
15-819K: Logic Programming

Lecture 10

Polymorphism

Frank Pfenning

September 28, 2006

In this lecture we extend the system of simple types from the previous lec-
ture to encompass polymorphism. There are some technical pitfalls, and
some plausible systems do not satisfy type preservation. We discuss three
ways to restore type preservation.

10.1 Heterogeneous and Homogeneous Lists

Types such as natural numbers, be it in binary or in unary notation, are
easy to specify and use in the system from the previous lecture. Generic
data structures such as lists, on the other hand, present difficulties. Recall
the type predicate for lists:

list([]).

list([X|Xs]) :- list(Xs).

The difficulty is that for lists in general there is no restriction on X: it can
have arbitrary type. When we try to give the declarations

list : type.

[] : list.

’.’ : ?, list -> list.

we realize that there is nothing sensible we can put as the type of the first
argument of cons.1

Two solutions suggest themselves. One is to introduce a universal type
“any” and ensure that t : any for all terms t. This destroys the property of

1Recall that [X|Xs] is just alternate syntax for ’.’(X, Xs)

LECTURE NOTES SEPTEMBER 28, 2006

L10.2 Polymorphism

simple types that every well-typed term has a unique type and significantly
complicates the type system. Following this direction it seems almost in-
evitable that some types need to be carried at runtime. A second possibil-
ity is to introduce type variables and think of the type of constructors as
schematic in their free type variables.

list : type.

[] : list.

’.’ : A, list -> list.

We will pursue this idea in this lecture. Although it is also not without
problems, it is quite general and leads to a rich and expressive types sys-
tem.

Since the typing rules above are schematic, we get to choose a fresh
instance for A every time we use the cons constructor. This means the ele-
ments of a list can have arbitrarily different types (they are heterogeneous).

For certain programs it is important to know that the elements of a list
all have the same type. For example, we can sort a list of integers, but not
a list mixing integers, booleans, and other lists. This requires that list is
actually a type constructor: it takes a type as an argument and returns a
type. Specifically:

list : type -> type.

[] : list(A).

’.’ : A, list(A) -> list(A).

With these declarations only homogeneous lists will type-check: a term of
type list(A) will be a list all of whose elements are of type A.

10.2 Polymorphic Signatures

We now move to a formal specification of typing. We start with signatures,
which now have a more general form. We write α for type variables and
α for a sequences of type variables. As in the case of clauses and ordinary
variables, the official syntax quantifies over type variables in declarations.

Signature Σ ::= · empty signature
| Σ, a : type

n
→ type type constructor declaration

| Σ, f : ∀α.σ → τ function symbol declaration
| Σ, p : ∀α.σ → o predicate symbol declaration

Here, boldface “type
n

” stands for a sequence type , . . . , type of length
n. As usual, if a sequence to the left of the arrow is empty, we may omit

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.3

the arrow altogether. Similarly, we may omit the quantifier if there are no
type variables, and the argument to a type zero-ary types constructor a().
Moreover, function and predicate declarations should not contain any free
type variables.

The language of types is also more elaborate, but still does not contain
function types as first-class constructors.

Types τ ::= α | a(τ1, . . . , τn)

10.3 Polymorphic Typing for Terms

The only two rules in the system for simple types that are affected by poly-
morphism are those for function and predicate symbols. We account for
the schematic nature of function and predicate declarations by allowing a
substitution θ̂ for the type variables α that occur in the declaration. We
suppose a fixed signature Σ.

dom(θ̂) = α

f : ∀α.σ → τ ∈ Σ ∆ ` t : σθ̂

∆ ` f(t) : τ θ̂

We use the notation θ̂ to indicate a substitution of types for type variables
rather terms for term variables.

Looking ahead (or back) at the required property of type preservation,
one critical lemma is that unification produces a well-typed substitution.
Unfortunately, in the presence of polymorphic typing, this property fails!
You may want to spend a couple of minutes thinking about a possible coun-
terexample before reading on. One way to try to find one (and also a good
start on fixing the problem) is to attempt a proof and learn from its failure.

False Claim 10.1 If ∆ ` t : τ and ∆ ` s : τ and ∆ ` t
.
= s | θ then ∆ ` θ subst

and similarly for sequences of terms.

Proof attempt: We proceed by induction on the derivation D of the unifi-
cation judgment, applying inversion to the given typing judgments in each
case. We focus on the problematic one.

Case: D =

D′

∆ ` t
.
= s | θ

∆ ` f(t)
.
= f(s) | θ

.

LECTURE NOTES SEPTEMBER 28, 2006

L10.4 Polymorphism

We note that we could complete this case if we could appeal to the in-
duction hypothesis on D′, since this would yield the well-typedness
of θ. We can appeal to the induction hypothesis if we can show that t

and s have the same sequence of types. Let’s see what we can glean
from applying inversion to the giving typing derivations. First, we
note that there must be a unique type declaration for f in the signa-
ture, say

f : σ → τ ′ ∈ Σ for some σ and τ ′.

Now we write out the inversions on the given typing derivations,
using the uniqueness of the declaration for f .

∆ ` f(t) : τ Assumption

τ = τ ′θ̂1 and ∆ ` t : σθ̂1 for some θ̂1 By inversion

∆ ` f(s) : τ Assumption

τ = τ ′θ̂2 and ∆ ` s : σθ̂2 for some θ̂2 By inversion

At this point we would like to conclude

σθ̂1 = σθ̂2

because then t and s would have the same sequence of types and we
could finish this case by the induction hypothesis.

Unfortunately, this is not necessarily the case because all we know is

τ = τ ′θ̂1 = τ ′θ̂2.

From this we can only onclude that θ1 and θ2 agree on the type vari-
ables free in τ ′, but they could differ on variables that occur only in σ

but not in τ ′.

3

From this we can construct a counterexample. Consider heterogeneous
lists

nil : list

cons : ∀α.α, list→ list

Then
x:nat ` cons(x, nil) : list

x:nat ` cons(nil, nil) : list

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.5

and

x:nat ` cons(x, nil)
.
= cons(nil, nil) | (nil/x)

but the returned substitution (nil/x) is not well typed because x:nat and
nil:list.

Because unification does not return well-typed substitutions, the oper-
ational semantics in whichever form we presented does also not preserve
types. The design of the type system is flawed.

We can pursue two avenues to fix this problem: restricting the type
system or rewriting the operational semantics.

Type Restriction. In analyzing the failed proof above we can see that at
least this case would go through if we require for a declaration f : ∀α.σ →
τ that every type variable that occurs in σ also occurs in τ . Function sym-
bols of this form are called type preserving.2 When all function symbols are
type preserving, the falsely claimed property above actually does hold—
the critical case is the one we gave.

Requiring all function symbols to be type preserving rules out hetero-
geneous lists, and we need to apply techniques familiar from functional
programming to inject elements into a common type. I find this tolerable,
but many Prolog programmers would disagree.

Type Passing. We can also modify the operational semantics so that types
are passed and unified at run-time. Then we can use the types to prevent
the kind of failure of preservation that arose in the counterexample above.
Passing types violates the phase separation and therefore has some over-
head. On the other hand, it allows data structures such as heterogeneous
lists without additional coding. The language λProlog uses a type passing
approach, together with some optimizations to avoid unnecessary passing
of types. We return to this option below.

Before we can make a choice between the two, or resolve the apparent
conflict, we must consider the type preservation theorem to make sure we
understand all the issues.

2Function symbols are constructors, so this is not the same as type preservation in a
functional language. Because of this slightly unfortunate terminology this property has
also been called transparent.

LECTURE NOTES SEPTEMBER 28, 2006

L10.6 Polymorphism

10.4 Polymorphic Predicates

As it turns out, requiring all function symbols to be type preserving is insuf-
ficient to guarantee type preservation. The problem is presented by predi-
cate symbols, declared now as p : ∀α.σ → o. If we just unify ∆ ` p(t)

.
=

p(s), we run into the same problem as above because predicate symbols are
never type preserving unless they do not have any type variables at all.

Disallowing polymorphic predicates altogether would be too restric-
tive, because programs that manipulate generic data structures must be
polymorphic. For example, for homogeneous lists we have

append : list(A), list(A), list(A) -> o.

which is polymorphic in the type variable A.
Moreover, the program clauses themselves also need to be polymor-

phic. For example, in the first clause for append

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

the variable Ys should be of type list(A) for a type variable A.
Before we can solve our problem with type preservation, we must ac-

count for the presence of type variables in program clauses, which now
quantify not only over term variables, but also over type variables. The
general form is ∀α.∀x:σ. p(t) ← G where the type variables α contain all
free type variables in the clause. We will come back to the normal form
used in the free variables operational semantics below.

The meaning of universal quantification over types is specified via sub-
stitution in the focusing judgment.

Γ;D(τ/α) true ` P true

Γ;∀α.D true ` P true

This just states that an assumption that is schematic in a type variable α
can be instantiated to any type τ . Since logical deduction is ground, we
implicitly assume in the rule above that τ does not contain any free type
variables.

This forces a new typing rule for clauses, which in turn means we have
to slightly generalize contexts to permit declarations α type for type vari-
ables.

∆, α type ` A : o

∆ ` ∀α.A : o

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.7

To be complete and precise, we also need a judgment that types themselves
are well-formed (∆ ` τ type) and similarly for type substitutions (∆ `
θ̂ tsubst); they can be found in various figures at the end of these notes.

p : ∀α.σ → o ∈ Σ

dom(θ̂) = α

∆ ` θ̂ tsubst ∆ ` t : σθ̂

∆ ` p(t) : o

Now we reconsider how to solve the problem of polymorphic predi-
cates. Looking at the predicate append

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

for homogenous lists, we see that no run-time type error can actually arise.
This is because the heads of the clauses cover the most general case for
a goal. For example, Ys has type list(A) for an arbitrary type A. It can
therefore take on the type of the list in the goal. For example, with a goal

append([], [1,2,3], Zs).

with Zs : list(int), no problem arises because we instantiate the clause
to A = int and then use that instance.

On the other hand, if we added a clause

append([1], [], [1]).

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

which is certainly not logically incorrect albeit redundant, then a run-time
type error would occur if we called it with a goal such as

?- append([X], [], Zs), plus(X, s(z), s(s(z))).

where X : nat.
What is required is that each clause head for a predicate p is maximally

general or parametric with respect to the declaration of p. More precisely, we
say a clause

∀β.∀x:τ . p(t)← G with p : ∀α.σ → o ∈ Σ

is parametric if there is a type substitution θ̂ with dom(θ̂) = β with α type `
θ̂ tsubst such that

α type,x:τ θ̂ ` t : σ.

LECTURE NOTES SEPTEMBER 28, 2006

L10.8 Polymorphism

In other words, the types of the arguments t to p in the clause head must
match σ in their full generality, keeping all types α fixed.

The proof of type preservation in the presence of this restriction is tech-
nically somewhat involved3 so we will omit it here. In the next section we
will see an alternative approach for which type preservation is easy.

10.5 Polymorphic Residuation

When previously describing residuation, we actually were somewhat cav-
alier in the treatment of atomic programs (that is, clause heads).

p′(s) ` p(x) > p′(s)
.
= p(x)

Strictly speaking, the resulting equation is not well-formed because it re-
lates two atomic propositions rather than two terms. We can eliminate this
inaccuracy by introducing equality between term sequences as a new goal
proposition, writing is as t

.
= s in overloaded notation. Then we can split

the residuation above into two rules:

p(s) ` p(x) > s
.
= x

p 6= p′

p(s) ` p′(x) > ⊥

The new pair of rules removes equality between propositions. However,
the first rule now has the problem that if p is not maximally general, the
residuated equation s

.
= x may not be well-typed!

The idea now is to do some checking during residuation, so that it fails
when a clause head is not maximally general. Since residuation would
normally be done statically, as part of compilation of a logic program, we
discover programs that violate the condition at compile time, before the
program is executed. Following this idea requires passing in a context ∆.
to residuation so we can perform type-checking. The two rules above then
become

∆ ` x : σ ∆ ` s : σ

∆; p(s) ` p(x) > s
.
= x

p 6= p′

∆; p(s) ` p′(x) > ⊥

For the program fragment Dp defining p with

p : ∀α.σ → o

3As I am writing these notes, I do not have a complete and detailed proof in the present
context.

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.9

we initially invoke residuation with the most general atomic goal p(x) as in

α type,x:σ;Dp ` p(x) > Gp

leading to the residuated program clause

∀α.∀x:σ. p(x)← Gp.

Residuation is easily extended to handle universally quantified type
variables in programs: we just have to guess how to instantiate them so
that when reaching the head the arguments have the types σ.

∆ ` τ type ∆;D(τ/β) ` p(x) > G

∆;∀β.D ` p(x) > G

Note that this residuation never generates any residual existential quantifi-
cation over types. This means that the operational semantics should not
allow any free type variables at run-time. This makes sense from a prac-
tical perspective: even though programs are generic in the types of data
they can manipulate, when we execute programs they operate on concrete
data. Moreoever, since we do not actually carry the types around, their role
would be quite unclear. Nevertheless, an extension to residuate types that
cannot be guessed at compile-time is possible (see Exercise 10.1).

The operational semantics refers to the residuated program. Since it
contains no equations involving predicates, and we assume all function
symbols are type preserving, type preservation is now a relatively straight-
forward property. The rule for predicate invocation looks as follows:

(p : ∀α.σ → o)
(∆ ` t : σ(τ/α))
∀α.∀x:σ. p(x)← Gp ∆ ` Gp(τ/α)(t/x) / S / F

∆ ` p(t) / S / F

In this rule, formally, we determine a type substitution τ/α, but this is
only a technical device in order to make it easier to state and prove the
type preservation theorem. We have indicated this by parenthesizing the
extraneous premisses. During the actual operation of the abstract machine,
quantifiers are not annotated with types, and type substitutions are neither
computed nor applied.

Now type preservation follows in a pretty straightforward way. A crit-
ical lemma is parametricity over types4: if α type,∆ ` t : σ then ∆(τ/α) `

4This notion is related to, but not the same as the semantic notion of parametricity in
functional programming.

LECTURE NOTES SEPTEMBER 28, 2006

L10.10 Polymorphism

t : σ(τ/α) and similarly for proposition. Essentially, if we keep a type vari-
able fixed in a typing derivation, we can substitute an arbitrary type for
the variable and still get a proper derivation. This can be proven easily by
induction over the structure of the given typing derivation.

We also have that if ∆ ` D : o and ∆ ` p(x) : o for a program propo-
sition D and ∆;D ` p(x) > G then ∆ ` G : o. Of course, this theorem is
possible precisely because we check types in the case where D is atomic.

For reference, we recap some of the judgments and languages. We have
simplified equalities by using only equality of term sequences, taking the
case of single terms as a special case. Recall that G ⊃ D and D ← G are
synonyms.

Signatures Σ ::= · | Σ, a : type
n
→ type | Σ, f : ∀α.σ → τ

| Σ, p : ∀α.σ → o
Contexts ∆ ::= · | ∆, α type | ∆, x:τ
Types τ ::= a(τ) | α
Programs Γ ::= · | Γ,∀α.∀x:σ. p(x)← Gp

Clauses D ::= p(t) | D1 ∧D1 | > | G ⊃ D | ∀x:τ.D | ∀α.D
Goals G ::= p(t) | G1 ∧G2 | > | G1 ∨G2 | ⊥ | t

.
= s | ∃x:τ.G

Goal Stacks S ::= > | G ∧ S
Failure Conts F ::= ⊥ | (G ∧ S) ∨ F

Rules defining typing and well-formedness judgments on these expres-
sions are given at the end of these notes. Programs are in normal form
so that they can be used easily in a backtracking free-variable semantics.

Now we can state and prove the type preservation theorem in its poly-
morphic form.

Theorem 10.2 Assume a well-formed signature Σ, program Γ, and context ∆.
Further assume that all function symbols are type preserving. If ∆ ` G / S /
F state and (∆ ` G / S / F) ⇒ (∆′ ` G′ / S′ / F ′) then ∆′ ` G′ / S′ /
F ′ state .

Proof: By distinguishing cases on the transition relation, applying inver-
sion on the given derivations. In some cases, previously stated lemmas
such as the soundness of unification and preservation of types under well-
formed substitutions are required. 2

10.6 Parametric and Ad Hoc Polymorphism

The restrictions on function symbols (type preserving) and predicate defi-
nitions (parametricity) imply that no types are necessary during the execu-

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.11

tion of well-typed programs.

The condition that clause heads must be maximally general implies that
the programs behave parametrically in their type. The append predicate,
for example, behaves identically for lists of all types. This is also a char-
acteristic of parametric polymorphism in functional programming, so we
find the two conditions neatly relate the two paradigms.

On the other hand, the parametricity restriction can be somewhat un-
pleasant on occasion. For example, we may want a generic predicate print
that dispatches to different, more specialized predicates, based on the type
of the argument. This kind of predicate is not parametric and in its full gen-
erality would require a type passing interpretation. This is a form of ad hoc
polymorphism which is central in object-oriented languages.

We only very briefly sketch how existential types might be introduced to
permit a combination of parametric polymorphism with ad hoc polymor-
phism, the latter implemented with type passing.

For each function symbol, we shift the universal quantifiers that do not
appear in the result type into an existential quantifier over the arguments.
That is,

f : ∀α.σ → τ

is transformed into

f : ∀α1. (∃α2.σ)→ τ

where α = α1,α2 and α1 = FV (τ). By the latter condition, the declaration
can now be considered type preserving.

To make this work with the operational semantics we apply f not just
to terms, but also to the types corresponding to α2. For example, heteroge-
neous lists

list : type.

nil : list.

cons : A, list -> list.

are interpreted as

list type

nil : list

cons : (∃α.α, list)→ list

A source level term

cons(1, cons(z, nil))

LECTURE NOTES SEPTEMBER 28, 2006

L10.12 Polymorphism

would be represented as

cons(int; 1, cons(nat; z, nil))

where we use a semi-colon to separate type arguments from term argu-
ments. During unification, the type argument as well as the term argu-
ments must be unified to guarantee soundness.

For predicates, type parameters that are not treated parametrically must
be represented as existential quantifiers over the arguments, the parametric
ones remain universal. For example,

append([1], [], [1]).

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

for homogeneous lists is ad hoc polymorphic because of the first clause and
should be given type

append : (∃α. list(α), list(α), list(α))→ o

At least internally, but perhaps even externally, append now has one type
argument and three term arguments.

append(int; [1], [], [1]).

append(A; [], Ys, Ys).

append(A; [X|Xs], Ys, [X|Zs]) :- append(A; Xs, Ys, Zs).

Unification of the type arguments (either implicitly or explicitly) prevents
violation of type preservation, as can be seen from the earlier counterexam-
ple

?- append(nat; [X], [], Zs), plus(X, s(z), s(s(z))).

which no fails to match the first clause of append.

The extension of polymorphic typing by using type-passing existential
quantifiers is designed to have the nice property that if the program is para-
metric and function symbols are type-preserving, then no types are passed
at runtime. However, if function symbols or predicates are needed which
violate these restrictions, they can be added with some feasible and local
overhead.5

5At the point of this writing this is speculation—I have not seen, formally investigated,
or implemented such a system.

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.13

10.7 Historical Notes

The first proposal for parametrically polymorphic typing in Prolog was
made by Mycroft and O’Keefe [3] and was strongly influenced by the func-
tional language ML. Hanus later refined and extended this proposal [1].
Among other things, Hanus considers a type passing interpretation for
ad hoc polymorphic programs and typed unification. The modern dialect
λProlog [2] incorporates polymorphic types and its Teyjus implementation
contains several sophisticated optimizations to handle run-time types effi-
ciently [4].

10.8 Exercises

Exercise 10.1 Define an extension of residuation in the presence of polymorphism
that allows free type variable in the body of a clause.

Exercise 10.2 Write out the rules for typing, unification, operational semantics,
and sketch type preservation for a type-passing interpretation of existential types
as outlined in this lecture.

Exercise 10.3 Write a type-checker for polymorphic Prolog programs, following
the starter code and instructions available on the course website.

10.9 References

[1] Michael Hanus. Horn clause programs with polymorphic types: Se-
mantics and resolution. Theoretical Computer Science, 89:63–106, 1991.

[2] Dale Miller and Gopalan Nadathur. Higher-order logic programming.
In Ehud Shapiro, editor, Proceedings of the Third International Logic Pro-
gramming Conference, pages 448–462, London, June 1986.

[3] Alan Mycroft and Richard A. O’Keefe. A polymorphic type system for
Prolog. Artificial Intelligence, 23(3):295–307, July 1984.

[4] Gopalan Nadathur and Xiaochu Qi. Optimizing the runtime pro-
cessing of types in a higher-order logic programming language. In
G. Suffcliff and A. Voronkov, editors, Proceedings of the 12th International
Conference on Logic for Programming, Artificial Intelligence, and Reason-
ing (LPAR’05), pages 110–125, Montego Bay, Jamaica, December 2005.
Springer LNAI 3835.

LECTURE NOTES SEPTEMBER 28, 2006

L10.14 Polymorphism

10.10 Appendix: Judgment Definitions

We collect the rules for various judgments here for reference. General as-
sumptions apply without being explicitly restated, such as the uniqueness
of declarations in signatures, contexts, and substitutions, or tacit renaming
of bound variables (both at the type and the term level). Also, many judg-
ment implicitly carry a signature or program which never changes, so we
elide them from the rules. If necessary, they are shown explicitly on the left
of the judgment, separated by a semi-colon from other hypotheses.

∆ ` x : σ ∆ ` s : σ

∆; p(s) ` p(x) > s
.
= x

p 6= p′

∆; p(s) ` p′(x) > ⊥

∆;D1 ` p(x) > G1 ∆;D2 ` p(x) > G2

∆;D1 ∧D2 ` p(x) > G1 ∨G2

∆;> ` p(x) > ⊥

∆;D ` p(x) > G1

∆;G ⊃ D ` p(x) > G1 ∧G

∆, y:τ ;D ` p(x) > G

∆;∀y:τ.D ` p(x) > ∃y:τ.G

∆ ` τ type ∆;D(τ/β) ` p(x) > G

∆;∀β.D ` p(x) > G

Figure 1: Residuation Judgment Σ;∆;D ` p(x) > G

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.15

∆ ` G1 / G2 ∧ S / F

∆ ` G1 ∧G2 / S / F

∆ ` G2 ∧ S / F

∆ ` > / G2 ∧ S / F ∆ ` > / > / F

∆ ` G1 / S / (G2 ∧ S) ∨ F

∆ ` G1 ∨G2 / S / F

∆ ` G2 / S′ / F

∆ ` ⊥ / S / (G2 ∧ S′) ∨ F

fails (no rule)

∆ ` ⊥ / S / ⊥

∆ ` t
.
= s | θ ∆ ` > / Sθ / F

∆ ` t
.
= s / S / F

there is no θ with
∆ ` t

.
= s | θ ∆ ` ⊥ / S / F

∆ ` t
.
= s / S / F

∆, x:τ ` G / S / F x /∈ dom(∆)

∆ ` ∃x:τ.G / S / F

(p : ∀α.σ → o)
(∆ ` t : σ(τ/α))
∀α.∀x:σ. p(x)← Gp ∈ Γ ∆ ` Gp(τ/α)(t/x) / S / F

∆ ` p(t) / S / F

Figure 2: Operational Semantics Judgment Σ;Γ;∆ ` G / S / F

LECTURE NOTES SEPTEMBER 28, 2006

L10.16 Polymorphism

Propositions Σ;∆ ` A : o

∆ ` A : o ∆ ` B : o

∆ ` A ∧B : o ∆ ` > : o

∆ ` A : o ∆ ` B : o

∆ ` A ∨B : o ∆ ` ⊥ : o

∆ ` A : o ∆ ` B : o

∆ ` A ⊃ B : o

∆ ` t : τ ∆ ` s : τ

∆ ` t
.
= s : o

Terms Σ;∆ ` t : τ, Σ;∆ ` t : τ

p : ∀α.σ → o ∈ Σ

dom(θ̂) = α

∆ ` θ̂ tsubst ∆ ` t : σθ̂

∆ ` p(t) : o

∆, x:τ ` A : o

∆ ` ∀x:τ.A : o

∆, x:τ ` A : o

∆ ` ∃x:τ.A : o

∆, α type ` A : o

∆ ` ∀α.A : o

f : ∀α.σ → τ ∈ Σ

dom(θ̂) = α

∆ ` θ̂ tsubst ∆ ` t : σθ̂

∆ ` f(t) : τ θ̂

x:τ ∈ ∆

∆ ` x : τ

∆ ` t : τ ∆ ` t : τ

∆ ` (t, t) : (τ, τ) ∆ ` (·) : (·)

Substitutions Σ;∆ ` θ subst

∆ ` (·) subst

∆ ` θ subst x:τ ∈ ∆ ∆ ` t : τ

∆ ` (θ, t/x) subst

Figure 3: Typing Judgments

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.17

Types Σ;∆ ` τ type , Σ;∆ ` τ type
n

a : type
n
→ type ∈ Σ ∆ ` τ type

n

∆ ` a(τ) type

α type ∈ ∆

∆ ` α type

∆ ` (·) type0

∆ ` τ type ∆ ` τ type
n

∆ ` (τ, τ) typen+1

Type Substitutions Σ;∆ ` θ̂ tsubst

∆ ` (·) tsubst

∆ ` θ̂ tsubst ∆ ` τ type

∆ ` (θ̂, τ/α) tsubst

Signatures Σ sig

(·) sig

Σ sig

(Σ, a : type
n
→ type) sig

Σ sig Σ;α type ` σ type Σ;α type ` τ type

(Σ, f : ∀α.σ → τ) sig

Σ sig Σ;α type ` σ type

(Σ, p : ∀α.σ → o) sig

Contexts Σ;∆ ctx

(·) ctx

∆ ctx

(∆, α type) ctx

∆ ctx ∆ ` τ type

(∆, x:τ) ctx

Programs Σ;Γ prog

(·) prog

Γ prog (p : ∀α.σ → o) ∈ Σ · ` ∀α.∀x:σ. p(x)← Gp : o

(Γ,∀α.∀x:σ. p(x)← Gp) prog

States Σ;Γ;∆ ` G / S / F state

Σ sig Γ prog ∆ ctx ∆ ` G : o ∆ ` S : o ∆ ` F : o

Σ;Γ;∆ ` G / S / F state

Figure 4: Well-Formedness Judgments

LECTURE NOTES SEPTEMBER 28, 2006

