
15-819K: Logic Programming

Lecture 14

Cut Elimination

Frank Pfenning

October 12, 2006

In this lecture we consider how to prove that connectives are asynchronous
as goals and then consider cut elimination, one of the most important and
fundamental properties of logical systems. We then revisit residuation to
restore some of the connectives not present in the asynchronous fragment
of linear logic. For each synchronous assumption we find a corresponding
synchronous goal connective.

14.1 Proving Connectives Asynchronous

We have claimed in the last lecture that certain connectives of linear logic
are asynchronous as goals in order to justify their inclusion in our linear
logic programming language. I know of essentially two ways to prove that
such operators are indeed asynchronous. The first is by simple inductions,
one for each asynchronous connectives. The following theorem provides
an example. In todays lecture we generally omit the judgment form for
propositions such as true on the right-hand side, and res or ures on the left-
hand side, since this can be infered from the placement of the proposition.

Theorem 14.1 If ∆ `̀ A & B then ∆ `̀ A and ∆ `̀ B.

Proof: By induction on the structure of D, the deduction of ∆ `̀ A&B. We
show only two cases; others are similar.

Case: D =

D1

∆ `̀ A
D2

∆ `̀ B

∆ `̀ A & B
&R.

∆ `̀ A Subderivation D1

∆ `̀ B Subderivation D2

LECTURE NOTES OCTOBER 12, 2006



L14.2 Cut Elimination

Case: D =

D1

∆′, C1 `̀ A & B

∆′, C1 & C2 `̀ A & B
&L1 where ∆ = (∆′, C1 & C2).

∆′, C1 `̀ A and
∆′, C1 `̀ B By i.h. on D1

∆′, C1 & C2 `̀ A By rule &L1

∆′, C1 & C2 `̀ B By rule &L1

2

There is a second way to proceed, using the admissibility of cut from
the next section directly, without appeal to induction.

14.2 Admissibility of Cut

So far we have not justified that the right and left rules for the connectives
actually match up in an expected way. What we would like to show is
that the judgment of a being resource and the judgment of truth, when
combined in a linear hypothetical judgment, coincide. There are two parts
to this. First, we show that with the resource A we can achieve the goal A,
for arbitrary A (not just atomic predicates).

Theorem 14.2 (Identity Principle) A res `̀ A true for any proposition A.

Proof: See Exercise 12.1. 2

Second, we show that if we can achieve A as a goal, it is legitimate
to assume A as a resource. This completes the theorems which show our
sequent calculus is properly designed.

Theorem 14.3 (Admissibility of Cut)

If ∆A `̀ A true and ∆C , A res `̀ C true then ∆C ,∆A `̀ C true .

Proof: We prove this here only for the purely linear fragment, without the
operators involving unrestricted resources (!A, A ⊃ B). The proof proceeds
by nested induction, first on the structure of A, the so-called cut formula,
then simultaneously on the structure of D, the derivation of ∆A `̀ A true

and E , the derivation of ∆C , A res `̀ C true . This form of induction means
we can appeal to the induction hypothesis

1. either on a smaller cut formula with arbitrary derivations, or

LECTURE NOTES OCTOBER 12, 2006



Cut Elimination L14.3

2. on the same cut formula A and same D, but a subderivation of E , or

3. on the same cut formula A and same E , but a subderivation of D.

There are many cases to distinguish; we show only three which illustrate
the reasons behind the form of the induction above.

Case: D =

D1

∆A `̀ A1

D2

∆A `̀ A2

∆A `̀ A1 & A2

&R and E =

E1

∆C , A1 `̀ C

∆C , A1 & A2 `̀ C
&L1

.

∆C ,∆A `̀ C By i.h. on A1, D1 and E1

Case: D =

D1

∆1 `̀ A1

D2

∆2 `̀ A2

∆1,∆2 `̀ A1 ⊗ A2

⊗R and E =

E ′

∆C , A1, A2 `̀ C

∆C , A1 ⊗ A2 `̀ C
⊗L.

∆C , A1,∆2 `̀ C By i.h. on A2, D2, and E ′

∆C ,∆1,∆2 `̀ C By i.h. on A1, D1 and the previous line
∆C ,∆A `̀ C Since ∆A = (∆1,∆2)

Case: D
∆A `̀ A

is arbitrary and E =

E1

∆′,D1, A `̀ C

∆′,D1 & D2, A `̀ C
&L1.

∆′,D1,∆A `̀ C By i.h. on A, D and E1

∆′,D1 & D2,∆A `̀ C By rule &L1

2

The shown cases are typical in that if the cut formulas were just intro-
duced on both the right and the left, then we can appeal to the induction
hypothesis on its subformulas. Otherwise, we can keep the cut formula
and either D or E the same and appeal to the induction hypothesis on the
subderivations on the other side.

The case for ⊗ above shows why we cannot simply use an induction
over the derivations D and E , because the second time we appeal to the
induction hypothesis, one of the derivations come from a previous appeal
to the induction hypothesis and could be much larger than E .

The proof is not too difficult to extend to the case with unrestricted as-
sumptions (see Exercise 14.2).

LECTURE NOTES OCTOBER 12, 2006



L14.4 Cut Elimination

14.3 Cut Elimination

Cut elimination is the property that if we take cut as a new inference rule,
it can be eliminated from any proof. Actually, here we would have two cut
rules.

Γ;∆A `̀ A true Γ;∆C , A res `̀ C true

Γ;∆C ,∆A `̀ C true
cut

Γ; · `̀ A true (Γ, A ures);∆ `̀ C true

Γ;∆ `̀ C true
cut!

Showing that cut can be eliminated is an entirely straightforward induction
over the structure of the deduction with cuts. In each case we just appeal to
the induction hypothesis on each premiss and re-apply the rule to the get
the same conclusion. The only exception are the cut rules, in which case we
obtain cut-free derivations of the premisses by induction hypothesis and
then appeal to the admissibility of cut to get a cut-free derivation of the
conclusion.

Cut as a new rule, however, is unfortunate from the perspective of proof
search. When read bottom-up, we have to invent a new proposition A,
which we then prove. When this proof succeeds we would be allowed
to assume it into our overall proof. While mathematically inventing such
lemmas A is critical, in a logic programming language it destroys the goal-
directed character of search.

14.4 Asynchronous Connectives, Revisited

Using cut elimination we can give alternate proofs that connectives are
asynchronous. We show only one example, for conjunction.

Theorem 14.4 If ∆ `̀ A & B then ∆ `̀ A and ∆ `̀ B.

Proof: (Alternate) Direct, using admissibility of cut.

∆ `̀ A & B Given
A `̀ A Identity principle
A & B `̀ A By rule &L1

∆ `̀ A By admissibility of cut

B `̀ B Identify principle
A & B `̀ B By rule &L2

∆ `̀ B By admissibility of cut

2

LECTURE NOTES OCTOBER 12, 2006



Cut Elimination L14.5

14.5 Residuation and Synchronous Goal Connectives

In the focusing calculus from the previous lecture, all connectives are asyn-
chronous as goals and synchronous when in focus as assumptions. In our
little programming example of peg solitaire, we extensively used simulta-
neous conjunction (⊗) and and also disjunction (⊕). One question is how
to extend our language to include these connectives. So far, we have, for
both programs and goals:

A ::= P | A1 ( A2 | A1 & A2 | > | ∀x.A | A1 ⊃ A2

A principled way to approach this question is to return to residuation.
Given a program clause this constructs a goal whose search behavior is
equivalent to the behavior of the clause. Since we have already seen resid-
uation in detail for the non-linear case, we just present the rules here.

P ′ `̀ P > P ′
.
= P

D1 `̀ P > G1

G2 ( D1 `̀ P > G1 ⊗ G2

D1 `̀ P > G1 D2 `̀ P > G2

D1 & D2 `̀ P > G1 ⊕ G2 > `̀ P > 0

D `̀ P > G x /∈ FV(P )

∀x.D `̀ P > ∃x.G

D1 `̀ P > G1

G2 ⊃ D1 `̀ P > G1 ⊗! G2

There are a few connectives we have not seen in their full generality
in linear logic, namely equality, existential quantification, and a curious
asymmetric connective G1 ⊗! G2. We concentrate here on their behavior as
goals (see Exercise 14.5). Because these connectives mirror the synchronous
behavior of the assumption in focus, proving one of these is now a focusing
judgment, except that we focus on a goal. We write this as Γ;∆ � G.

First, in our proof search judgment we replace the focus and copy rules
by appeals to residuation.

D ∈ Γ D `̀ P > G Γ;∆ � G

Γ;∆ `̀ P
resid!

D `̀ P > G Γ;∆ � G

Γ;∆,D `̀ P
resid

LECTURE NOTES OCTOBER 12, 2006



L14.6 Cut Elimination

Next the rules for focusing on the right.

∆ = (·)

∆ � P
.
= P

id
∆ = (∆1,∆2) ∆1 � G1 ∆2 � G2

∆ � G1 ⊗ G2

⊗R

∆ � G1

∆ � G1 ⊕ G2

⊕R1

∆ � G2

∆ � G1 ⊕ G2

⊕R2
no 0R rule for

∆ � 0

∆ � G(t/x)

∆ � ∃x.G
∃R

Γ;∆ � G1 Γ; · � G2

Γ;∆ � G1 ⊗! G2

⊗!R

Furthermore, we transition back to asynchronous decomposition when we
encounter an asynchronous connective. We call this blurring the focus. Con-
versely, we focus on the right when encountering a synchronous connec-
tive.

∆ `̀ G G asynch.

∆ � G
blur

∆ � G G synch.

∆ `̀ G
rfocus

For completeness, we give the remaining rules for asynchronous goals (the
atomic case is above in the resid and resid! rules).

∆,D1 `̀ G2

∆ `̀ D1 ( G2

(R
∆ `̀ G1 ∆ `̀ G2

∆ `̀ G1 & G1

&R
∆ `̀ >

>R

∆ `̀ G x 6∈ FV(Γ;∆)

∆ `̀ ∀x.G
∀R

(Γ,D1);∆ `̀ G2

Γ;∆ `̀ D1 ⊃ G2

⊃R

This yields the following grammar of so-called linear hereditary Harrop
formulas which form the basis of the Lolli language. The fragment without
( and ⊗, replacing ∧/&,∨/⊕,⊥/0,∧/⊗!, is called hereditary Harrop formu-
las and forms the basis for λProlog.

Goals G ::=
Asynch. P | D1 ( G2 | G1 & G2 | > | ∀x.G | D1 ⊃ G2

Synch. | P ′ .
= P | G1 ⊗ G2 | G1 ⊕ G2 | 0 | ∃x.A | G1 ⊗! G2

Programs D ::= P | G2 ( D1 | D1 & D2 | > | ∀x.D | G2 ⊃ D1

We have lined up the synchronous goals with their counterparts as syn-
chronous programs just below, as explained via residuation.

Strictly speaking, going back and forth between the ∆ `̀ G and ∆ � G
is unnecessary: we could coalesce the two into one because programs are

LECTURE NOTES OCTOBER 12, 2006



Cut Elimination L14.7

always fully synchronous. However, it highlights the difference between
the synchronous and asynchronous right rules: Asynchronous decomposi-
tion in ∆ `̀ G is automatic and involves no choice, synchronous decom-
position ∆ � G involves a significant choice and may fail. Moreover, in
just about any logical extension of focusing beyond this fragment, we need
to pause when the goal becomes synchronous during the asynchronous
decomposition phase and consider whether to focus on an assumption in-
stead. Here, this would always fail.

In practice, it is convenient to admit an even slightly richer set of goals,
whose meaning can be explained either via a transformation to the connec-
tives already shown above or directly via synchronous or asynchronous
rules for them (see Exercise 14.3).

14.6 Completeness of Focusing

Soundness of the focusing system is easy to see, since each rule is a restric-
tion of the corresponding left and right rules for the non-focused sequent
calculus. Completeness is somewhat more difficult. We can continue the
path mapped out in the proof that various connectives are asynchronous
as goals, proving that the same connectives are indeed synchronous as pro-
grams. Alternatively, we can prove a generalization of the cut elimina-
tion results for focused derivations and use that in an overall completeness
proof. The references below give some pointers to the two different styles
of proof in the literature.

14.7 Historical Notes

Cut elimination, one of the most fundamental theorems in logic, is due to
Gentzen [3], who introduced the sequent calculus and natural deduction
for both classical and intuitionistic logic and showed cut elimination. His
formulation of the sequent calculus had explicit rules for exchange, weak-
ing, and contraction, which make the proof somewhat more tedious than
the one we presented here. I first provided proofs by simple nested struc-
tural induction, formalized in a logical framework, for intuitionistic and
classical [5, 6] as well as linear logic [4].

Andreoli introduced focusing for classical linear logic [1] and proved its
completeness through a number of inversion and admissibility properties.
An alternative proof using cut elimination as a central lemma, applied to
intuitionistic linear logic was given by Chaudhuri [2].

LECTURE NOTES OCTOBER 12, 2006



L14.8 Cut Elimination

14.8 Exercises

Exercise 14.1 Prove A ( B to be asynchronous on the right in two ways:

i. directly by induction, and

ii. by appealing to the admissibility of cut.

Exercise 14.2 In order to prove the cut elimination theorem in the presence of
unrestricted assumptions, we generalize to the following:

1. (Cut) If Γ;∆A `̀ A true and Γ;∆C , A res `̀ C true then Γ;∆C ,∆A `̀
C true .

2. (Cut!) If Γ; · `̀ A true and (Γ, A ures);∆C `̀ C true then Γ;∆C `̀
C true

The second form of cut expresses that if we can prove A without using resources,
it is legitimate to assume it as an unrestricted resource, essentially because we can
generate as many copies of A as we need (it requires no resources).

The nested induction now proceeds first on the structure of the cut formula A,
then on the form of cut where cut < cut!, then simultaneously on the structures
of the two given derivations D and E . This means we can appeal to the induction
hypothesis

1. either on a subformula of A with arbitrary derivations, or

2. on the same formula A where cut! appeals to cut, or

3. on the same cut formula and same form of cut and same D, but a subderiva-
tion of E , or

4. on the same cut formula and same form of cut and same E , but a subderiva-
tion of D.

Show the cases explicitly involving !A, A ⊃ B, and copy in this proof. You
may assume that weakening the unrestricted assumptions by adding more is le-
gitimate and does not change the structure of the given deduction. Note carefully
appeals to the induction hypothesis and explain why they are legal.

Exercise 14.3 We consider even larger set of goals to squeeze the last bit of conve-
nience out of our language without actually affecting its properties.

i. Give the rule(s) to allow !G as a goal.

LECTURE NOTES OCTOBER 12, 2006



Cut Elimination L14.9

ii. Give the rule(s) to allow 1 as a goal.

iii. We could allow simultaneous conjunction on the left-hand side of linear im-
plication goals, because (D1 ⊗D2) ( G is equivalent to D1 ( (D2 ( G),
which lies within the permitted fragment. Explore which formulas R could
be allowed in goals of the form R ( G because they can be eliminated by a
local equivalence-preserving transformation such as the one for ⊗.

iv. Now explore which formulas S could be allowed in goals of the form S ⊃ G
without affecting the essence of the language.

Exercise 14.4 Prove that the focusing system with left and right rules is equiva-
lent to the system with only right rules and residuation for atomic goals.

Exercise 14.5 Through residuation, we have introduced two new connectives to
linear logic, A ⊗! B and P ′ .

= P , but we have only considered their right rules.
Give corresponding left rules for them in the sequent calculus and prove cut

elimination and identity for your rules.

14.9 References

[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[2] Kaustuv Chaudhuri. The Focused Inverse Method for Linear Logic. PhD
thesis, Carnegie Mellon University, 2006. To appear.

[3] Gerhard Gentzen. Untersuchungen über das logische Schließen. Math-
ematische Zeitschrift, 39:176–210, 405–431, 1935. English translation in
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68–
131, North-Holland, 1969.

[4] Frank Pfenning. Structural cut elimination in linear logic. Technical Re-
port CMU-CS-94-222, Department of Computer Science, Carnegie Mel-
lon University, December 1994.

[5] Frank Pfenning. A structural proof of cut elimination and its represen-
tation in a logical framework. Technical Report CMU-CS-94-218, De-
partment of Computer Science, Carnegie Mellon University, November
1994.

[6] Frank Pfenning. Structural cut elimination I. intuitionistic and classical
logic. Information and Computation, 157(1/2):84–141, March 2000.

LECTURE NOTES OCTOBER 12, 2006


