow us to prove weaker implications, needing only to

show that the existence of a cut-free proof in adjoint logic implies

the existence of an LNL proof. Our proof is then reduced to proving

the following:

(a.1) If τ (Θ) ⊢⊢ τ (X ) in adjoint logic, then Θ ⊢C X in LNL.

(a.2) If Θ ⊢C X in LNL, then τ (Θ) ⊢ τ (X ) in adjoint logic.

(b.1) If τ (Θ),τ (Γ) ⊢⊢ τ (A) in adjoint logic, then Θ; Γ ⊢L A in LNL.

(b.2) If Θ; Γ ⊢L A in LNL, then τ (Θ),τ (Γ) ⊢ τ (A) in adjoint logic.

We prove (a.1) and (b.1) by simultaneous induction on the deriva-

tion of Ψ ⊢⊢ Cm .

We prove (a.2) and (b.2) by showing that (the translations of)

the rules of LNL are derivable from the rules of adjoint logic. This

is straightforward, and consists primarily of inserting the correct

modes into rules of adjoint logic. □

A.1.2 Judgmental S4. As described in Example 2.5, we will work

with an adjoint logic with two modes U < V, where σ (U) = σ (V) =
{W,C}.

For this section, we will use the following subset of judgmental

S4, where P are base propositions. Connectives other than ⊃ can

be translated similarly, and so are omitted.

Propositions A F P | A1 ⊃ A2 | □A
True Hypotheses Γ F · | Γ,A true
Valid Hypotheses ∆ F · | ∆,A valid

Definition A.3. We define an embedding τ of judgmental S4 into

adjoint logic as follows:

τ (P) = PU

τ (A1 ⊃ A2) = τ (A1)⊸U τ (A2)

τ (□A) = ↓VU ↑
V
Uτ (A)

τ (·) = ·

τ (Γ,A true) = τ (Γ), (x : τ (A))

τ (·) = ·

τ (∆,A valid) = τ (∆), (y : τ (A))

Theorem A.4.

(a) ∆; Γ ⊢ A in judgmental S4 iff ↑VUτ (∆),τ (Γ) ⊢ τ (A) in adjoint logic.
(b) ∆; · ⊢ A in judgmental S4 iff ↑VUτ (∆) ⊢ ↑

V
Uτ (A) in adjoint logic.

Proof. We first note that in [Pfenning and Davies 2001], the

inference system given by the rules above is stated to satisfy weak-

ening and contraction for both true and valid hypotheses. As such,

we may add weakening and contraction rules for judgmental S4

without changing the provability of judgments. We will write ⊢+

for proofs in judgmental S4 using these structural rules in order to

make them more obviously distinguished.

We will use this along with cut elimination for adjoint logic (in

the same manner as in Section A.1.1) in order to reduce the result

to proving the following implications:

(a.1) If ↑VUτ (∆),τ (Γ) ⊢⊢ τ (A) in adjoint logic, then ∆; Γ ⊢+ A in

judgmental S4 augmented with structural rules.

(a.2) If ∆; Γ ⊢ A in judgmental S4, then ↑VUτ (∆),τ (Γ) ⊢ τ (A) in
adjoint logic.

(b.1) If ↑VUτ (∆) ⊢⊢ ↑
V
Uτ (A) in adjoint logic, then ∆; · ⊢+ A in judg-

mental S4 augmented with structural rules.

(b.2) If ∆; · ⊢ A in judgmental S4, then ↑VUτ (∆) ⊢ ↑
V
Uτ (A) in linear

logic

From here, the proof proceeds much as the proof for LNL.

We prove (a.1) and (b.1) by simultaneous induction on the deriva-

tion of Ψ ⊢⊢ Cm .

We prove (a.2) and (b.2) by showing that (the translations of) the

rules of judgmental S4 are derivable from the rules of adjoint logic.

This is slightly less straightforward than the case of LNL, since the

usual presentation of judgmental S4 is in terms of introduction and

elimination rather than left and right rules, and so deriving the

elimination rules involves using a cut. □

A.1.3 Lax Logic. As described in Example 2.7, we work here

with two modes, X < U, where σ (X) = σ (U) = {W,C}. Inter-
estingly, this is the same preorder (up to renaming) as that for

judgmental S4.

We take the following as the syntax for lax logic, omitting connec-

tives other than ⊃ and ⃝ for brevity, as the proof extends naturally

11
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to those cases.

Propositions A F P | A1 ⊃ A2 | ⃝A
Hypotheses Γ F · | Γ,A

Definition A.5. We define an embedding τ of lax logic into adjoint
logic as follows:

τ (P) = PU

τ (A1 ⊃ A2) = τ (A1)⊸ τ (A2)

τ (⃝A) = ↑UX ↓
U
Xτ (A)

τ (·) = ·

τ (Γ,A) = τ (Γ), (x : τ (A))

Theorem A.6.

(a) Γ ⊢ A true in lax logic iff τ (Γ) ⊢ τ (A) in adjoint logic.
(b) Γ, Γ′ ⊢ A lax in lax logic iff τ (Γ),↓UXτ (Γ

′) ⊢ ↓UXτ (A) in adjoint
logic.

Proof. Much like the proof for judgmental S4, we use cut elimi-

nation for adjoint logic along with the admissibility of weakening

and contraction for lax logic to reduce our claims to the following:

(a.1) If τ (Γ) ⊢⊢ τ (A) in adjoint logic, then Γ ⊢+ A true in lax logic

augmented with structural rules.

(a.2) If Γ ⊢ A true in lax logic, then τ (Γ) ⊢ τ (A) in adjoint logic.

(b.1) If τ (Γ),↓UXτ (∆) ⊢⊢ ↓
U
Xτ (A) in adjoint logic, then Γ,∆ ⊢+ A lax

in lax logic augmented with structural rules.

(b.2) If Γ,∆ ⊢ A lax in lax logic, then τ (Γ),↓UXτ (∆) ⊢ ↓
U
Xτ (A) in

adjoint logic.

As before, we prove (a.1) and (b.1) by simultaneous induction on

the derivation of Ψ ⊢⊢ Cm .

We prove (a.2) and (b.2) by showing that (the translations of) the

rules of lax logic are derivable from the rules of adjoint logic. This

proceeds in essentially the same way as for judgmental S4. □

A.1.4 Subexponential Linear Logic. We can represent a some-

what restricted form of intuitionistic subexponential linear logic

(ISELL) [Chaudhuri 2010] as a fragment of adjoint logic. Subexpo-

nential labels of zones correspond to modes, and we preserve the

preorder between labels as the preorder between modes. There is a

working zone which corresponds to a distinguished mode L.
We require z ≥ L for all modes z , L and define !zA = ↓

z
L ↑

z
LA

for z > L. We also work on the ?-free fragment, making this slightly

less general than ISELL, which also includes ?zA and allows labels

z < L. Indeed, the rules for the shifts under the obvious candidate
representation ?zA = ↑

L
z ↓

L
zA do not match the rules for ?zA in

ISELL. Fortunately, the modality ?z is not in the image of the trans-

lation [Chaudhuri 2010, Section 4.1] from classical subexponential

logic [Nigam and Miller 2009] into ISELL, so it does not appear

essential to gauge its expressive power.

An instance of ISELL satisfying these requirements can then be

seen as an instance of adjoint logic where all modes a other than L
contain only propositions of the form ↑aLAL.

Because subexponential logic is designed as a logical framework

based on proof construction and focusing instead of proof reduction,

the structural rules are integrated into the other rules rather than

separated out. All other differences are cosmetic.

We also have a new opportunity, namely adding connectives

that directly combine propositions of mode z , L. The conse-

quences warrant further proof-theoretic investigation, because the

additional connectives may reduce the number of subexponential

modalities in a logic representation. This in turn may streamline

the focusing behavior of encodings since subexponential modalities

interrupt focusing phases.

Formally, we fix a particular instance of ISELL (and a correspond-

ing instance of adjoint logic), and take the following syntax for the

fragment of ISELL which we consider, omitting connectives other

than⊸ and !
a
for brevity:

Propositions A F P | A1 ⊸ A2 | !
aA

Hypotheses ∆ F · | ∆,A

Definition A.7. We define an embedding τ from ISELL into ad-

joint logic as follows:

τ (P) = PL

τ (A1 ⊸ A2) = τ (A1)⊸ τ (A2)

τ (!aA) = ↓aL ↑
a
L τ (A)

τ (·) = ·

τ (∆,A) = τ (∆), (y : τ (A))

Theorem A.8.

(a) ∆, !a1A1, . . . , !
anAn ⊢ B in ISELL iff

τ (∆),↑a1L τ (A1), . . . ,↑
an
L τ (An ) ⊢ τ (B) in adjoint logic.

(b) !
a1A1, . . . , !

anAn ⊢ !
bB in ISELL iff

↑
a1
L τ (A1), . . . ,↑

an
L τ (An ) ⊢ ↑

b
Lτ (B) in adjoint logic.

Proof. As in the previous proofs, we use cut elimination for

adjoint logic to reduce our claim to the weaker claims that:

(a.1) If τ (∆),↑a1L τ (A1), . . . ,↑
an
L τ (An ) ⊢⊢ τ (B) in adjoint logic, then

∆, !a1A1, . . . , !
anAn ⊢ B in ISELL.

(a.2) If ∆, !a1A1, . . . , !
anAn ⊢ B in ISELL, then

τ (∆),↑a1L τ (A1), . . . ,↑
an
L τ (An ) ⊢ τ (B) in adjoint logic.

(b.1) If ↑
a1
L τ (A1), . . . ,↑

an
L τ (An ) ⊢⊢ ↑

b
Lτ (B) in adjoint logic, then

!
a1A1, . . . , !

anAn ⊢ !
bB in ISELL.

(b.2) If !
a1A1, . . . , !

anAn ⊢ !
bB in ISELL, then

↑
a1
L τ (A1), . . . ,↑

an
L τ (An ) ⊢ ↑

b
Lτ (B) in adjoint logic.

Also as in the previous proofs, (a.1) and (b.1) may be proved

by induction over the judgment Ψ ⊢⊢ C , and (a.2) and (b.2) may be

proved by showing that each of (the translations of) the rules of

ISELL can be derived from the rules of adjoint logic. □

A.2 Cut Elimination
Theorem A.9. The rule of multicut is admissible in the cut-free

system.

Proof. This proof follows the structure of many cut elimination

results. First we prove admissibility of cut in the cut-free system:

if D is a proof of Ψ ⊢⊢ Am and E is a proof of (S : Am ) Ψ
′ ⊢⊢ Ck ,

then we can construct a cut-free proof of Ψ Ψ′ ⊢⊢ Ck . This is proven
by a straightforward induction on the triple (Am ,D, E), ordered
lexicographically. This is followed by a simple structural induction

to prove cut elimination, using the admissibility of cut when it is

encountered. If we ignore the modes, this proof is very similar to

the original proof of Gentzen [1935].
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The particular cases of this are given by local cut reductions in a

standard way. Because of their importance both for the operational

semantics (Section 4) and equivalence proofs (Section 2.7), however,

we show a representative sample of the reductions. Note that we

will always identify proofs that are α-equivalent.

Example A.10 (An identity case). We begin by showing an identity

case—specifically, the case where D is an identity, E is arbitrary,

and S = ∅. This reduction has the form shown in the first line of

Figure A.2. Note that the premiseW ∈ σ (m) of the reduced proof

follows from the premise |∅| ∼m of the original proof.

Example A.11 (A structural case). We now show a case where we

cut with a structural rule—in particular, where D is arbitrary, E

ends in a contraction rule, and S = {y}. This reduction is shown in

the second line of Figure A.2. Note that the premise |{z,w}| ∼ m
of the reduced proof follows from the premise C ∈ σ (m) of the
original proof.

Example A.12 (A principal case). We now consider one of the

principal cases for ⊕, as shown in the third line of Figure A.2. In

particular, we consider the case where S = T ∪ {x ,y}. Here, the
induction hypothesis is used at ( ⊕

i ∈I
Aim ,D, Eℓ) in order to remove

extra copies of ⊕
i ∈I

Aim , similarly to the standard cross-cut in cut

elimination proofs for structural logic. In order to clean up the

two copies of Ψ produced by the cross-cut and the second, more

standard cut, we apply the contraction rule repeatedly, replacing

Ψ Ψ with Ψ. Note also that we omit the side condition |{y}| ∼m of

the second use of the induction hypothesis, as 1 ∼m always.

Example A.13 (A commutative case). Finally, we consider an ex-

ample of a commutative case, where the reduction proceeds by

pushing the cut further up in the proof. In particular, we consider

the case where D is arbitrary, and E ends in the ⊸R rule. This

reduction proceeds as shown in the fourth line of Figure A.2.

While the details of the remaining cases are not identical, each

remaining case is similar to one of the above. □

A.3 The Adjunction Property
In order to define functors, we first need to define the categories

that will serve as their domain and codomain. For each modem,

there is a category (which we will also denote by m) defined as

follows:

• The objects ofm are the types Am .

• AmorphismD : Am → Bm is an equivalence class of proofs

of (x : Am ) ⊢ (y : Bm ), where two proofs are equivalent if

they are related by cut reduction or identity expansion or if

they are α-equivalent.
• The identity morphism at Am is the equivalence class of

Am ⊢ Am
idAm

• Composition is given by cut—given D : Am → Bm and

E : Bm → Cm , we define E ◦ D to be the equivalence class

of

(x : Am ) ≥ m ≥ m
D

(x : Am ) ⊢ Bm
E

(y : Bm ) ⊢ Cm

(x : Am ) ⊢ Cm
cut({y})

With this definition, the main theorem that we seek to prove is

the following:

Theorem A.14. ↓mk and ↑mk can be extended to functors ↓mk :

m → k and ↑mk : k →m on the categories k andm as defined above.
Moreover, these functors form an adjoint pair with ↓mk ⊣ ↑

m
k .

Proof. Throughout this proof, asm and k are fixed, we will omit

them as subscripts and superscripts on shifts—we write ↓ for ↓mk
and ↑ for ↑mk .

Given D : Am ⊢ Bm , we can define ↓D : ↓Am ⊢ ↓Bm as follows:

Am ≥ m
D

Am ⊢ Bm
Am ⊢ ↓Bm

↓R

↓Am ⊢ ↓Bm
↓L

.

Similarly, given D : Ak ⊢ Bk , we can define ↑D : ↑Ak ⊢ ↑Bk as

follows:

Ak ≥ k
D

Ak ⊢ Bk
↑Ak ⊢ Bk

↑L

↑Ak ⊢ ↑Bk
↑R

.

It is easy to check that these are functorial—in particular, they

preserve identities up to identity expansion and preserve composi-

tion up to cut reduction (using two commutative reductions and

one principal reduction at either ↓Am or ↑Am ).

Now, in order to prove that ↓ ⊣ ↑, we will use the unit-counit

formulation of adjunction and so we begin by defining the unit and

counit. To show that there is an adjunction, it then only remains to

show that these transformations are natural and that they satisfy

the unit-counit laws.

Definition A.15. We define two transformations η : idm → ↑↓
and ε : ↓↑ → idk as follows:

Define ηAm : Am → ↑↓Am to be the equivalence class of

Am ≥ m Am ⊢ Am
idAm

Am ⊢ ↓Am
↓R

Am ⊢ ↑↓Am
↑R

Define εBk : ↓↑Bk → Bk to be the equivalence class of

Bk ≥ k Bk ⊢ Bk
idBk

↑Bk ⊢ Bk
↑L

↓↑Bk ⊢ Bk
↓L

Proposition A.16. η and ε are natural in their arguments.

Proof. Suppose D : Am → Bm , and consider the following

square:

Am Bm

↑↓Am ↑↓Bm

D

ηAm ηBm
↑↓D

We wish to show that this square commutes in that the proofs

along each path are equivalent up to identity expansion and cut-

reduction.
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(x : Am ) ≥ m ≥ k |∅| ∼m (x : Am ) ⊢⊢ Am
idAm E

Ψ′ ⊢⊢ Ck

(x : Am ) Ψ
′ ⊢ Ck

cut(∅)

=⇒

W ∈ σ (m)
E

Ψ′ ⊢ Ck
(x : Am ) Ψ

′ ⊢ Ck
weaken

Ψ ≥ m ≥ k |{y}| ∼m
D

Ψ ⊢⊢ Am

C ∈ σ (m)
E ′

Ψ′ (z : Am ) (w : Am ) ⊢⊢ Ck
Ψ′ (y : Am ) ⊢⊢ Ck

contract

Ψ Ψ′ ⊢ Ck
cut({y})

=⇒

Ψ′ (z : Am ) (w : Am ) ≥ m ≥ k |{z,w}| ∼m
D

Ψ ⊢⊢ Am
E ′

Ψ′ (z : Am ) (w : Am ) ⊢⊢ Ck
Ψ Ψ′ ⊢ Ck

i.h.(Am ,D, E
′)({z,w})

Ψ ≥ m ≥ k |T ∪ {x ,y}| ∼m
D =

ℓ ∈ I

D1

Ψ ⊢⊢ Aℓ
m

Ψ ⊢⊢ ⊕
i ∈I

Aim
⊕Rℓ

Ei
Ψ′ (T ∪ {x} : ⊕

i ∈I
Aim ) (z : Aim ) ⊢⊢ Ck for each i ∈ I

Ψ′ (T ∪ {x ,y} : ⊕
i ∈I

Aim ) ⊢⊢ Ck
⊕L

ΨΨ′ ⊢⊢ Ck
cut(T ∪ {x ,y})

=⇒

C ∈ σ (m)

Ψ ≥ m ≥ k

D1

Ψ ⊢⊢ Aℓ
m

Ψ ≥ m ≥ k |T ∪ {x}| ∼m
D

Ψ ⊢⊢ ⊕
i ∈I

Aim

Eℓ

Ψ′ (T ∪ {x} : ⊕
i ∈I

Aim )(z : Aℓ
m ) ⊢⊢ Ck

Ψ Ψ′ (z : Aℓ
m ) ⊢⊢ Ck

i.h.(...)

Ψ Ψ Ψ′ ⊢⊢ Ck
i.h.(Aℓ

m ,D1, ...)({z})

Ψ Ψ′ ⊢⊢ Ck
contract∗

Ψ ≥ k ≥ m |S | ∼ k
D

Ψ ⊢⊢ Ck

E1
(x : Am ) (S : Ck ) Ψ

′ ⊢⊢ Bm

(S : Ck ) Ψ
′ ⊢⊢ Am ⊸ Bm

⊸R

Ψ Ψ′ ⊢⊢ Am ⊸ Bm
cut(S)

=⇒

Ψ ≥ k ≥ m |S | ∼ k
D

Ψ ⊢⊢ Ck

E1
(x : Am ) (S : Ck ) Ψ

′ ⊢⊢ Bm

(x : Am ) Ψ Ψ′ ⊢⊢ Bm
i.h.(Ck ,D, E1)(S)

Ψ Ψ′ ⊢⊢ Am ⊸ Bm
⊸R

Figure 4: Sample Cut Reductions

Composing along the left-hand path, we get

Am ≥ m Am ⊢ Am
idAm

Am ⊢ ↓Am
↓R

Am ⊢ ↑↓Am
↑R

↓Am ≥ k

Am ≥ m
D

Am ⊢ Bm
Am ⊢ ↓Bm

↓R

↓Am ⊢ ↓Bm
↓L

↑↓Am ⊢ ↓Bm
↑L

↑↓Am ⊢ ↑↓Bm
↑R

Am ⊢ ↑↓Bm
cut↑↓Am .

Now, composing along the right-hand path, we get

D
Am ⊢ Bm

Bm ≥ m Bm ⊢ Bm
idBm

Bm ⊢ ↓Bm
↓R

Bm ⊢ ↑↓Bm
↑R

Am ⊢ ↑↓Bm
cutBm

.

Applying identity and cut reductions to both of these proofs

until we have removed all instances of identity and of cut, we are

14
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in both cases left with

Am ≥ m
D

Am ⊢ Bm
Am ⊢ ↓Bm

↓R

Am ⊢ ↑↓Bm
↑R

and so we indeed have that this square commutes.

That ε is natural follows from a similar argument. □

We now show that the unit-counit laws hold for η and ε , which
will give us that ↓ ⊣ ↑.

That is, we show that the following diagrams commute:

↓ ↓↑↓

↓

↓η

id↓
ε↓ and

↑ ↑↓↑

↑

η↑

id↑
↑ε

We consider first the former diagram. Let Am be given, and note

that it will suffice to show that id↓Am = ε↓Am ◦ ↓ηAm .

This corresponds to showing that the following two proofs are

equivalent up to cut reduction and identity expansion:

Am ≥ m

Am ≥ m Am ⊢ Am
idAm

Am ⊢ ↓Am
↓R

Am ⊢ ↑↓Am
↑R

Am ⊢ ↓↑↓Am
↓R

↓Am ⊢ ↓↑↓Am
↓L

↓Am ≥ k ↓Am ⊢ ↓Am
id↓Am

↑↓Am ⊢ ↓Am
↑L

↓↑↓Am ⊢ ↓Am
↓L

↓Am ⊢ ↓Am
cut↓↑↓Am

and

↓Am ⊢ ↓Am
id↓Am

As before, we can use cut reductions and identity expansions to

show that both proofs are equivalent to

Am ≥ m Am ⊢ Am
idAm

Am ⊢ ↓Am
↓R

↓Am ⊢ ↓Am
↓L

,

and so the triangle commutes, as desired.

The proof that the second triangle commutes is similar, and

therefore omitted. □

A.4 Progress and Preservation
We present here several definitions and lemmas used in the proofs

of progress and preservation.

For the progress theorem, it is convenient to have a second form

of process typing which induces a list ordering, rather than a binary

tree ordering, on configurations. Again, we require that the size

of S be compatible with the mode of the providing channel. We will

show that the two typing judgments are equivalent in Lemma A.17.

Ψ ⊨′ (·) :: Ψ

|S | ∼m Ψ ⊨′ C :: Ψ1Ψ2 Ψ2 ⊢ P :: (a : Am )

Ψ ⊨′ C proc(S,Ψ2,a.P) :: Ψ1(S : Am )

We now present some results about configuration typing, which

will allow us to get useful information from the fact that a con-

figuration is well-typed. As well-typedness of a configuration is

the primary assumption for both progress and preservation, these

lemmas are key in the proofs of those results.

Lemma A.17. Ψ ⊨′ C :: Ψ′ iff Ψ ⊨ C :: Ψ′.

Proof. We note that by applying the rules for ⊨, we can derive

the following two proofs:

Ψ ⊨ (·) :: Ψ

Ψ ⊨ C :: Ψ1Ψ2

|S | ∼m Ψ2 ⊢ P :: (a : Am )

Ψ1Ψ2 ⊨ proc(S,Ψ2,a.P) :: Ψ1(S : Am )

Ψ ⊨ C proc(S,Ψ2,a.P) :: Ψ1(S : Am )

Therefore, if we have that Ψ ⊨′ C :: Ψ′, then the derived rules

above can be used to show that Ψ ⊨ C :: Ψ′.

Now, suppose that Ψ ⊨ C :: Ψ′. By inducting on the derivation

of Ψ ⊨ C :: Ψ′, we can show that Ψ ⊨′ C :: Ψ′. From the inductive

step, we apply the inductive hypothesis to get proofs that (when

C = C1C2) Ψ ⊨′ C1 :: Ψ′′ and that Ψ′′ ⊨′ C2 :: Ψ′. Since the

rules for ⊨′ give only one possible construction for each of these

proofs, it is possible to simply “glue” them together by replacing an

instance of Ψ′′ ⊢ (·) :: Ψ′ in the latter proof with the whole former

proof to get the desired result. □

As this lemma justifies that ⊨′ and ⊨ are equivalent, we will use

them interchangeably, simply writing ⊨ for either.

Lemma A.18. If C = C1 C2 and Ψ ⊨ C :: Ψ′′, then there is Ψ′

such that Ψ ⊨ C1 :: Ψ′ and Ψ′ ⊨ C2 :: Ψ′′.

Proof. It is easy to take a proof that Ψ ⊨ C1 C2 :: Ψ′′ and break

it into a proof that Ψ ⊨ C1 :: Ψ′ and Ψ′ ⊨ C2 :: Ψ′′ following the

reverse of the “gluing” process used in the previous lemma. □

Lemma A.19. If Ψ (x : Am ) ⊨ C :: Ψ′ (x : Am ), then also
Ψ ⊨ C :: Ψ′.

Proof. This follows from an induction on the derivation of Ψ(x :

Am ) ⊨ C :: Ψ′(x : Am ), using uniqueness of channel names for the

singleton case. □

Lemma A.20 (Configuration Inversion). If

(·) ⊨ C :: Ψ′′(x : Am ),

then there are C1,C2 and T ,Ψ′, P such that all of the following hold:
(a) C = C1 proc(T ∪ {x},Ψ′,b .P) C2.
(b) (·) ⊨ C1 :: Ψ Ψ′.
(c) Ψ′ ⊢ P :: (b : Am ).
(d) Ψ (T ∪ {x} : Am ) ⊨ C2 :: Ψ′′ (x : Am ).

Proof. This proof proceeds by induction on the derivation of

(·) ⊨ C :: Ψ′′(x : Am ).
We first note that the last rule used cannot possibly be the rule

for the empty configuration—this case fails to give the (x : Am )
in the assumption. Similarly, if there is only one process in C, the

derivation must have the form below:

(·) ⊨ (·) :: (·)
D

|T ∪ {x}| ∼m
E

(·) ⊢ P :: (b : Am )

(·) ⊨ proc(T ∪ {x}, ∅,b .P) :: (T ∪ {x} : Am )
15
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In this case, taking C1 = C2 = (·) gives the desired result.

Now, we are left with the cases where C contains more than one

process, and so the derivation has the form

D
(·) ⊨ C′ :: ΨΨ′

E
|S | ∼ k

F
Ψ′ ⊢ P :: (c : Bk )

(·) ⊨ C′ proc(S,Ψ′, c .P) :: Ψ(S : Bk )

Note that Ψ (S : Bk ) = Ψ′′ (x : Am ), and so either x ∈ S and

Bk = Am or (x : Am ) occurs in Ψ.

In the first case, we takeC1 = C
′
andC2 = (·), and proc(S,Ψ′, c .P)

is the desired process.

In the second case, we apply the inductive hypothesis to D

to get C′
1
,C′

2
,T ′,Φ,Q satisfying (a)–(d). Taking C1 = C

′
1
, C2 =

C′
2
proc(∅,Ψ′,b .P), and proc(T ′ ∪ {x},Φ,a.Q) to be the desired

process then gives the result. □
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