
15-819K: Logic Programming

Lecture 27

Constraint Logic Programming

Frank Pfenning

December 7, 2006

In this lecture we sketch constraint logic programming which generalizes
the fixed structure of so-called uninterpreted function and predicate sym-
bols of Horn logic. A common application is more flexible logic program-
ming with arithmetic and finite domains. Higher-order logic programming
is another example where techniques from constraint logic programming
are important.

27.1 Arithmetic

One of the main motivations for constraint logic programming comes from
the awkward and non-logical treatment of arithmetic in Prolog. For exam-
ple, a naive implementation of the Fibonacci function would be the follow-
ing Prolog program.

fib(0,1).

fib(1,1).

fib(N,F) :- N >= 2,

N1 is N-1, fib(N1,F1),

N2 is N-2, fib(N2,F2),

F is F1+F2.

Recall the use of is/2 to carry out evaluation of arithmetic predicates and
the built-in >=/2 to implement comparison between two ground terms.

Constraint logic programming supports interpreted function symbols
(here: addition and subtraction) as term constructors, which means that
we need to generalize unification to take into account the laws of arith-
metic. Moreover, built-in predicates (here: comparison) over the constraint

LECTURE NOTES DECEMBER 7, 2006

L27.2 Constraint Logic Programming

domain (here: integers) are no longer restricted to ground terms but are
treated specially as part of the constraint domain.

In a constraint logic programming language over the integers, we could
rewrite the above program as

fib(0,1).

fib(1,1).

fib(N,F1+F2) :- N >= 2, fib(N-1,F1), fib(N-2,F2).

With respect to this program, a simple query

?- fib(2,F-1).

is perfectly legitimate and should yield F = 1, but even more complex
queries such as

?- N < 20, fib(N,5).

and

?- N < 20, fib(N,6).

will succeed (in first case, with N = 5) or fail finitely (in the second case).
What emerges from the examples is that we need to extend ordinary

unification to handle more general equations, with terms from the con-
straint domain, and that we furthermore need to generalize from just equal-
ities to maintain other constraints such as inequalities.

27.2 An Operational Semantics with Constraints

Before we generalize to other domains, we return to the usual domain of
first-order terms and reformulate proof search. The idea is to replace unifi-
cation by equality constraints.

We use the residuated form of programs in order to isolate the various
choices and appeals to unification. Recall the language of goals G, goal
stacks S and failure continuations F . We only consider the Horn fragment,
so the program is fixed. Moreoever, we assume there is exactly one residu-
ated program clause Dp for every predicate p.

Goals G ::= P | G1 ∧G2 | > | G1 ∨G2 | ⊥ | ∃x.G | s
.
= t

Programs D ::= ∀x. p(x)← G
Goal Stacks S ::= > | G ∧ S
Failure Conts. F ::= ⊥ | (G ∧ S) ∨ F

The operational semantics is given by three judgments.

LECTURE NOTES DECEMBER 7, 2006

Constraint Logic Programming L27.3

• G / S / F . Solve G under goal stack S with failure continuation F .

• s
.
= t | θ. Unification of s and t yields most general unifier θ.

• s
.
= t 6 |. Terms s and t are not unifiable.

We now add to this a constraint store C , for now just consisting of equa-
tions.

Constraints C ::= > | s
.
= t ∧C

The first new judgment is

• G / S / C / F . Solve G under goal stack S and constraint C with
failure continuation F .

First, the rules for conjunction, which are not affected by the constraint
except that they carry them along.

G1 / G2 ∧ S / C / F

G1 ∧G2 / S / C / F

G2 / S / C / F

> / G2 ∧ S / C / F > / > / C / F

We can see in the rule for final success that the constraint C represents a
form of the answer. In practice, we project the constraints down to the
variables occurring in the original query, although we do not discuss the
details of the projection operation in this lecture.

For disjunction we have to remember the constraint as well as the suc-
cess continuation.

G1 / S / C / (G2 ∧ S ∧ C) ∨ F

G1 ∨G2 / S / C / F

G2 / S / C / F

⊥ / S′ / C ′ / (G2 ∧ S ∧ C) ∨ F

no rule for
⊥ / S / C / ⊥

Predicate calls in residuated form do not involve unification, so they
remain unchanged from the unification-based semantics. Existential quan-
tification is also straightforward.

(∀x. p(x)← G) ∈ Γ G(t/x) / S / C / F

p(t) / S / C / F

G(X/x) / S / C / F X 6∈ FV(S,C, F)

∃x.G / S / C / F

LECTURE NOTES DECEMBER 7, 2006

L27.4 Constraint Logic Programming

For equations, we no longer want to appeal to unification. Instead, we
check if the new equation s

.
= t together with the ones already present in C

are still consistent. If so, we add the new constraint s
.
= t; if not we fail and

backtrack.

s
.
= t ∧C 6` ⊥ > / S / s

.
= t ∧ C / F

s
.
= t / S / C / F

s
.
= t ∧C ` ⊥ ⊥ / S / C / F

s
.
= t / S / C / F

We use a new judgment form, C ` ⊥, to check if a set of constraints is
consistent. It can be implemented simply by the left rules for equality, or
by the forward chaining rules for unification described in an earlier lecture.
The interpretation of variables, however, is a bit peculiar. The variables in
a constraint C as part of the G / S / C / F are (implicitly) existentially
quantified. When we ask if the constraints are inconsistent we mean to
check that ¬∃X. C , that is, there does not exist a substitution t/X which
makes C(t/X) true. We check this by assuming ∃X. C and trying to derive
a contradiction. This means we introduce a new parameter x for each logic
variable X and actually try to prove C(x/X) where each of the variables x

is fresh. Since we are in the Horn fragment, we omitted this extra step of
back-substituting parameters since there is only one kind of variable.

An interesting point about the semantics above is that we no longer use
or need substitutions θ. Whenever a new equation arrives we make sure the
totality of all equations encountered so far still has a solution and continue.

27.3 An Alternative Operational Semantics with Constraints

As noted, the treatment of variables in the above semantics is somewhat
odd. We introduce them as logic variables, convert them to parameters to
check consistency. But we never use them for anything else, so why intro-
duce them as logic variables in the first place? Another jarring aspect of the
semantics is that the work that goes into determining that the equations are
consistent (for example, with the left rules for unifiability from an earlier
lecture) is lost after the check, and we may have to redo a good bit of work
when the next equality is encountered. In other words, the constraints are
not solved incrementally.

This suggests the following change in perspective: rather than trying to
prove that there exists a unifying substitution, we think of search as trying
to characterize all unifying substitutions. We still need to treat the case
that there are none as special (so we can fail), but otherwise we just assume
constraints. Reverting back to pure logic for a moment, a sequent C ` A

LECTURE NOTES DECEMBER 7, 2006

Constraint Logic Programming L27.5

with parameters x holds if any substitution t/x which makes C true also
makes A true.

Once constraints appear on the left-hand side, they can be treated with
the usual left rules. The main judgment is now C ` G / S / F for a set of
constraints C where we maintain the invariant that C is always satisfiable
(that is, it is never the case that C ` ⊥). This should be parenthesized as
(C ` G / S) / F because the constraints C do not apply to F .

For most of the rules from above this is a mere notational change. We
a few interesting cases. We generalize the left-hand side slightly to be a
collection of constraints C instead of a single one.

C ` G1 / S / (C ` G2 ∧ S) ∨ F

C ` G1 ∨G2 / S / F

C ` G2 / S / F

C′ ` ⊥ / S′ / (C ` G2 ∧ S) ∨ F

no rule for
C ` ⊥ / S / ⊥

Existential quantification now introduces a new parameter.

C ` G / S / F x 6∈ FV(S, C, F)

C ` ∃x.G / S / F

We avoid the issue of types and a typed context of parameters as we dis-
cussed in the lecture of parameters.

Equality is now treated differently.

C, s
.
= t 6` ⊥ C, s

.
= t ` > / S / F

C ` s
.
= t / S / F

C, s
.
= t ` ⊥ C ` ⊥ / S / F

C ` s
.
= t / S / F

Now there is scope for various left rules concerning equality. The sim-
plest example is the left rule for equality discussed in an earlier lecture.
This actually recovers the usual unification semantics!

s
.
= t | θ (Cθ ` Gθ / Sθ) / F

(C, s
.
= t ` G / S) / F

Note that the other case of the left rule (where s and t do not have a unifier)
cannot arise because of our satisfiability invariant which guarantees that a
unifier exists.

We can also use the small-step rules dealing with equality that will
never apply a substitution, just accumulate information about the vari-
ables. For example, knowing x

.
= c for a constant c carries the same in-

formation as applying the substitution c/x.

LECTURE NOTES DECEMBER 7, 2006

L27.6 Constraint Logic Programming

These left rules will put a satisfiable constraint into a kind of reduced
form and in practice this is combined with the satisfiability check. This
means constraints are treated incrementally, which is of great practical im-
portance especially in complex constraint domains.

As a final remark, we come back to focusing. The rules for equality
create a kind of non-determinism, because either we could solve a goal or
we could break down the equality we just assumed. However, the rules for
equality are asynchronous on the left and can be reduced eagerly until we
get irreducible equations. In a complete, lower-level semantics this should
be addressed explicitly; we omit this step here and leave it as Exercise 27.1.

27.4 Richer Constraint Domains

The generalization to richer domains is now not difficult. Instead of just
equalities, the constraint C (or the constraint collection C) contains other
interpreted predicate symbols such as inequalities of even disequalities.
When encountering an equality or interpreted predicate we verify its con-
sistency, adding it to the set of constraints.

In addition we allow either constraint simplification, or saturate left
rules for the predicates in the constraint domain. The simplification al-
gorithms depend significantly on the particular constraint domains. For
example, for arithmetic equalities we might use Gaussian elimination, for
arithmetic inequalities the simplex algorithm. In addition we need to con-
sider combinations of constraint domains, for which there are general ar-
chitectures such as the Nelson-Oppen method for combining decision pro-
cedures.

A particularly popular constraint domain is Finite Domains (FD), which
is supported in implementations such as GNU Prolog. This also supports
bounded arithmetic as a special case. We will not go into further detail,
except to say that the Fibonacci example is expressible in several constraint
languages.

27.5 Hard Constraints

An important concept in practical constraint domains is that of a hard con-
straint. Hard constraints may be difficult to solve, or may even be unde-
cidable. The general strategy in constraint programming language is to
postpone the solution of hard constraints until further instantiations make
them tractable. An example might be

?- X * Y = 4, X = 2.

LECTURE NOTES DECEMBER 7, 2006

Constraint Logic Programming L27.7

When we see X * Y = 4, the equation is non-linear, so we would be justi-
fied in raising an exception if the domain was supposed to treat only linear
equations. But when we receive the second constraint, X = 2, we can sim-
plify the first constraint to be linear 2 * Y = 4 and simplify to Y = 2.

When hard constraints are left after overall “success”, the success must
be interpreted conditionally: any solution to the remaining hard constraints
yields a solution to the overall query. It is even possible that the hard con-
straints may have no solution, negating an apparent success, so extra care
must be taken when the interpreter admits hard constraints.

Hard constraints arise naturally in arithmetic. Another domain where
hard constraints play a significant role is that of terms containing abstrac-
tions (higher-order abstract syntax), where constraint solving is a form of
higher-order unification. This is employed, for example, in the Twelf sys-
tems, where hard constraints (those falling outside the pattern fragment)
are postponed and reawakened when more information may make them
tractable.

27.6 Detailed Example

As our example we consider the Fibonacci sequence again.

fib(0,1).

fib(1,1).

fib(N,F1+F2) :- N >= 2, fib(N-1,F1), fib(N-2,F2).

We use it in this direct form, rather then the residuated form for brevity. We
consider the query

?- N < 10, fib(N,2).

which inverts the Fibonacci functions, asking for which n < 10 we have
fib(n) = 2. The bound on n is to avoid possible non-termination, although
here it would only affect search after the first solution. Inverting the Fi-
bonacci function directly as with this query is impossible with ordinary
Prolog programs.

Below we show G / S / C , omitting the failure continuation and
silently simplifying constraints on occasion. We avoid redundant “ ∧ >”
and use Prolog notation throughout. Furthermore, we have substituted for
the first occurrence of a variable in a clause head instead of building an
equality constraint.

LECTURE NOTES DECEMBER 7, 2006

L27.8 Constraint Logic Programming

N < 10, fibr(N,2) / true / true

fib(N,2) / true / N < 10

% trying clause fib(0,1)

% 0 = N , 1 = 2, N < 10 is inconsistent

% trying clause fib(1,1)

% 1 = N , 1 = 2, N < 10 is inconsistent

% trying clause fib(N,F1+F2) :- ...

F1+F2 = 2 / N >= 2, fib(N-1,F1), fib(N-2,F2) / N < 10

N >= 2 / fib(N-1,F1), fib(N-2,F2) / F1 = 2-F2, N < 10

fib(N-1,F1) / fib(N-2,F2) / F1 = 2-F2, 2 <= N, N < 10

% trying clause fib(0,1)

% 0 = N-1, 1 = F1, F1 = 2-F2, 2 <= N, N < 10 is incons.

% trying clause fib(1,1)

1 = N-1, 1 = F1 / fib(N-2,F2) / F1 = 2-F2, 2 <= N, N < 10

fib(N-2,F2) / true / F1 = 2-F2, N = 2

% trying clause fib(0,1)

0 = N-2, 1 = F2 / true / F1 = 2-F2, N = 2

true / true / 0 = N-2, 1 = F2, F1 = 2-F2, N = 2

true / true / N = 2, F2 = 1, F1 = 1

Even though GNU Prolog offers finite domain constraints, including
integer ranges, the Fibonacci program above does not quite run as given.
The problem is that, in order to be backward compatible with Prolog, the
predicates of the constraint domain (including equality) must be separated
out. The naming convention is to precede a predicate with # to obtain the
corresponding constraint predicate (assuming it is defined). Here is a bi-
directional version of the Fibonacci predicate in GNU Prolog.

fibc(0,1).

fibc(1,1).

fibc(N,F) :- N #>= 2,

N1 #= N-1, fibc(N1,F1),

N2 #= N-2, fibc(N2,F2),

F #= F1+F2.

With this predicate we can execute queries such as

?- N #< 10, fibc(N,8).

(which succeeds) and

?- N #< 10, fibc(N,9).

LECTURE NOTES DECEMBER 7, 2006

Constraint Logic Programming L27.9

(which fails). A query

?- N < 10, fibc(N,8).

would signal an error, because the first argument to < is not ground.

27.7 Historical Notes

Constraint logic programming was first proposed by Jaffar and Lassez [3].
The first practical implementation was by Jaffar and Michaylov [4], the full
CLP(R) language and system later described by Jaffar et al. [5]. A related
language is Prolog III [1] which combines several constraint domains. The
view of higher-order logic programming as constraint logic programming
was advanced by Michaylov and myself [8, 6].

The architecture of cooperating decision procedures is due to Nelson
and Oppen [7].

In the above constraint logic programming language the constraints
and their solution algorithms are hard-wired into the language. The sub-
language of Constraint Handling Rules (CHR) [2] aims at allowing the
specification of constraint simplification within the language for greater
flexibility. It seems that this is a fragment of LolliMon, specifically, its linear
forward chaining sublanguage, which could be the basis for a more logical
explanation of constraints and constraint simplification in logic program-
ming.

27.8 Exercises

Exercise 27.1 Write a semantics for Horn logic where unification is replaced by
incremental constraint solving as sketched in this lecture. Make sure your rules
have no unwanted non-determinism, that is, they can be viewed as a deterministic
abstract machine.

27.9 References

[1] Alain Colmerauer. An introduction to Prolog III. Communications of the
ACM, 33(7):69–90, 1990.

[2] Thom Früwirth. Theory and practice of constraint handling rules. Jour-
nal of Logic Programming, 17(1–3):95–138, October 1998.

[3] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the 14th Annual Symposium on Principles of Programming
Languages, pages 111–119, Munich, Germany, January 1987. ACM Press.

LECTURE NOTES DECEMBER 7, 2006

L27.10 Constraint Logic Programming

[4] Joxan Jaffar and Spiro Michaylov. Methodology and implementation of
a CLP system. In J.-L. Lassez, editor, Proceedings of the 4th International
Conference on Logic Programming (ICLP’87), pages 196–218, Melbourne,
Australia, May 1987. MIT Press.

[5] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap.
The CLP(R) language and system. ACM Transactions on Programming
Languages and Systems, 14(3):339–395, July 1992.

[6] Spiro Michaylov and Frank Pfenning. Higher-order logic program-
ming as constraint logic programming. In Position Papers for the First
Workshop on Principles and Practice of Constraint Programming, pages 221–
229, Newport, Rhode Island, April 1993. Brown University.

[7] Greg Nelson and Derek C. Oppen. Simplification by cooperating deci-
sion procedures. ACM Transactions on Programming Languages and Sys-
tems, 1(2):245–257, 1979.

[8] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

LECTURE NOTES DECEMBER 7, 2006

