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ABSTRACT

Adjoint logic provides a schematic way to combine multiple logics,
some of which may be substructural, through modal operators
that are adjoint to each other. We provide a simple formulation
for adjoint logic with explicit structural rules. The adjoint logic
is parameterized by a preorder of modes of truth characterizing
(potential) dependence between the modes. We demonstrate that
suitable choices of this preorder allow us to directly embed various
logics including lax logic, judgmental S4, LNL, and intuitionistic
subexponential linear logic into adjoint logic.

Under the proofs-as-programs paradigm, proofs correspond to
concurrent processes and cut reduction to synchronous communi-
cation. We show how to restructure the sequent calculus so that cut
reduction entails asynchronous communication and give an opera-
tional interpretation that provides session-typed communication
extended with multicast and distributed garbage collection.

1 INTRODUCTION

How do we combine logics? One approach is to embed a less expres-
sive into a more expressive logic. This is the approach, for example,
taken by Girard [1987] who represents the usual intuitionistic impli-
cation A — B as linear implication !A —o B through the use of the
exponential modality A that controls weakening and contraction.
The rules of the source logic then become derived or admissible
rules in the target logic. If we are interested in the computational
interpretation of proofs via proof reduction, we then have to recon-
sider or reconstruct the meaning through the translation.

An alternative is to keep the original logics intact and provide
modal operators we call shifts to switch between them. This is the
approach, for example, taken by Benton [1994]. As we will see,
Girard’s approach can be seen as a special case of Benton’s.

Of course, the properties satisfied by the shifts cannot be ar-
bitrary or the result will not be a proper combination of the two
logics. In this paper we restrict our attention to intuitionistic logics
and, in particular, we take the verificationist perspective [Dummett
1991; Gentzen 1935] where the meanings of the logical connectives
in each logic are defined by the left and right rules of the sequent
calculus. Cut elimination and identity expansion are necessary to
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justify this point of view. As we will see in Section 4, taking the in-
tuitionistic point of view will provide the opportunity for a uniform
operational interpretation of all logics under consideration.

All logics we consider satisfy associativity and exchange among
the antecedents, and may or may not satisfy weakening or con-
traction. We identify a logic by its mode of truth m and write
o(m) € {W, C} for the structural rules satisfied by mode m. We
use the same definition for the logical connectives at all modes. For
example, A;;, —op, Bp, denotes implication, which could be linear
(o(m) = {}), structural (o(m) = {W, C}), affine (¢(m) = {W}), or
strict (c(m) = {C}). We often drop the subscript on the logical
connective when it can be uniquely determined from context.

We give a variation of Reed’s first and unpublished definition of
adjoint logic [Reed 2009] by using explicit structural rules where
allowed by the mode and just a single pair of left and right rules for
each of the logical connectives and shifts. This formulation allows
an elegant proof of cut elimination closely modeled upon Gentzen’s
original proof [Gentzen 1935] using the rule of multicut. Cut elimi-
nation immediately yields a conservative extension result for the
combined logic over all of its modes of truth. We then annotate
sequents with process expressions extending prior work by Caires
and Pfenning [2010]; Caires et al. [2016] and Pfenning and Griffith
[2015]. Pleasingly, in this formulation the process expressions for
the analogous connectives at different modes have exactly the same
simple form. Modes satisfying contraction permit multicast when
sending. Moreover, we find that separating out the structural rules
together with several logical transformations exploiting multicut
leads to a precise operational semantics in which there are no un-
tethered processes that need to be garbage-collected at the end of a
computation despite the presence of weakening and contraction.

We now introduce our formulation of adjoint logic, including
proofs of cut elimination and identity expansion (Section 2); define
process expressions, define typing, and provide an operational se-
mantics (Section 4); and prove preservation and progress (Section 5).
We close with some remarks on related work (Section 6) and a brief
conclusion.

2 ADJOINT LOGIC

Adjoint logic can be thought of as a schema to define particular
logics. The schema is parameterized by a set of modes of truth m,
where each proposition and logical connective is indexed by its
mode. Furthermore, each mode intrinsically carries a set of struc-
tural properties o(m) € {W, C} where W stands for weakening and
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C stands for contraction. As a concession to simplicity of the presen-
tation, in this paper we always allow exchange, although nothing
stands in the way of an even more general framework [Pfenning
2016]. In addition, an instance requires a preorder between modes,
where m > k expresses that the proof of a proposition of mode k
may depend on a hypotheses of mode m. This preorder embodies
the declaration of independence:

A proof of A may only depend on hypotheses By, for
m > k.

The form of a sequent is
Y+ Ay where¥ >k

where ¥ is a collection of antecedents of the form (x; : Bini) with
each m; > k, where all the variables x; are distinct. This critical
presupposition is abbreviated as ¥ > k. Furthermore, the order of
the antecedents does not matter since we always allow exchange.

In addition, we require the preorder between modes to be com-
patible with their structural properties: that is, m > k implies
o(m) 2 o(k). This is necessary to guarantee cut elimination (see
Example 2.4).

Finally, we may define fragments by restricting the set of propo-
sitions we consider for a given mode.

The propositions at each mode are constructed uniformly, re-
maining within the same mode, except for the shift operators that
move between modes. They are TZlAk (pronounced up), which is

a proposition at mode m and requires m > k; and lang (down),
which is also a proposition at mode m, and which requires £ > m.
At this point we can already write out the syntax of propositions.

Am,Bm = Ppm|Am —om Bm | Am ®m Bm | 1m

| @ Ay | & Ay | T A | LnAe
1€ 1€

Here py, stands for atomic propositions at mode m. Anticipating
the needs of our operational interpretation, we have generalized
internal and external choice to n-ary constructors parameterized

by an index set I. So we write AL, @ 4%, = @© Al
ie{1,2}
Remarkably, the right and left rules in the sequent calculus defin-
ing the logical connectives are the same for each mode and are

complemented by the permissible structural rules.

2.1 Judgmental and structural rules

The rules for adjoint logic can be found in Figure 1. We begin
with the judgmental rules of identity and cut, which express the
connection between antecedents and succedents. Identity says that
if we assume Ap, we are allowed to conclude A;,. Cut says the
opposite: if we can conclude A, we are allowed to assume A, as
long as the declaration of independence is respected.

As is common for the sequent calculus, we read the rules in the
direction of bottom-up proof construction. This is also the direction
of type checking, once we have assigned process expressions to the
judgments. For the cut rule, this means we should assume that the
conclusion ¥ ¥’ + Cy. is well-formed and, in particular, that ¥ > k
and ¥’ > k. Therefore, if we check that m > k, then we know that
the second premise, (x : Ap) ¥’ + Cy., will also be well-formed. For
the first premise to be well-formed, we need to check outright that
¥ >m.

Klaas Pruiksma, Willow Chargin, Frank Pfenning, and Jason Reed

The structural rules of weakening and contraction just need to
verify that the mode of the principal formula permits the rule.

2.2 Additive and multiplicative connectives

The logical rules defining the additive and multiplicative connec-
tives are simply the linear rules for all modes, since we have sep-
arated out the structural rules. Except in one case, —oL, the well-
formedness of the conclusion implies the well-formedness of all
premises.

As for —oL, we know from the well-formedness of the conclusion
that ¥ > k, ¥’ > k, and m > k. These facts by themselves already
imply the well-formedness of the second premise, but we need to
check that ¥/ > m in order for the first premise to be well-formed.

2.3 Shifts

The shifts represent the most interesting aspects of the rules. Recall
that in T}" A and |;” A, we require that m > k. We first consider
the two rules for T. We know from the conclusion of the right rule
that ¥ > m and from the requirement of the shift that m > k.
Therefore, as > is transitive, ¥ > k and the premise is always well-
formed. This also means (although we do not prove it here) that
this rule is invertible.

From the conclusion of the left rule, we know ¥ > ¢, m > ¢,
and m > k. This does not imply that k > ¢, which we need for the
premise to be well-formed and thus needs to be checked. Therefore,
this rule is non-invertible.

The downshift rules are constructed analogously, taking only
the declaration of independence and properties of the preorder <
as guidance. Note that in this case the left rule is always applicable
(that is, invertible), while the right rule is non-invertible.

2.4 Logic Examples

We now describe how adjoint logic can be used to embed various
other logics, and provide some examples to justify our presentation.

Example 2.1 (Linear logic). We obtain intuitionistic linear logic [Bar-
ber 1996; Girard 1987] by using two modes, U (for structural) and L
(for linear) with U > L. Moreover, o(U) = {W,C} and (L) = { },
and the structural layer contains only the shifted proposition.

Ay = TEAL ) )
ALB. = p |A —B |A®B |1] & Al| & Al | [P Ay
i€l iel

In this representation the exponential modality is decomposed into
shift modalities !4, = | T A,. Unlike Chang et al. [2003], our
sequent calculus employs explicit structural rules of weakening
and contraction on unrestricted propositions A,. We do not state an
explicit correctness theorem because it follows from the embedding
of LNL (Theorem 2.3) and Benton’s results [Benton 1994].

Example 2.2 (LNL). We obtain LNL [Benton 1994] just like linear
logic with two modes U > L, but we populate the unrestricted
layer with additional propositions, where we write X = ® and
—_ = —oy.

Ay,By =
AL, BL

pul Ay = By | Ay x By | 1y | TV AL
plAL—B | A®B. |1, | |Ay

Benton’s notation for shifts is F = | and G = /. Our formula-
tion then combines the various versions of the rules by combining
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¥>m>k YrAnm (x:Am) Y FCi

A A, d Y Gy cu
Weo(m) YrCp Ceolm) Y(y:Am)(z:Am)+Ck tract
¥ (x:Am)F Cr weaken ¥ (x: Am) - Cr contrac
tel ¥rAY oR ¥ (y: AL) r Cy foreachi €I ¥ + Al foreachi el tel ¥(y:AL)rCy ol
— 4 - [S>) - + €
Yo A, Y(x:® AL)FCr Y &AL, Y(x: &AL FCr
iel iel iel iel
Y+An Y FBp Y (y:Am)(z:Bm)+ Ck Y+ Cr i1
Y + Ay ® B ¥ (x: Am ®Bm) F Cx Fim B Wi Cr
(x:Am) ¥+ By Y>m ¥'rA, ¥(y:Bm)tCk
—
Yt Ap —Bn Y P (x: Apm —o Bm) F C
\I’I—Ak k>¢ \I’(y:Ak)I-C[ Y>m VYA, lR \I’(y:Am)l-Cg lL
Y TrknAk v (x : T;CnAk) F C[ Y lrknAm v (x : l]’:lAm) F Cg

Figure 1: Rules of Adjoint Logic

the two contexts, using the declaration of independence instead
to force that unrestricted succedents depend only on unrestricted
antecedents. A small difference arises only in the X-left rules where
our version has both components in the premise, which is of course
logically equivalent to LNL in the presence of weakening and con-
traction.

THEOREM 2.3. If we let T embed propositions of LNL into the in-
stance of adjoint logic described above, then
(@) ® ¢ X in LNL iff t(©) + ©(X) in adjoint logic.
(b) ©;T -y Ain LNL iff 7(®©), 7(T) + 7(A) in adjoint logic.

Example 2.4 (Counterexample for independence). Consider linear

logic or LNL and consider the following faulty(!) “proof” showing
that contraction for linear propositions is derivable:

(y:A)(z:A)*+C

G ayra ¥
Ga A 4 A A G
(x: A) F7 VA, @:TA)F C, contract
(x:A)FC e

The fallacy lies with the sequent marked r’’ because it violates
our declaration of independence: the succedent T’A, of mode U
depends on an antecedent of mode L, and L % U.

If we wanted to blame a particular inference, it would be ei-
ther cut, viewed bottom-up, or TR, viewed top-down. In our case,
the bottom-up construction of this proof would fail because the
condition (x : A;) > U of the cut rule is violated.

It is an immediate corollary that cut elimination fails if the dec-
laration of independence is not enforced. For example, using the
above faulty reasoning, we could prove A, + A, ® A, which in
general has no cut-free proof.

Example 2.5 (Judgmental S4). The (¢-free portion of) judgmental
modal logic S4 [Pfenning and Davies 2001] arises from two modes
V (validity) and U (truth) with V > U. The declaration of inde-
pendence here expresses that validity is categorical with respect to
truth—that is, a proof of Ay may not depend on any hypotheses

of the form By. Previously, this had been enforced by segregating
the antecedents into two zones and managing their dependence
accordingly.

Ay = TﬁAU ) )
Au,By = py|Ay —oBy|Au®By| 1| ‘EEIAL | ‘&IA:J | LAy
1 i€

Analogous to the encoding of linear logic, we only need to allow
M)Ay in the validity layer. Under that interpretation, we encode
OAy = [}, TV Ay, which is entirely analogous to the representation
of !A in linear logic.

The adjoint reconstruction now gives rise to a richer logic where
additional connectives speaking about validity can be decomposed
directly via their left and right rules.

THEOREM 2.6. Ifwe let T embed propositions of judgmental S4 into
the instance of adjoint logic described above, then
(a) A;T + A in judgmental S4iff T\ (A), 7(T) + 7(A) in adjoint logic.
(b) A;- + A in judgmental S4 iff 1\t(A) + T 7(A) in adjoint logic.

Example 2.7 (Lax logic). Lax logic [Fairtlough and Mendler 1997;
Pfenning and Davies 2001] encodes a weaker form of truth called
lax truth. We can represent it as a substructural adjoint logic with
two modes, U > X, where both modes satisfy weakening and con-
traction. We restrict the lax layer to a single connective and omit
additive connectives for simplicity.

Ay,By =
Ay u=

pul Ay = By | Ay x By | 1y | TYAx
Ay
Now the lax modality is defined as QAy = Ty Iy Au.

We can now add further connectives directly operating on the
lax layer and obtain consistent left and right rules for them.

THEOREM 2.8. If we let T embed propositions of lax logic into the
instance of adjoint logic described above, then
(a) T + A true in lax logic iff t(T') + z(A) in adjoint logic.
(b) T,T’ + A lax in lax logic iff t(T), |3 =(T’) + [ 7(A) in adjoint
logic.
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2.5 Multicut

Because we have an explicit rule of contraction, cut elimination does
not follow by a simple structural induction. However, we can follow
Gentzen [1935] and allow multiple copies of the same proposition
to be removed by the cut, which then allows a structural induction
argument. In anticipation of the operational interpretation, we have
labeled our antecedents with unique variables, so the generalized
form of cut called multicut (see, for example, Negri and von Plato
[2001]) can remove n > 0 copies. Of course, such cuts are only legal
if the propositions that are removed satisfy the necessary structural
rules. For n = 0, we require that the mode m support weakening.

¥Y>m>k Weo(m) ¥Y+A, YrCk
¥ L C

cut(0)

For n = 1, we obtain the usual cut rule and no special requirements
are needed.

>m>k ¥YrAn (x:Am) ¥ +Cy
Y Cy

cut({x})

For n > 2, the mode of the cut formula must admit contraction.
C eo(m)
Y>m>k YA, SU{xy}:An) ¥ +Cr
Y Y+ Cr

cut(SU {x,y})
Here, we have used the abbreviation ({x1,...,xn} : A;m) to stand
for (x1 : Am) ... (xn 1 Am).

Note that each of these rules has a side condition that can be
interpreted informally as stating that the number of antecedents cut
must be compatible with the mode m: if there are no antecedents
removed, m must admit weakening, and if we remove two or more,
m must admit contraction. We write this as |S| ~ m where 0 ~ m if
W € o(m), 1 ~ m always, and k ~ m for k > 2if C € o(m).

This allows us to write down a single rule encompassing all three
of the above cases for multicut:

Y>m>k [Sl~m YrAn (S:Am) ¥ +Cy
Yk Cy

cut(S)

Note that the standard cut rule is the instance of the multicut rule
where |S| = 1, and so proving multicut elimination for adjoint logic
also yields cut elimination for the standard cut rule.

2.6 Identity Expansion and Cut Elimination

We present standard identity expansion and cut elimination results
as evidence for the correctness of the sequent calculus as capturing
the meaning of the logical connectives via their inference rules.
Cut-free proofs will always decompose propositions when read
from conclusion to premise and thus yield a conservative extension
result. Finally, the fine detail of the proof is significant because
(a) the cut reductions, which constitute the essence of the proof,
are the basis for the operational semantics, and (b) cut reductions
define a proof equivalence under which the adjunction property
for the shifts can be verified (see Section 2.7).

THEOREM 2.9 (IDENTITY EXPANSION). If¥ Ay, then there exists
a proof that ¥ + Ay, using identity rules only at atomic propositions,
which is cut-free if the original proof is.

Klaas Pruiksma, Willow Chargin, Frank Pfenning, and Jason Reed

Proor. We begin by proving that for any formula A, there is
a cut-free proof that (x : A;,) F Ap using identity rules only at
atomic propositions. This follows easily from an induction on A,.
Now, we arrive at the theorem by induction over the structure
of the given proof that ¥ + A,,. O

We use ¥ + Ay, to stand for the statement that there is a cut-free
proof of Ay, from V.

THEOREM 2.10 (CUT ELIMINATION). If¥ + Ay, thenalso¥ + Ap,.

Proor. This proof follows the structure of many cut-elimination
results. First we prove admissibility of multicut in the cut-free
system: if D is a proof of ¥ + Ay, and & is a proof of (S : Ap,) ¥/ #
Cp, then we can construct a proof of ¥ ¥’ # Cy. This is established
by a straightforward nested induction, first on the proposition A,
and then simultaneously on the structure of the deductions 9 and
&. This is followed by a simple structural induction to prove cut
elimination, using the admissibility of cut when it is encountered. If
we ignore the modes, this proof is very similar to the original proof
of Gentzen [1935]. Some sample cases are provided in Appendix A.2.

O

CoRrOLLARY 2.11. Adjoint logic is a conservative extension of each
of the logics at a fixed mode. That is, if ¥ + Ay, is a sequent purely
at mode m (in that every type in ¥ is at mode m and neither A, nor
the types in ¥ make use of shifts), then ¥ + Ay, is provable using the
rules of adjoint logic iff it is provable using the rules which define the
logic at mode m.

ProoOF. By cut elimination, we have that if ¥ +- A, is provable
in the adjoint logic, then so is ¥ # Aj,. By the subformula property
of cut-free proofs, this cannot leave mode m. O

2.7 Adjunction properties

As yet, we have not discussed the meaning of the name “adjoint
logic”. This can be justified by showing that for fixed k < m, |}" and
T4 yield an adjoint pair of functors LZ’ 4 T;(" Since prior results
(see Benton [1994] and Licata et al. [2017]) already establish this
property and we have little new to contribute here, a sketch of this
construction is relegated to Appendix A.3.

3 ASYNCHRONOUS ADJOINT LOGIC

As has been observed before, intuitionistic and classical linear logics
can be put into a Curry-Howard correspondence with session-
typed communicating processes [Caires and Pfenning 2010; Caires
et al. 2016; Wadler 2012]. A linear logical proposition corresponds
to a session type, and a sequent proof to a process expression. The
transition rules of the operational semantics derive from the cut
reductions.
Under the intuitionistic interpretation a sequent proof! of

(1 : AN (on AP F (x 2 AL)

corresponds to a process P that provides channel x and uses channels
x;. The types of the channels prescribe the pattern of communica-
tion: in the succedent, positive types (®, ®, 1) will send and negative
types (&, —) will receive. In the antecedent, the roles are reversed.

!for now on the linear fragment, and also labeling the succedent with a fresh variable
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Cut corresponds to parallel composition of two processes, with a
private channel between them, while identity simply equates two
channels.

3.1 Enforcing Asynchronous Communication

Under this interpretation, a cut of a right rule against a matching left

rule allows computation to proceed by mimicking the cut reduction

from the proof of Theorem 2.10. For example, a cut at type & A}
iel

is replaced by a cut at type Al for some ¢ € I. This corresponds
to passing a message (‘¢’) from the process providing x : @ A} to
iel

the process using x. By its very nature, this form of cut reduction
is synchronous: both provider and client proceed simultaneously
because the channel x : Ay connects the two process continuations.

For realistic languages, and also for the paradigm to smoothly
extend to the case of adjoint logic where some modes permit weak-
ening and contraction, we would like to prescribe asynchronous
communication instead. Is this possible while remaining true to the
Curry-Howard interpretation whereby computation proceeds by
cut reduction? The answer is “yes”, but we need to reformulate the
sequent calculus.

We replace the right rules for the positive connectives (&, ®, 1)
and the left rules for the negative connectives (&, —) with new
zero-premise rules. In the restructuring we preserve provability,
but change the nature of cut reduction.

Consider the binary case of internal choice, A @ B. Omitting
extraneous antecedents, one of two usual cut reductions is

D &1 &y

FA ArC BFrC &

WY AEBBI—CCU?L FA _ArC
FC AoB FC A

Now we replace the two right rules for disjunction with two zero-
premise rules (“axioms”):

_ apo _ ano
A+rA®B ®K) BrA®B 2

Then the cut reduction above is transformed into the following:

& &
o ArC BrC

AraeB N A@BkCCUGEL &
ArC AoB ArC

We see that the process representing the proof of A + A @ B acts
like a message (perhaps ‘inl’) and the cut reduction absorbs the
message, in effect entirely eliminating the cut. To actually send
such a message we have to use a cut with the new zero-premise
rule. Since a cut always proceeds by spawning a new process, this
makes sending a message in effect asynchronous. The old rules are
trivially derivable using the new ones using this extra cut.

D D ——— oR
YA &R YA AFA®B cutl
YrA®B = = YrAeB AeB

In this restructured calculus (see Figure 2, ignoring for now the
process terms) cut elimination fails. For example, there cannot be a
cut-free proof of - 1 ® B because no rule except cut actually applies.
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With cut we obtain

®R!
cuty

1R T 1esB

F1®B

This proof in fact corresponds to the parallel composition of two
messages: one ()’ to terminate communcation and one ‘inl’ to
select the first alternative of the internal choice.

Fortunately, the lack of cut elimination is not troublesome, since
computation rarely (if ever) corresponds to full normalization or
cut elimination. Functional programming languages, for example,
do not evaluate under A-abstractions, and concurrent languages
(even those proposed for the Curry-Howard interpretation [Caires
and Pfenning 2010]) do not reduce under an input prefix. So we fall
back on the usual progress and preservation theorems which, in
the end, do derive from cut reductions, and carefully analyze the
structure of irreducible configurations.

3.2 Eliminating Weakening and Contraction

We have introduced multicut entirely with the standard motivation
of providing a simple proof of the admissibility of cut using struc-
tural induction. Surprisingly, we can streamline the system further
by using multicut to eliminate weakening and contraction from the
logic altogether.

Consider a mode m with C € o(m). Then contraction is a simple
instance of multicut with an instance of the identity rule.

A Am 4 Wy A @A) O

¥ (x:Am) F Cy

cut({y, z})

Similarly, for a mode m with W € o(m), weakening is also an
instance of multicut.

G Amran 4 wic
k

‘I"(x:Am)l-Ck

cut(0)

Cut reductions in the presence of contraction entail many residual
contractions, as is evident already from Gentzen’s original proof.
Under our interpretation of contraction above, these residual con-
tractions simply become multicuts with the identity. The opera-
tional interpretation of identities then plays three related roles: with
one client, an identity achieves a renaming, redirecting communi-
cation; with two or more clients, an identity implements copying;
with zero clients, its effect is garbage collection. The central role
of identities can be seen in full detail in Figure 3, once we have
introduced our notation for processes and process configurations.

4 OPERATIONAL SEMANTICS

The pattern of communication along private channels (see Sec-
tion 3) is disturbed by the exponential modality !A of linear logic,
which requires a shared channel with multiple clients since it admits
weakening and contraction. The only operation supported is for the
client to obtain a fresh copy by sending it a fresh linear channel for
communication at type A. This was analyzed from the perspective
of adjoint logic with a fixed three-point partial order (structural,
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] ¥>m>k |S|~m ¥YrPu(x:Apm) S:An) ¥ +0O:=(c:Ck) «s)
(a:Am)rce—au(c:Am) id Y +S — (x.P);Qx(c:Cg) c
tel B W (x; : AL) F Py (c: Cy) foreachi € I oL

(a: Afn) Fsend ¢ £(a) :: (¢ : EBIA"m)
i€

Wk P (x - AL) for eachi € I

— &R
¥ case ¢ {i(x;) = Pi}ier = (c: & Al,)
iel

0
(@: Am) (b Bm) Fsend c (.b) = (¢ : Am ® By) ER

¥ (a: _@IA’;n) F case a {i(x;) = Pi}ier = (c: Cg)
1€

tel 0
(a: & AL ) Fsendal(c): (c:AL) &le
el ™ e

Y (x:Am)@yY:Bm)FP:u(c:Cy)
¥ (a:Am ®Bm)F (x,y) «—recva; P (c:Cy)

®L

WI—P::(C:Ck)

-k close ¢ (c: 1) 1R

(x:Am)¥YFP:(y:Bm)

1L

¥ (a:1m)F waita; P (c:Cy)

170

e L0
¥+ (x,y) < recve; P u(c: Ay — Bm) R (a:Am)(c:Apy — By) +sendc (a,b):(b:By) L
YEPu(x:Ag) 1R
¥ + shift(x) < recv ¢; P = (c : T/rank) (a: T;C"Ak) F send a shift(c) = (¢ : Ag)
IR ¥ (x:Am)FP(c:Cp)

(a:Am) Fsend cshift(a) = (c: [J'Am)

¥ (a: )" Am) + shift(c) « recv a; P :: (¢ : Cp)

L

Figure 2: Process Assignment for Asynchronous Adjoint Logic

affine, and linear) by Pfenning and Griffith [2015]. No other struc-
tural connectives were supported, and a consistent operational
interpretation of those was left as an open question.

In this section, we propose an answer to this question, which
required a reformulation of adjoint logic by making the structural
rules explicit and using multicut instead of the ordinary cut. Re-
markably, we obtain two new operational phenomena: (1) a form of
multicast communication and (2) a logically justified form of explicit
garbage collection.

4.1 Static Semantics

We begin by providing proof terms for the rules in our sequent
calculus, as shown in Figure 2. We can then interpret the proof
terms as process expressions, and these rules are used to give the
typing judgment for such processes. Table 1 gives the informal
meaning of each such process term. Note that the process terms for
shifts are a special case of the process terms for @ and &, and so are
combined in the figure. In general, the process syntax represents
an intermediate point between a programmer-friendly syntax and
a notation in which it is easy to describe the operational seman-
tics and prove progress and preservation. When compared to, say,
SILL [Toninho et al. 2013], the main revisions are that (1) we make
channel continuations explicit in order to facilitate asynchronous
communication while preserving message order [DeYoung et al.
2012], and (2) we distinguish between an internal name for the
channel provided by a process and external names connecting it to
multiple clients.

Process term Meaning

a<¢c¢

S« (x.P);0

Identify channels a and c.

Spawn a new process P providing
channels S to be used by Q. Here, x
is the internal name in P for the chan-
nel offered by P, and S is the set of
external names of the same channel.

Send the label ¢ and the channel a
along c.

Receive a label i and a channel x; from
¢, continue as P;.

send ¢ £(a)

case c{i(xj) = Pi}ier

send ¢ (a, b) Send the channels a and b along c.
(x,y) < recvc; P Receive channels x and y from ¢ to be
used in P.
close ¢ End communication over c.
wait ¢; P Wait for ¢ to be closed, continue as P.

Table 1: Informal Meanings of Process Terms

4.2 Some Simple Examples

At this point, we can write down some actual processes. We provide

here some small examples, along with their type information.
First, we have a process that can be written at any mode m, which

witnesses that ®p, is commutative.

(x: Ap @ Bm) + (y,x") « recv x;send z (x",y) = (z: By ® Am)

If m is a mode that admits contraction, we can write the following
process, which witnesses that A,, & B, proves Ay ® By, in the
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presence of contraction. ‘%’ starts a comment, and a.(P) binds an
internal name a for the channel provided by P.
(P : Am & Bm) F{p1,p2} <= q.(q —=p); % {p1,pa} < copyp
x « a.(send py 7m1(a));
y « b.(send pz m(D));
send z (x,y)
2 (z:Am ® Bm)
If m is a mode that admits weakening, we can write the following
process, which witnesses that A, ® B, proves Ap, & By, in the
presence of weakening.

(x:A®B) +casep {m(p1) = (y,z) « recv x;

0 — a.(a < z); % drop z
1<y

| ma(p2) = (y,z) « recv x;
0 —a.(a—y); % drop y
P2z}

2 (p:A&B)
Three further examples involving a recursive type can be found
in Section 5.3.

4.3 Dynamic Semantics

In order to describe the computational behavior of process expres-
sions, we need to first give some syntax for the computational
artifacts, which are running processes proc(. . .).

In this notation, proc(S, A, a.P) represents a process P which
provides to clients S along a channel that it knows internally as a,
using channels in A. That is, A consists of the free channels in P.
We will write ¥ for the set of variables declared in .

A process configuration is a multiset of processes:

C = ()]|Cproc(S,A,a.P)

where we require that all the channels provided by the processes
proc(S, A, a.P) are distinct, i.e., given objects proc(S, A1, a.P) and
proc(T, Az, b.Q) in the same process configuration, S and T are
disjoint. We will specify the operational semantics in the form of
multiset rewriting rules [Cervesato and Scedrov 2009]. That means
we show how to rewrite some subset of the configuration while leav-
ing the remainder untouched. This form provides some assurance
of the locality of the rules.

It simplifies the description of the operational semantics, if for
any process proc(S, A, a.P), A consists of exactly the free channels
in P. This requires that we restrict the labeled internal and external
choices, »€BI Al and '&I AL to the case where I # 0. Since a channel

ie ie

of empty choice type can never carry any messages, this is not a
significant restriction in practice.

4.3.1 Configuration typing. In order to understand the rules of
the operational semantics, it will be helpful to understand the typing
of configurations. The judgment has the form ¥ £ C :: ¥’ which
expresses that using the channels in ¥, configuration C provides
the channels in ¥’. This allows a channel that is not mentioned at
all in C to appear in both ¥ and ¥’—we think of such a channel as
being “passed through” the configuration.

Note that while the configuration typing rules induce an ordering
on a configuration, the configuration itself is not inherently ordered.
The key rule is the first: for any formula proc(S, A, a.P), a is the
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internal name of the channel provided by P while S is the set of all
clients. An important restriction is that the number of clients must
be compatible with the mode m of the offered channel, which is
exactly that |S| ~ m, as defined in Section 2.5.

IS|]~m Y rP:(a:Apm)
Y ¥ E proc(S, ¥, a.P) = ¥ (S: Am)

YEC:Y Y EC ¥/
YECC v

YE() =¥

The identity and composition rules are straightforward. The
empty context (-) provides ¥ if given ¥, since it does not use any
channels in ¥ or provide any additional channels. Composition
just connects configurations with compatible interfaces: what is
provided by C is used by C’.

The computation rules we discuss below can be found in Figure 3.

4.3.2  Judgmental rules. The identity rule (written as I:d>) de-
scribes how an identity process proc(S, {c}, a.(a « ¢)) can interact
with other processes. We think of such a process as connecting the
provider of ¢ to clients in S, and therefore sometimes call it a for-
warding process. A forwarding process interacts with the provider
of c, telling it to replace ¢ with S in its set of clients. In adding S to
the set of clients, the forwarding process accomplishes its goal of
connecting the provider of ¢ to S, and so it can terminate.

The cut rule steps by spawning a new process which offers
along a fresh set of channels S’, all of which are used in Q, the
continuation of the original process. Here we write Ap and Ag for
the set of free channels in P and Q, respectively.

4.3.3  Structural rules. As can be seen from the proof of cut
elimination (Appendix A.2), a principal multicut reduction creates
several new cuts: one with a smaller proposition (these are em-
bodied in rules (*)C for each connective (%)), possibly some with a
smaller proof, and possibly followed by some contractions.

We refactor these into several smaller steps. First, if the multicut
eliminates more than one copy of a proposition, we divide it into
two multicuts followed by some contractions. This way we isolate
the single proposition that is actually eliminated into a multicut on
the same proposition and a smaller proof, followed by a singleton
cut. The residual contractions are of course then again implemented
by cuts with the identity. The critical step here is the following,
assuming that C € o(m) and S and T nonempty:

YrA, (SUT:Ap) ¥ +C
Y¥'+C

cut(SUT)

YrAn (SUT:Ap)¥'+C

t(s
YA, T:Am) ¥V rC cut(S)
n cut(T)
YYVec
o contrac

This is embodied in the rule i where A = V. The identity pro-
cesses here implement the residual contractions. We require P not
to be an identity in order to prevent circular reductions. The trans-
formation is entirely parametric in the client(s), which we therefore
do not need to make explicit.
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proc(T U {c}, A, a.P) id
proc(S, {c},a.(a « ¢))

proc(T, Ap U Ag, a.(S « (x.P); Q))

drop
proc(0, A, a.P) =

cg) proc(S’, Ap, x.P)
proc(T, Ag U {S"},a.Q[S"/S])

proc(0, {b},a.(a < b))pen

= proc(T U S, A, a.P)

(S’ a fresh set of channels matching S)

(P not an identity)

proc({b’,b"},{b},a.(a & b))pen

copy
proc(SUT, A, a.P) =

prOC(S’ {b’}bEAv GP)

(P not an identity and S, T non-empty)

proc(T, {b”}bEA’ aP)

proc({b}, {c}, a.(send a {(c))) ®C
proc(S, A U {b}, a.(case b {i(d;) = Pi}ier)) =

proc({b}, A, a.(case a {i(d;) = P;}ier)) &C
proc({c}, {b}, a.(send b £(a))) =

proc({b},{c,d}, a.(send a (c,d))) ®
proc(S, A U {b}, a.({x,y) « recv b;P)) =

9

)
o

proc({b}, A, a.({x,y) « recv a; P))
proc({c}, {b,d}, a.(send b (d, a)))

9

proc({b}, 0, a.(close a)) 1
proc(S, A U {b}, a.(wait b; P))

I

N
9}

proc({b}, A, a.(shift(x) « recv a; P))
proc({c}, {b}, a.(send b shift(a)))

I

proc({b}, {c}, a.(send a shift(c))) lC
proc(S, A U {b}, a.(shift(x) « recv b; P))

proc(S, A U {c},a.Pe[c/dr])

proc({c}, A, a.Prla/ds])

proc(S, A U {c,d},a.P[c/x,d]/y])

proc({c}, AU {d},a.P[d/x,aly])

proc(S, A, a.P)

proc({c}, A, a.(P[a/x]))

— proc(S, A U {c}, a.P[c/x])

Figure 3: Computation Rules for Asynchronous Adjoint Logic

A similar consideration in the case where a multicut eliminates

drop
zero copies of a proposition justifies the = rule of computation.
In the copy rule, we use a few conventions for simplicity. First,
we implicitly assume that b’ and b” are fresh for each channel b.
We also use the shorthand A’ for {b” | b € A}, and similarly for A”’.
The substitution P[A’/A] is the obvious pointwise substitution of
each b’ for the corresponding b.

4.3.4 Additive and Multiplicative connectives. In the computa-
tion rule for @, the process proc({b}, {c}, a.(send a £(c))) represents
the message ‘label ¢ with continuation ¢’. After this message has
been received, the process terminates since b was its only client.
The recipient selects the appropriate branch of the case construct
and also substitutes the continuation channel ¢ for the continuation
variable dg.

The & computation rule is largely similar to that for ®, except
that communication proceeds in the opposite direction—messages
are sent to providers from clients, rather than from providers to
clients as in the case of @.

The multiplicative connectives ® and —o behave similarly to their
additive counterparts, except that rather than sending and receiving
labels, they send and receive channels together with a continuation,
and so an extra substitution is required when receiving messages.

The rule for 1 behaves as a nullary ®, allowing us to signal that
no more communication is forthcoming along a channel, and to
wait for such a signal before continuing to compute.

4.3.5 Shifts. Operationally, T behaves essentially the same as
unary &, while | behaves as unary @, and so these rules are similar
to the computation rules for those connectives. Their significance
lies in the mode shift of the continuation channel that is transmitted,
which is required for the configuration to remain well-typed.

5 PRESERVATION AND PROGRESS

While in the logic we can prove cut elimination, in a programming
language we would support recursive types and recursive processes
which may not terminate. Moreover, from a programmer’s perspec-
tive we are not even interested in eliminating all cuts (which would
correspond to reducing under A-abstractions in a functional lan-
guage) but we block when waiting to receive a message, analogous
to a A-abstraction waiting for input before it can reduce.

What we prove instead are the typical progress and preservation
properties, adjusted to adjoint logic and to our specific operational
semantics. Type preservation is usually referred to as session fidelity
and progress as deadlock freedom.
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5.1 Preservation (Session Fidelity)

THEOREM 5.1 (PRESERVATION). If¥ F C = ¥ and C = C’, then
YEC Y.

Proor. This proceeds by a case analysis on the computation
rule used to get that C = C’.

The general structure of each case is to use Lemma A.18 to break
C down into the processes on which the computation rule acts and
some additional collections of processes which are irrelevant to
the computation. Once we have done this, we build a proof that
¥ E C’ :: ¥’ from these pieces. ]

5.2 Global Progress (Freedom from Deadlocks)

The progress theorem for a functional language states that an ex-
pression is either a value or it can make a step. Here we do not have
values, but there is nevertheless a clear analogue between, say, a
value Ax.e that waits for an argument, and a process y « recv x ; P
that waits for an input. We formalize this in the definition below.

Definition 5.2. We say that a process proc(S, A, a.P) is poised on
aif:
(1) itis a process proc(S, A, a.P) that sends on a — that is, P is
of the form (send a _) or (close a), or
(2) itis a process proc(S, A, a.P) that receives on a — that is, P
is of the form (case a _), (wait a; _), or (_ « recva; _).

Intuitively, proc(S, A, a.P) is poised on a if it is blocked trying
to communicate along a. This definition allows us to state the
following progress theorem:

THEOREM 5.3 (PROGRESS). If(-) E C == ¥, then exactly one of the
following holds:

(1) Thereis a C’ such that C = C’.

(2) Every proc(S, A, a.P) in C is poised on a.

Proor. This follows from an induction on the derivation of () F
C ¥, using the F’ rules defined in Appendix A.4. Writing C =
C’ proc(S, @, a.P), we see that either C’ can step, in which case so
can C, or every process in C’ is poised.

Now we carefully distinguish cases on S (empty, singleton, or
greater) and apply inversion to the typing of P to see that in each
case the process either is poised, can take a step independently, or
can interact with provider of a channel in ¥’. O

5.3 Garbage Collection

As we can see from the preservation theorem, the interface to a
configuration never changes. While new processes may be spawned,
they will have clients and are therefore not visible at the interface.
That is in contrast to the semantics of shared channels in prior
work (for example, in Caires and Pfenning [2010]) where shared
channels may show up as newly provided channels. Therefore they
may be left over at the end of a computation without any clients.

This cannot happen here. Initially, at the top level, we envision
starting with

- proc({co}, -, ¢.Po) == (co : 1)

Assuming this computation completes, by the progress property
and the definition of poised, computation could only halt with

- F proc({co}, -, c.(close ¢)) :: (cp : 1)
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In other words: no garbage!

One can generalize this theorem to allow some nontrivial output
by allowing any purely positive type (that is, one which only uses
the fragment of the logic with connectives ®, ®, 1, and |), such as
®{false : 1, true : 1}.

Perhaps most interesting here is an extension, following SILL [Pfen-
ning and Griffith 2015; Toninho et al. 2013] in a straightforward
way, where we allow recursive types and recursive definition be-
yond the pure logic. For example, we can define binary numbers in
“little endian” representation (least significant bit first) as

bits,, = @&{b0 : bits,,, b1 : bits;,, e : 1,,}

We do not specify here the mode m because the examples below
will work for any mode, regardless of its structural properties! Then
the number 5 = (101); is represented by the following process:

- + five(xgp) == (xo : bits)

five(xp) = x4 « a.(close a);
x3 «— a.(send a e(xq));
x2 < a.(send a b1(x3));
x1 <« a.(send a b0(x7));
send xg b1(x7)

which evolves into five processes: three representing the bits 1, 0, 1;
one (e) for the end of the number; and one to close the channel. In
fact, by the progress and preservation theorems and inversion on
typing, we know that if any process - + P :: (xg : bits,,) terminates,
then P will represent a binary number with one process for each of
its bits and two more to mark the end of the number and close the
channel.
As a last example, the recursive process definition inc(x, y) reads
a stream of bits along channel x and sends an incremented stream
along y.
(x : bits) + inc(x,y) :: (y : bits)
inc(x,y) = case x { b0(x”) = send y b1(x”)
|b1(x") =y’ « a.(inc(x’, 2));
send y b0(y’)
|e(x”) = y’ « a.(send a e(x”))
send y b1(y’) }

We can obtain the representation of 6 by incrementing 5.

-k six(xg) == (xg : bits)
six(xg) = x1 « a.(five(a));
inc(x1, xo)

6 RELATED WORK

Various items of related work have already been mentioned in the
preceding sections either in examples or technical cross-references.

The most closely related work and immediate inspiration comes
from the unpublished Reed [2009] which introduces an arbitrary
preorder on modes with a uniform logical language and sequent
calculus rules. It uses the notation Fg>pAq = lZAq and Ug>pAq =

TZAq. It mostly stays in the realm of structural logics, but Sec-
tion 4.4 sketches intuitionistic linear logic and LNL as examples. It
does not use explicit weakening and contraction rules (which are
incorporated into the other rules as is frequently done for sequent
calculi), and, while it uniformly proves cut elimination in the case
of structural modes, it does not provide an operational semantics.
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Recently, Licata et al. [2017] have further generalized Reed’s
adjoint logic by uniquely labeling antecedents and then controlling
their use through a resource annotation of a sequent. Their resource
annotations are made in an expressive mode theory which allows
a richer set of logics to be represented than in our system here,
including non-associative, ordered, and bunched logics. In addition,
Licata et al. view multiplicative connectives such as tensor (®) or
linear implication (—o) as instances of a new generalized form of
the adjoint modal operators, which paves the way for yet additional
operators to be represented. In particular, their system allows ?,A
of intuitionistic subexponential logic (see Section A.1.4) and ¢A of
judgmental modal logic (see Example 2.5) to be encoded directly,
which, as far as we can tell, requires at least a 4-point lattice and
an additional distinguished atom a, [Reed 2009, Section 4.5] in our
setting.

This generality also comes at a price. The declaration of inde-
pendence is no longer a fundamental notion, but a roughly corre-
sponding strengthening lemma has to be proved and requires some
complex conditions on the mode theory [Licata et al. 2017, Lemma
7.1]. Adequacy of encodings also becomes more complicated. Fur-
thermore, Licata et al. do not provide an operational semantics;
their interest (like Reed’s) lies on the logical and categorical side.

In a different direction, there is some related work on the use of
linearity for garbage collection. The work of Wadler [1990] presents
a simple language which uses linearity for state change without a
need for garbage collection. Roughly contemporaneous with this
is work by Chirimar et al. [1992], which focuses more on the idea
of implementing garbage collection with linear logic, allowing the
programmer to “dispose” of variables which are not needed in a
type-safe fashion. Again, however, this focuses on a functional lan-
guage, with the intent to allow for easier reasoning about memory
optimizations in functional programming. More recently, [Igarashi
and Kobayashi 2000, 2002] deal with garbage collection (and the
more general problem of resource management) using linearity.
Yet again, this deals only with the case of sequential functional
programs. A major difference between the prior work and our
work, then, is that we work in a concurrent setting, and indeed our
garbage collection is concurrent as well.

7 CONCLUSION

At this point, our formulation of adjoint logic and its operational
semantics seem to fit well and provide a good explanation for multi-
cast communication and distributed garbage collection. Moreover, if
used linearly, the semantics coincides with the purely linear seman-
tics developed in prior work. In future work, we plan to investigate
if the logic also lends itelf to a shared memory implementation
(as the example in Section 5.3 suggests), and if the declaration of
independence is sufficient to allow a modular combination of dif-
ferent operational interpretations for different modes. Of particular
interest here would be the sharing semantics [Balzer and Pfenning
2017]. We also have not yet explored the full range of examples
suggested by instances of the adjoint logic framework, such as
potential concurrent programming application of judgmental S4
(comonads) or lax logic (strong monads).
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A APPENDIX
A.1 Logic Examples, Extended

Here, we provide more formal definitions of the embeddings 7 from
various logics into instances of adjoint logic, as well as proofs of
their adequacy.

A.1.1 LNL. As described in Example 2.2, we will work with
an adjoint logic with two modes L < U, where o(L) = 0 and
o(U) = {W,C}.

For this section, we will use the following subset of LNL, where
X0, A are base propositions. Connectives other than —o and — can
be translated similarly, and so in the interest of brevity, we omit
them.

Persistent Propositions X = X°|X; — X, |GA
Linear Propositions A = A |A; — Ay | FX
Persistent Hypotheses © = -|0,X
Linear Hypotheses r == -|[A

Definition A.1. We define an embedding 7 of LNL into adjoint
logic as follows:

X% = Xy
(X1 = X2) = 1(X1) —ou 7(X2)
(GA) = T4
(A% = A
(A1 = Az) = (A1) —o 7(A2)
t(FX) = [/t(X)
o) = -
7(0,X) = 1(0),(x: (X))
o) = -
T, A4) = (), (y: r(A)

THEOREM A.2.
(@) ® +¢ X in LNL iff t(©) + 7(X) in adjoint logic.
(b) ©;T +p Ain LNL iff 7(©), o(T') + 7(A) in adjoint logic.

Proor. First, we take advantage of cut-elimination for adjoint
logic to allow us to prove weaker implications, needing only to
show that the existence of a cut-free proof in adjoint logic implies
the existence of an LNL proof. Our proof is then reduced to proving
the following:

(a.1) If 7(®) # 7(X) in adjoint logic, then ® +¢ X in LNL.
(a.2) If © +¢ X in LNL, then 7(0) + 7(X) in adjoint logic.
(b.1) If 7(®), z(T') # 7(A) in adjoint logic, then ©;T + ; Ain LNL.
(b.2) If ©;T + y Ain LNL, then 7(0), z(T')  z(A) in adjoint logic.

We prove (a.1) and (b.1) by simultaneous induction on the deriva-
tion of ¥ + Cpy,.

We prove (a.2) and (b.2) by showing that (the translations of)
the rules of LNL are derivable from the rules of adjoint logic. This
is straightforward, and consists primarily of inserting the correct
modes into rules of adjoint logic. O

A.1.2  Judgmental S4. As described in Example 2.5, we will work
with an adjoint logic with two modes U < V, where a(U) = o(V) =
{W,C}.
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For this section, we will use the following subset of judgmental
S4, where P are base propositions. Connectives other than > can
be translated similarly, and so are omitted.

Propositions A == P|A DA |TOA
True Hypotheses T = -|T,A true
Valid Hypotheses A = .| A, Avalid

Definition A.3. We define an embedding 7 of judgmental S4 into
adjoint logic as follows:

T(P) = PU
(A1 D A2) = (A1) —ou T(A2)
(@A) = T4
() = -
t(T,Atrue) = (), (x:7(A)
) = -
(A, Avalid) = 1©(A),(y:t(A)

THEOREM A 4.
(a) A;T + A in judgmental S4 iff 1\t(A), 7(T) + 7(A) in adjoint logic.
(b) A;- v A in judgmental S4 iff 1\t(A) F T\t (A) in adjoint logic.

Proor. We first note that in [Pfenning and Davies 2001], the
inference system given by the rules above is stated to satisfy weak-
ening and contraction for both true and valid hypotheses. As such,
we may add weakening and contraction rules for judgmental S4
without changing the provability of judgments. We will write v+
for proofs in judgmental S4 using these structural rules in order to
make them more obviously distinguished.

We will use this along with cut elimination for adjoint logic (in
the same manner as in Section A.1.1) in order to reduce the result
to proving the following implications:

(a.1) If TY)z(A), 7(T) # 7(A) in adjoint logic, then A;T +* A in
judgmental S4 augmented with structural rules.

(a.2) If A;T + A in judgmental S4, then T/ 7(A), 7(T) + (A) in
adjoint logic.

(b.1) If TY(A) + T} 7(A) in adjoint logic, then A;- +* A in judg-
mental S4 augmented with structural rules.

(b.2) If A;- + Ain judgmental S4, then T})z(A) + TV7(A) in linear
logic

From here, the proof proceeds much as the proof for LNL.

We prove (a.1) and (b.1) by simultaneous induction on the deriva-
tion of ¥ # Cpy.

We prove (a.2) and (b.2) by showing that (the translations of) the
rules of judgmental S4 are derivable from the rules of adjoint logic.
This is slightly less straightforward than the case of LNL, since the
usual presentation of judgmental S4 is in terms of introduction and
elimination rather than left and right rules, and so deriving the
elimination rules involves using a cut. O

A.1.3  Lax Logic. As described in Example 2.7, we work here
with two modes, X < U, where o(X) = o(U) = {W, C}. Inter-
estingly, this is the same preorder (up to renaming) as that for
judgmental S4.

We take the following as the syntax for lax logic, omitting connec-
tives other than O and O for brevity, as the proof extends naturally



Under Submission, January 2018,

to those cases.

PlA1 DAy | QA
-|T,A

Propositions A
Hypotheses T

Definition A.5. We define an embedding 7 of lax logic into adjoint
logic as follows:

(P) = Py
(A1 D Az) = 1(A1) —o 1(A2)
(04 = NI
() = -
t(T,A) = (), (x:1(A))

THEOREM A.6.

(a) T + A true in lax logic iff (T') + 7(A) in adjoint logic.
(b) T,/ + A lax in lax logic iff (L), [iz(I’) + [J7(A) in adjoint
logic.

Proor. Much like the proof for judgmental S4, we use cut elimi-
nation for adjoint logic along with the admissibility of weakening
and contraction for lax logic to reduce our claims to the following:

(a.1) If () # 7(A) in adjoint logic, then T +* A true in lax logic
augmented with structural rules.
(a.2) If T + A true in lax logic, then 7(T') + 7(A) in adjoint logic.
(b.1) If (1), [{7(A) ¥ [J7(A) in adjoint logic, then T, A +* A lax
in lax logic augmented with structural rules.
(b.2) If T,A + A lax in lax logic, then (T), [{7(A) + [{7(A) in
adjoint logic.
As before, we prove (a.1) and (b.1) by simultaneous induction on
the derivation of ¥ + Cp,.
We prove (a.2) and (b.2) by showing that (the translations of) the
rules of lax logic are derivable from the rules of adjoint logic. This
proceeds in essentially the same way as for judgmental S4. O

A.1.4  Subexponential Linear Logic. We can represent a some-
what restricted form of intuitionistic subexponential linear logic
(ISELL) [Chaudhuri 2010] as a fragment of adjoint logic. Subexpo-
nential labels of zones correspond to modes, and we preserve the
preorder between labels as the preorder between modes. There is a
working zone which corresponds to a distinguished mode L.

We require z > L for all modes z # L and define ;A = |F 1ZA
for z > L. We also work on the ?-free fragment, making this slightly
less general than ISELL, which also includes ?,A and allows labels
z < L. Indeed, the rules for the shifts under the obvious candidate
representation ?,A = 75 |5A do not match the rules for ?,A in
ISELL. Fortunately, the modality ?, is not in the image of the trans-
lation [Chaudhuri 2010, Section 4.1] from classical subexponential
logic [Nigam and Miller 2009] into ISELL, so it does not appear
essential to gauge its expressive power.

An instance of ISELL satisfying these requirements can then be
seen as an instance of adjoint logic where all modes a other than L
contain only propositions of the form {A,.

Because subexponential logic is designed as a logical framework
based on proof construction and focusing instead of proof reduction,
the structural rules are integrated into the other rules rather than
separated out. All other differences are cosmetic.

12

Klaas Pruiksma, Willow Chargin, Frank Pfenning, and Jason Reed

We also have a new opportunity, namely adding connectives
that directly combine propositions of mode z # L. The conse-
quences warrant further proof-theoretic investigation, because the
additional connectives may reduce the number of subexponential
modalities in a logic representation. This in turn may streamline
the focusing behavior of encodings since subexponential modalities
interrupt focusing phases.

Formally, we fix a particular instance of ISELL (and a correspond-
ing instance of adjoint logic), and take the following syntax for the
fragment of ISELL which we consider, omitting connectives other
than —o and !¢ for brevity:

Propositions A =
Hypotheses A

P|A; —o Ay | 194
S AA

Definition A.7. We define an embedding 7 from ISELL into ad-
joint logic as follows:

(P) = P
T(A; — Az) = (A1) —o 1(A2)
(14 = [1(A)
) = -
(A A) = (D), (y: 7(A)

THEOREM A.8.
(@) A9 A, ... 19 Ay v B in ISELL iff
T(A),Tflr(Al), e, cLG 7(Ap) F 7(B) in adjoint logic.
(b) 1M1 Ay, ... 1% A, +\PB in ISELL iff
Tflr(Al), e Tf”T(An) F TET(B) in adjoint logic.

PRrROOF. As in the previous proofs, we use cut elimination for
adjoint logic to reduce our claim to the weaker claims that:

(a.1) If £ (A), Tflr(Al), R Tf" 7(Ap) ¥ 7(B) in adjoint logic, then
AIMA;, . 1% Ap F B in ISELL.

(a.2) IfA'4 A, ...,!1% A, + B in ISELL, then
(A), Tfl (A1),..., Tf" 7(Ap) F 7(B) in adjoint logic.

(b.1) If Tflr(Al), .. .,Tf" (An) ¥ TET(B) in adjoint logic, then
191A;,...,19 A, + 1Y B in ISELL.

(b.2) If 191 Ay, ..., 19 Ay, + 19 B in ISELL, then
Tflr(Al), - ,Tﬁ” (Ap) Tfr(B) in adjoint logic.

Also as in the previous proofs, (a.1) and (b.1) may be proved
by induction over the judgment ¥ ¥ C, and (a.2) and (b.2) may be
proved by showing that each of (the translations of) the rules of
ISELL can be derived from the rules of adjoint logic. O

A.2 Cut Elimination

THEOREM A.9. The rule of multicut is admissible in the cut-free
system.

Proor. This proof follows the structure of many cut elimination
results. First we prove admissibility of cut in the cut-free system:
if O is a proof of ¥ + A, and & is a proof of (S : Ap) ¥/ # Cy,
then we can construct a cut-free proof of ¥ ¥’ t Cy. This is proven
by a straightforward induction on the triple (A,,, D, &), ordered
lexicographically. This is followed by a simple structural induction
to prove cut elimination, using the admissibility of cut when it is
encountered. If we ignore the modes, this proof is very similar to
the original proof of Gentzen [1935].
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The particular cases of this are given by local cut reductions in a
standard way. Because of their importance both for the operational
semantics (Section 4) and equivalence proofs (Section 2.7), however,
we show a representative sample of the reductions. Note that we
will always identify proofs that are a-equivalent.

Example A.10 (An identity case). We begin by showing an identity
case—specifically, the case where D is an identity, & is arbitrary,
and S = 0. This reduction has the form shown in the first line of
Figure A.2. Note that the premise W € o(m) of the reduced proof
follows from the premise |@| ~ m of the original proof.

Example A.11 (A structural case). We now show a case where we
cut with a structural rule—in particular, where D is arbitrary, &
ends in a contraction rule, and S = {y}. This reduction is shown in
the second line of Figure A.2. Note that the premise |[{z, w}| ~ m
of the reduced proof follows from the premise C € o(m) of the
original proof.

Example A.12 (A principal case). We now consider one of the
principal cases for @, as shown in the third line of Figure A.2. In
particular, we consider the case where S = T U {x, y}. Here, the
induction hypothesis is used at ('€BI AL D, Ep) in order to remove

1€
extra copies of '691 Al similarly to the standard cross-cut in cut
elimination proloefs for structural logic. In order to clean up the
two copies of ¥ produced by the cross-cut and the second, more
standard cut, we apply the contraction rule repeatedly, replacing
¥ ¥ with ¥. Note also that we omit the side condition |{y}| ~ m of
the second use of the induction hypothesis, as 1 ~ m always.

Example A.13 (A commutative case). Finally, we consider an ex-
ample of a commutative case, where the reduction proceeds by
pushing the cut further up in the proof. In particular, we consider
the case where D is arbitrary, and & ends in the —oR rule. This
reduction proceeds as shown in the fourth line of Figure A.2.

While the details of the remaining cases are not identical, each
remaining case is similar to one of the above. ]

A.3 The Adjunction Property

In order to define functors, we first need to define the categories
that will serve as their domain and codomain. For each mode m,
there is a category (which we will also denote by m) defined as
follows:

The objects of m are the types A,.

A morphism D : A, — By, is an equivalence class of proofs
of (x : Am) + (y : Bp), where two proofs are equivalent if
they are related by cut reduction or identity expansion or if
they are a-equivalent.

The identity morphism at Ay, is the equivalence class of

A Ay dAm
e Composition is given by cut—given O : A — By, and
& : By — Ciy, we define & o D to be the equivalence class
of
D &
x:Am)=2m>m (x:An)FBm (y:Bm)+Cn
(x:Am)FCn

cut({y})
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With this definition, the main theorem that we seek to prove is
the following:

THEOREM A.14. |}* and 17" can be extended to functors |}" :
m — k and TZ” : k — m on the categories k and m as defined above.
Moreover, these functors form an adjoint pair with J,]’C" - T]’C”

Proor. Throughout this proof, as m and k are fixed, we will omit
them as subscripts and superscripts on shifts—we write | for l]'cn

and T for T'k"
Given D : Ay, + By, we can define | D : |A,, + | By, as follows:
D
Am F |Bm 0’
lAm + |Bm

Similarly, given D : Ay + By, we can define TD : TAg + 1By as
follows:

D
Ap =2k A v B
1Ak - B
TAk + 1By

It is easy to check that these are functorial—in particular, they
preserve identities up to identity expansion and preserve composi-
tion up to cut reduction (using two commutative reductions and
one principal reduction at either |Ap, or TAp,).

Now, in order to prove that | 4 T, we will use the unit-counit
formulation of adjunction and so we begin by defining the unit and
counit. To show that there is an adjunction, it then only remains to
show that these transformations are natural and that they satisfy
the unit-counit laws.

1L

Definition A.15. We define two transformations 7 : id,,, — T|
and ¢ : |T — idg as follows:
Define n14,, : Am — TlAm to be the equivalence class of

—— idy
Ap>m Amt Am lRm
Am + |Am R
Am v TlAm
Define e, : [TBy — By to be the equivalence class of
—— idp,
B >k Byt B 1
1By + By
LBk + By

PROPOSITION A.16. 1 and ¢ are natural in their arguments.

Proor. Suppose D : Ay — Bp, and consider the following
square:

AmLBm

[

o
TJ/Am — Tle
We wish to show that this square commutes in that the proofs
along each path are equivalent up to identity expansion and cut-
reduction.
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————— ida,, , &
(x:Am)=2m=2k [0l~m (x:Amn)t+Ap ¥ Cy cut(0)
(x: Am) ¥’ F Cy
&
Weao(m) ¥+ Cy .
— (x:Am) ¥’ F G earen
4
Cea(m) ¥ (z:Am)(w:Am)k Ck
; contract
Y>m>k Hy}l~m ¥+An ¥ (y:Am) ¥ Ck
T cut({y))
F Cx
D &’
Y (z:Apm)(w:Ap)>2m>2k [{z,w}~m ¥YwrA, ¥ (z:Apn)(w:Ap)+ Ck
ih.(A !
_ T ih(Am, D, &)({z W)
D, &i A
’ . 1 . 1 :
‘el ‘I’H—Afn or ¥ (TU{x}: iEEIAm)(z.Am)H—Ckforeachl el :
= - - 7]
Y>m>k |TU{x,y}~m ¥ eaIA;n ¢ Y (TU{x,y}: eaIA’m)n—ck
ie ie
t(T U {x,
ST cut(T U {x,y})
D &
¥>m>k |[TU{x}~m ¥+ &AL, ¥ (TU{x}: ® AL )(z: AL+ Ct
o) iel iel ()
Y>m>k VAL \P\y'(z;A{n)mck,h . '
Ce cr(m) AR Ck L (Ama Dl’ )({Z})
. YU rC contract®
k
&1
(x:Am)(S:Cr) ¥ + By
Y>k>m IS~k ¥rC (S:Co)¥  Am —oBpm
5 cut(S)
VY kA, —o By
D &
Y>k>m |S|~k ¥YrC x:Am)(S:CL)¥' + B
IS| k ’( m) (S :Ck) M (CoD. E1)(S)
i Am) YV kB
— Y9 Ay —o By
Figure 4: Sample Cut Reductions

Composing along the left-hand path, we get

Now, composing along the right-hand path, we get

Bw2m Byt By B
IR
Ay > A Z,.)B Bm + |Bm 1R
= m - v
id Am v |Bm IL i 7 cutg,,
Am>m m‘wf‘m VAmzk  TAmeIBn o m + 11Bm
Amt Am o MAm+ 1Bm o p
Am b Tl Am TAm + TIBm cuty A
Am FTlBm m

Applying identity and cut reductions to both of these proofs

until we have removed all instances of identity and of cut, we are
14
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in both cases left with

D
Am=>2m AmtBp

Am + |Bm
Am +TBm

and so we indeed have that this square commutes.
That ¢ is natural follows from a similar argument. ]

IR
1R

We now show that the unit-counit laws hold for  and ¢, which
will give us that | 4 T.
That is, we show that the following diagrams commute:

Y] 1
N N2
l 1

We consider first the former diagram. Let A,, be given, and note
that it will suffice to show thatid| 4, =¢j4, ©lna,,-

This corresponds to showing that the following two proofs are
equivalent up to cut reduction and identity expansion:

and

Am>m Amt Am 'ﬁ?m
M TR - idlA
Ap2>2m Am +TLAm IR Am 2k At lAm 1L "
Am + TAm I MNAm F lAm I
Am v [TlAm ITAm + | Am cut
T+ LAm i
and
VAm + |Am i,

As before, we can use cut reductions and identity expansions to
show that both proofs are equivalent to

Am>m AmF Anm 'lRA'"
Am + Am I
Am +lAm ,

and so the triangle commutes, as desired.
The proof that the second triangle commutes is similar, and
therefore omitted. o

A.4 Progress and Preservation

We present here several definitions and lemmas used in the proofs
of progress and preservation.

For the progress theorem, it is convenient to have a second form
of process typing which induces a list ordering, rather than a binary
tree ordering, on configurations. Again, we require that the size
of S be compatible with the mode of the providing channel. We will
show that the two typing judgments are equivalent in Lemma A.17.

IS|]~m YE C:¥¥ YrP:(a:Am)
¥ E’ C proc(S, ¥, a.P) :: Wi(S : Am)

We now present some results about configuration typing, which
will allow us to get useful information from the fact that a con-
figuration is well-typed. As well-typedness of a configuration is

15
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the primary assumption for both progress and preservation, these
lemmas are key in the proofs of those results.

LEMMA A17. YE' C =V if YEC = ¥

Proor. We note that by applying the rules for =, we can derive
the following two proofs:

YE(G) =V

S| ~m ¥Y2rP:(a:Am)
YEC =¥ V¥ F proc(S, ¥a,a.P) :: Wi(S : Am)
¥ E C proc(S, ¥, a.P) :: Wi(S : Am)

Therefore, if we have that ¥ E’ C :: ¥/, then the derived rules
above can be used to show that ¥ = C :: ¥/,

Now, suppose that ¥ F C :: ¥’. By inducting on the derivation
of ¥ E C :: ¥/, we can show that ¥ E’ C :: ¥’. From the inductive
step, we apply the inductive hypothesis to get proofs that (when
C =CiC) ¥ ' C; == ¥ and that ¥/ E’ C; = ¥’. Since the
rules for F’ give only one possible construction for each of these
proofs, it is possible to simply “glue” them together by replacing an
instance of ¥”" + (-) = ¥/ in the latter proof with the whole former
proof to get the desired result. O

As this lemma justifies that F” and F are equivalent, we will use
them interchangeably, simply writing F for either.

LEmMa A.18. IfC = C; C2 and ¥ F C = V", then there is ¥’
suchthat ¥ F C; =V and V' E Cy = .

Proor. It is easy to take a proof that ¥ & C; C; :: ¥”” and break
it into a proof that ¥ E C; =: ¥/ and ¥’ F C; :: ¥/ following the
reverse of the “gluing” process used in the previous lemma. O

LeMMa A19. If ¥ (x : Am) E C = ¥ (x : Ap), then also
YEC:Y.

Proor. This follows from an induction on the derivation of ¥(x :
Am) E C :: ¥/ (x : Ayp), using uniqueness of channel names for the
singleton case. O

LEmMMA A.20 (CONFIGURATION INVERSION). If
OEC =¥ (x:Am),
then there are C1,C2 and T, ¥’, P such that all of the following hold:
(a) C = Cy proc(T U {x},¥’,b.P) Cs.
) (VEC =¥Y.
() ¥ rP:(b:Ap).
(A ¥ (TU{x}:Am)ECy ¥ (x: Ap).

Proor. This proof proceeds by induction on the derivation of
(EC =¥ (x: Am).

We first note that the last rule used cannot possibly be the rule
for the empty configuration—this case fails to give the (x : Ap,)
in the assumption. Similarly, if there is only one process in C, the
derivation must have the form below:

- D &
OFEE =) ITu{x~m (YFrPu(b:Ay)
() E proc(T U {x},0,b.P) : (TU {x} : Am)
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In this case, taking C; = Cz = (-) gives the desired result.

Now, we are left with the cases where C contains more than one
process, and so the derivation has the form

D & F
(YEC =¥¥Y S|~k ¥ rPu(c:By)
(-) E C’ proc(S, ¥/, c.P) :: ¥(S : By)
Note that ¥ (S : Bg) = ¥” (x : Apm), and so either x € S and
By = Ap or (x : Ap) occurs in .

In the first case, we take C; = C’ and Cz = (-), and proc(S, ¥/, c.P)
is the desired process.

In the second case, we apply the inductive hypothesis to D
to get C{,C;,T’,®, Q satisfying (a)-(d). Taking C; = C], C2 =
C, proc(0, ¥/, b.P), and proc(T’ U {x},®,a.Q) to be the desired
process then gives the result. O
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