
15-819K: Logic Programming

Lecture 9

Types

Frank Pfenning

September 26, 2006

In this lecture we introduce types into logic programming, primarily to
distinguish meaningful from meaningless terms and propositions, thereby
capturing errors early during program development.

9.1 Views on Types

Types are a multi-faceted concept, and also subject of much debate. We
will discuss some of the views that have been advanced regarding the role
of types in logic programming, and then focus on the one we find most
useful and interesting.

Descriptive Types. In logic programming terminology, a type system is
called descriptive if it captures some aspect of program behavior, where pro-
gram behavior is defined entirely without reference to types. A common
example is to think of a type as an approximation to the success set of the
program, that is, the set of terms on which it holds. Reconsider addition on
unary numbers:

plus(z, N, N).

plus(s(M), N, s(P)) :- plus(M, N, P).

We can see that if plus(t1, t2, t3) is true according to this definition, then
t1 must be a natural number, that is, nat(t1) according to the definition

nat(z).

nat(s(N)) :- nat(N).

LECTURE NOTES SEPTEMBER 26, 2006

L9.2 Types

On the other hand, nothing interesting can be said about the other two
arguments, because the first clause as written permits non-sensical propo-
sitions such as plus(z, [], []) to be true.

The nature of descriptive types means that usually they are used to opti-
mize program behavior rather than as an aid to the programmer for writing
correct code.

Prescriptive Types. A type system is called prescriptive if it is an integral
part of the meaning of programs. In the example above, if we prescribe
that plus is a relation between three terms of type nat, then we suddenly
differentiate well-typed expressions (such as plus(z, s(z), P) when P is
a variable of type nat) from expressions that are not well-typed and there-
fore meaningless (such as plus(z, [], []). Among the well-typed ex-
pressions we then further distinguish those propositions which are true
and those which are false.

Prescriptive types, in a well-designed type system, are immediately
useful to the programmer since many accidental mistakes in the program
will be captured rather then leading to either failure or success, which may
be very difficult to debug. In some ways, the situation in pure Prolog is
worse than in other dynamically typed languages such as Lisp, because in
the latter language you will often get a run-time error for incorrect pro-
grams, while in pure Prolog everything is either true or false. This is some-
what overstates the case, since many built-in predicates have dynamically
enforced type restrictions. Nevertheless programming with no static and
few dynamic errors becomes more and more difficult as programs grow
larger. I recognize that it may be somewhat difficult to fully appreciate the
point if you write only small programs as you do in this class (at least so
far).

Within the prescriptive type approach, we can make further distinction
as to the way types are checked or expressed.

Monadic Propositions as Types. In this approach types are represented
as monadic predicates, such as nat above. This approach is prevalent in
the early logic programming literature, and it is also the prevalent view
classical logic. The standard answer to the question why the traditional
predicate calculus (also known as classical first-order logic) is untyped is
that types can be eliminated in favor of monadic predicates. For example,
we can translate ∀x:nat. A into ∀x. nat(x) ⊃ A, where x now ranges over
arbitrary terms. Similarly, ∃x:nat. A becomes ∃x. nat(x) ∧A.

LECTURE NOTES SEPTEMBER 26, 2006

Types L9.3

In a later lecture we will see that this view is somewhat difficult to sus-
tain in the presence of higher-order predicates, that is, predicates that take
other predicates as arguments. The corresponding higher-order logic, also
known as Church classical theory of types, therefore has a different con-
cept of type called simple. Fortunately, the two ideas are compatible, and it
is possible to refine the simple type system using the ideas behind monadic
propositions, but we have to postpone this idea to a future lecture.

Simple Types. In this approach types are explicitly declared as new en-
tities, separately from monadic propositions. Constructors for types in the
form of constants and function symbols are also separately declared. Often,
types are disjoint so that a given term has a unique type. In the example
above, we might declare

nat : type.

z : nat.

s : nat -> nat.

plus : nat, nat, nat -> o.

where o is a distinguished type of propositions. The first line declares nat
to be a new type, the second and third declare z and s as constructors for
terms of type nat, and the last line declares plus as a predicate relating
three natural numbers.

With these declarations, an expression such as plus(z, [], []) can be
readily seen as ill-typed, since the second and third argument are presum-
ably of type list and not nat. Moreover, in a clause plus(z, N, N) it is
clear that N is a variable ranging only over terms of type nat.

In this lecture we develop a system of simple types. One of the difficulty
we encounter is that generic data structures, including even simple lists, are
difficult to deal with unless we have a type of all terms, or permit variables
types. For example, while lists of natural numbers are easy

natlist : type.

[] : natlist.

[_|_] : nat, natlist -> natlist.

there is no easy way to declare lists with elements of unknown or arbitrary
type. We will address this shortcoming in the next lecture.

LECTURE NOTES SEPTEMBER 26, 2006

L9.4 Types

9.2 Signatures

Simple types rely on explicit declarations of new types, and of new con-
structors together with their type. The collection of such declarations is
called a signature. We assume a special type constant o (omicron) that
stands for the type of propositions. We use the letters τ and σ for newly
declared types. These types will always be atomic and not include o.1

Signature Σ ::= · empty signature
| Σ, τ : type type declaration
| Σ, f : τ1, . . . , τn → τ function symbol declaration
| Σ, p : τ1, . . . , τn → o predicate symbol declaration

As usual, we will abbreviate sequences of types by writing them in bold-
face, τ or σ. Also, when a sequence of types is empty we may abbreviate
c : · → τ by simply writing c : τ and similarly for predicates. All types,
functions, and predicates declared in a signature must be distinct so that
lookup of a symbol is always unique.

Despite the suggestive notation, you should keep in mind that “→” is
not a first class constructor of types, so that, for example, τ → τ is not a
type for now. The only true types we have are atomic type symbols. This
is similar to the way we developed logic programming: the only proposi-
tions we had were atomic, and the logical connectives only came in later to
describe the search behavior of logic programs.

9.3 Typing Propositions and Terms

There are three basic judgments for typing: one for propositions, one for
terms, and one for sequences of terms. All three require a context ∆ in
which the types of the free variables in a proposition or term are recorded.

Typing Context ∆ ::= · | ∆, x:τ

We assume all variables in a context are distinct so that the type assigned
to a variable is unique. We write dom(∆) for the set of variables declared
in a context.

A context ∆ represents assumptions on the types of variables and is
therefore written on the left side of a turnstile symbol ‘`’, as we did with

1Allowing τ to be o would make the logic higher order, which we would like to avoid
for now.

LECTURE NOTES SEPTEMBER 26, 2006

Types L9.5

logic programs before.

Σ;∆ ` A : o A is a valid proposition
Σ;∆ ` t : τ term t has type τ
Σ;∆ ` t : τ sequence t has type sequence τ

Because the signature Σ never changes while type-checking, we omit it
from the judgments below and just assume that there is a fixed signature Σ
in the background theory.

The rules for propositions are straightforward. As is often the case,
these rules, read bottom-up, have an interpretation as an algorithm for
type-checking.

∆ ` A : o ∆ ` B : o

∆ ` A ∧B : o ∆ ` > : o

∆ ` A : o ∆ ` B : o

∆ ` A ∨B : o ∆ ` ⊥ : o

∆ ` A : o ∆ ` B : o

∆ ` A ⊃ B : o

p : τ → o ∈ Σ ∆ ` t : τ

∆ ` p(t) : o

For equality, we demand that the terms we compare have the same type τ ,
whatever that may be. So rather than saying that, for example, zero is not
equal to the empty list, we consider such a question meaningless.

∆ ` t : τ ∆ ` s : τ

∆ ` t
.
= s : o

In the rules for quantifiers, we have to recall the convention that bound
variables can be renamed silently. This is necessary to ensure that the vari-
able declarations we add to the context do not conflict with existing decla-
rations.

∆, x:τ ` A : o x /∈ dom(∆)

∆ ` ∀x:τ.A : o

∆, x:τ ` A : o x /∈ dom(∆)

∆ ` ∃x:τ.A : o

While we have given the condition x /∈ dom(∆) in these two rules, in prac-
tice they are often omitted by convention.

LECTURE NOTES SEPTEMBER 26, 2006

L9.6 Types

Next we come to typing terms and sequences of terms.

f : τ → σ ∈ Σ ∆ ` t : τ

∆ ` f(t) : σ

x:τ ∈ ∆

∆ ` x : τ

∆ ` t : τ ∆ ` t : τ

∆ ` (t, t) : (τ, τ) ∆ ` (·) : (·)

This system does not model the overloading for predicate and function
symbols at different arities that is permitted in Prolog. In this simple first-
order language this is relatively easy to support, but left as Exercise 9.2.

9.4 Typing Substitutions

In order to integrate types fully into our logic programming language, we
need to type all the artifacts of the operational semantics. Fortunately, the
success and failure continuations are propositions for which typing is al-
ready defined, and the same is true for programs. This leaves substitutions,
as calculated by unification.

For a substitution, we just demand that if we substitute t for x and x has
type τ , the t also must have type τ . We write the judgment as ∆ ` θ subst ,
expressing that θ is a well-typed substitution.

x:τ ∈ ∆ ∆ ` t : τ

∆ ` (θ, t/x) subst ∆ ` (·) subst

Our prior conventions that all the variables defined by a substitution are
distinct, and that the domain and codomain of a substitution are disjoint
also still apply. Because we would like to separate typing from other con-
siderations, they are not folded into the rules above which could easily be
done.

9.5 Types and Truth

Now that we have extended our language to include types, we need to
consider how this affects the various judgment we have. The most basic
one is truth. Since this is defined for ground expression (that is, expression
without free variables), we do not need to generalize this to carry a context
∆, although it will have to carry a signature Σ. We leave this implicit as in
the presentation of the typing judgments.

LECTURE NOTES SEPTEMBER 26, 2006

Types L9.7

We presuppose that any proposition we write is a well-typed proposi-
tion, that is, has type o. In other words, if we write A true we implicitly
assume that · ` A : o. We have to be careful that our rules maintain this
property, and in which direction the rule is read. For example, when the
rule

Γ ` A true

Γ ` A ∨B true
∨I

is read from the premiss to the conclusion, then we would need a second
premiss to check that B : o.

However, we prefer to read it as “Assuming A ∨ B is a valid proposition,
A ∨B is true if A is true.” In this reading, the condition on B is implicit.

Since the bottom-up reading of rules is pervasive in logic programming,
we will adopt the same here. Then, only the rules for quantifiers require an
additional typing premiss. Recall that Γ represents a fixed program.

· ` t : τ Γ ` A(t/x) true

Γ ` ∃x:τ.A true
∃I

· ` t : τ Γ;A(t/x) true ` P true

Γ;∀x:τ.A ` P true
∀L

This assumes that if we substitute a term of type τ for a variable of type τ ,
the result will remain well-typed. Fortunately, this property holds and is
easy to prove.

Theorem 9.1 Assume ∆ ` θ subst .

1. If ∆ ` t : τ then ∆ ` tθ : τ .

2. If ∆ ` t : τ then ∆ ` tθ : τ .

3. If ∆ ` A : o then ∆ ` Aθ : o.

Proof: By mututal induction on the structure of the given typing deriva-
tions for t, t, and A. 2

9.6 Type Preservation

A critical property tying together a type system with the operational se-
mantics for a programming language is type preservation. It expresses that
if we start in a well-typed state, during the execution of a program all in-
termediate states will be well-typed. This is an absolutely fundamental
property without which a type system does not make much sense. Either
the type system or the operational semantics needs to be revised in such a
case so that they match at least to this extent.

LECTURE NOTES SEPTEMBER 26, 2006

L9.8 Types

∆ ` G1 / G2 ∧ S / F

∆ ` G1 ∧G2 / S / F

∆ ` G2 ∧ S / F

∆ ` > / G2 ∧ S / F ∆ ` > / > / F

∆ ` G1 / S / (G2 ∧ S) ∨ F

∆ ` G1 ∨G2 / S / F

∆ ` G2 / S′ / F

∆ ` ⊥ / S / (G2 ∧ S′) ∨ F

fails (no rule)

∆ ` ⊥ / S / ⊥

∆ ` t
.
= s | θ ∆ ` > / Sθ / F

∆ ` t
.
= s / S / F

there is no θ with
∆ ` t

.
= s | θ ∆ ` ⊥ / S / F

∆ ` t
.
= s / S / F

∆, x:τ ` G / S / F x /∈ dom(∆)

∆ ` ∃x:τ.G / S / F

(∀x. p(x)← G) ∈ Γ ∆ ` G(t/x) / S / F

∆ ` p(t) / S / F

Figure 1: Operational Semantics Judgment

It is worth stepping back to make explicit in which way the inference
rules for our last judgment (with goal stack, failure continuation, and free
variables) constitute a transition system for an abstract machine. We will
add a context ∆ to the judgment we had so far in order to account for the
types of the free variables. For, in the form of inference rules from last
lecture. We assume the clauses for each predicate p are in a normal form
∀x. p(x) ← B′, all collected in a fixed program Γ, and that a signature Σ is
also fixed.

Each rule with one premise can be seen as a state transition rule. For
example, the very first rule becomes

(∆ ` A ∧B / S / F)⇒ (∆ ` A / B ∧ S / F).

We do not write down the others, which can be obtained by simple two-
dimensional rearrangement.

The state ∆ ` > / > / F is a final state (success) since the corresponding
rule has no premiss, as is the state ∆ ` ⊥ / S / ⊥ (failure) since there is no
corresponding rule.

The rules for equality have two premisses and make up two conditional

LECTURE NOTES SEPTEMBER 26, 2006

Types L9.9

transition rules.

(∆ ` t
.
= s / S / F) ⇒ (∆ ` > / Sθ / F) provided ∆ ` t

.
= s | θ

(∆ ` t
.
= s / S / F) ⇒ (∆ ` ⊥ / Sθ / F) provided there is no θ with

∆ ` t
.
= s | θ

In order to state type preservation, we need a judgment of typing for a
state of the abstract machine, ∆ ` G / S / F state . It is defined by a single
rule.

∆ ` G : o ∆ ` S : o ∆ ` F : o

∆ ` G / S / F state

In addition, we assume that G, S, and F have the shape of a goal, goal
stack, and failure continuation, respectively, following this grammar:

Goals G ::= G1 ∧G2 | > | G1 ∨G2 | ⊥ | t
.
= s | ∃x:τ.G | p(t)

Goal Stacks S ::= > | G ∧ S
Failure Conts F ::= ⊥ | (G ∧ S) ∨ F

The preservation theorem now shows that if state s is valid and s⇒ s′,
then s′ is valid. To prove this we first need a lemma about unification.

Theorem 9.2 If ∆ ` t : τ and ∆ ` s : τ and ∆ ` s
.
= t | θ then ∆ ` θ subst .

Similarly, if ∆ ` t : τ and ∆ ` s : τ and ∆ ` s
.
= t | θ then ∆ ` θ subst .

Proof: By mutual induction on the structures of D of ∆ ` s
.
= t | θ and D′

of ∆ ` s
.
= t | θ, applying inversion to the derivations of ∆ ` t : τ and

∆ ` s : τ as needed. 2

Now we can state (and prove) preservation.

Theorem 9.3 If ∆ ` G / S / F state and (∆ ` G / S / F)⇒ (∆′ ` G′ / S′ /
F ′) then ∆′ ` G′ / S′ / F ′

state .

Proof: First we apply inversion to conclude that G, S, and F are all well-
typed propositions. Then we distinguish cases on the transition rules, ap-
plying inversion to the typing derivations for G, S, and F as needed to
reassemble the derivations that G′, S′, and F ′ are also well-typed.

In the case for unification we appeal to the preceding lemma, and the
lemma that applying well-typed substitutions preserves typing.

In the case for existential quantification, we need an easy lemma that
we can always add a new typing assumption to a given typing derivation.
2

LECTURE NOTES SEPTEMBER 26, 2006

L9.10 Types

9.7 The Phase Distinction

While the operational semantics (including unification) preserves types, it
does not refer to them during execution. In that sense, the types appearing
with quantifiers or the context ∆ are not necessary to execute programs.
This means that our type system obeys a so-called phase distinction: we can
type-check our programs, but then execute programs without further ref-
erence to types. This is a desirable property since it tells us that there is no
computational overhead to types at all. On the contrary: types could help
a compiler to optimize the program because it does not have to account
for the possibility of ill-typed expressions. Types also help us to sort out
ill-formed expressions, but they do not change the meaning or operational
behavior of the well-formed ones. Generally, as type systems become more
expressive, this property is harder to maintain as we will see in the next
lecture.

9.8 Historical Notes

Type systems have a long and rich history, having been developed origi-
nally to rule out problems such as Russell’s paradox [3] in the formulation
of expressive logics for the formalization of mathematics. Church’s theory
of types [1] provided a great simplification and is also known as classical
higher-order logic. It uses a type o (omicron) of propositions, a single type
ι (iota) for individuals, and closes types under function spaces.

In logic programming, the use of types was slow to arrive since the
predicate calculus (its logical origin) does not usually employ them. Var-
ious articles on notion of types in logic programming are available in an
edited collection [2].

9.9 Exercises

Exercise 9.1 The notion of type throws a small wrinkle on the soundness and
non-deterministic completeness of an operational semantics with free variables.
The new issue is the presence of possibly empty types, either because there are no
constructors, or the constructors are such that no ground terms can be formed.
Discuss the issues.

Exercise 9.2 Write out an extension of the system of simple types given here
which permits Prolog-like overloading of function and predicate symbols at dif-
ferent arity. Your extension should continue to satisfy the preservation theorem.

LECTURE NOTES SEPTEMBER 26, 2006

Types L9.11

Exercise 9.3 Write a Prolog program for type checking propositions and terms.
Extend your program to type inference where the types on quantifiers are not ex-
plicit, generating an explicitly typed proposition (if it is indeed well-typed).

Exercise 9.4 Rewrite the operational rules so that unification is explicitly part of
the transitions for the abstract machine, rather than a condition.

Exercise 9.5 Show the cases for unification, existential quantification, and atomic
goals in the proof of the type preservation theorem in detail.

Exercise 9.6 Besides type preservation, another important property for a lan-
guage is progress: any well-formed state of an abstract machine is either an ex-
plicitly characterized final state, or can make a further transition.

In our language, this holds with or without types, if we declare states > / > /
F (for any F) and ⊥ / S / ⊥ (for any S) final, and assume that G, S, and F
satisfy the grammar for goals, goal stacks and failure continuations shown in this
lecture.

Prove the progress theorem.

9.10 References

[1] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[2] Frank Pfenning, editor. Types in Logic Programming. MIT Press, Cam-
bridge, Massachusetts, 1992.

[3] Bertrand Russell. Letter to Frege. In J. van Heijenoort, editor, From
Frege to Gödel, pages 124–125. Harvard University Press, 1967. Letter
written in 1902.

LECTURE NOTES SEPTEMBER 26, 2006

