6.5 Termination 133

6.5 Termination

As the example at the end of the previous section shows, unrestricted recursive
types destroy the normalization property. This also means it is impossible to
give all recursive types a logical interpretation. When we examine the inference
rules we notice that recursive types are impredicative: the binder po in pa. A
ranges over the whole type. This means in the introduction rule, the type
in the premiss [pa. A/a]A generally will be larger than the type pa. A in
the conclusion. That alone is not responsible for non-termination: there are
other type disciplines such as the polymorphic A-calculus which retain a logical
interpretation and termination, yet are impredicative.

In this section we focus on the property that all well-typed terms in the
linear A-calculus without recursive types and fixpoint operators evaluate to a
value. This is related to the normalization theorem for natural deductions
(Theorem 3.10): if I'; A - A then I'; A = A T. We proved this by a rather
circuitous route: unrestricted natural deductions can be translated to sequent
derivations with cut from which we can eliminate cut and translate the result
cut-free derivation back to a noraml natural deduction.

Here, we prove directly that every term evaluates using the proof technique
of logical relations [Sta85] also called Tait’s method [Tai67]. Because of the
importance of this technique, we spend some time motivating its form. Our
ultimate goal is to prove:

If5-= M : A then M — V for some value V.

The first natural attempt would be to prove this by induction on the typing
derivation. Surprisingly, case for —oI works, even though we cannot apply the
inductive hypothesis, since every linear \-abstraction immediately evaluates to
itself.

In the case for — E, however, we find that we cannot complete the proof.
Let us examine why.

Dl DQ
';'l_MltAQ—OAl -;-l—MQ:AQ
Case: D = - — E.
i = Ml M2 : A1
We can make the following inferences.

M; — Vi for some V; By ind. hyp. on D,
Vi = Az:As. M By type preservation and inversion
My — V5 for some V5 By ind. hyp. on D,

At this point we cannot proceed: we need a derivation of
[Va/z]M| — V for some V

to complete the derivation of MlAMg — V. Unfortunately, the induction hy-
pothesis does not tell us anything about [V2/x]M]. Basically, we need to extend
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134 Linear A-Calculus

it so it makes a statement about the result of evaluation (Az:As. M{, in this
case).

Sticking to the case of linear application for the moment, we call a term M
“good” if it evaluates to a “good” value V. A value V' is “good” if it is a function
Ay, M and if substituting a “good” value V5 for x in M/ results in a “good”
term. Note that this is not a proper definition, since to see if V' is “good” we
may need to substitute any “good” value V4 into it, possibly including V' itself.
We can make this definition inductive if we observe that the value V5 will be
of type Az, while the value V' we are testing has type As — A;, and that the
resulting term as type A;. That is, we can fashion a definition which is inductive
on the structure of the type. Instead of saying “good” we say M € ||A| and
v € |A]. Still restricting ourselves to linear implication only, we define:

Me Al if M—VandV € |A|
M e |A2—OA1| iff M= )\JIZAQ. M and [‘/2/.11]M1 S HAlH for any Vs € |A2|

From M € ||A|| we can immediately infer M < V for some V', so when proving
that ;- = M : A implies M € || A|| we do indeed have a much stronger induction
hypothesis.

While the case for application now goes through, the case for linear A-
abstraction fails, since we cannot prove the stronger property for the value.

D,
saxiAg b My Aq
Case: D = - — L.
i " )\JIIAQ. Ml : A2 —OA1

Then \z:As. My, < A\z:As. M; and it remains to show that for every
Va € [Az|, [Va/a] M2 € ||Ad]].

This last statement should follow from the induction hypothesis, but presently
it is too weak since it only allows for closed terms. The generalization which
suggests itself from this case (ignoring the unrestricted context for now) is:

If A+ M : A, then for any substitution § which maps the linear
variables z:A in A to values V' € |A|, [0]M € || 4]

This generalization indeed works after we also account for the unrestricted con-
text. During evaluation we substitute values for linear variables and expressions
for unrestricted variables. Therefore, the substitutions we must consider for the
induction hypothesis have to behave accordingly.

Unrestricted Substitution n
Linear Substitution 6

-1 6,V/x
We write [n; §]M for the simultaneous application of the substitutions 7 and

0 to M. For our purposes here, the values and terms in the substitutions are
always closed, but we do not need to postulate this explicitly. Instead, we only
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6.5 Termination 135

deal with substitution satisfying the property necessary for the generalization
of the induction hypothesis.

0 c|A|l iff [flx € |A| for every z:A in A
ne |l iff [n]ue | Al for every u:A in T

We need just one more lemma, namely that values evaluate to themselves.
Lemma 6.10 (Value Evaluation) For any value v, v < v
Proof: See Exercise 6.18. |

Now we have all ingredients to state the main lemma in the proof of termi-
nation, the so called logical relations lemma [Sta85]. The “logical relations” are
|A]] and |A|, seen as unary relations, that is, predicates, on terms and values,
respectively. They are “logical” since they are defined by induction on the struc-
ture of the type A, which corresponds to a proposition under the Curry-Howard
isomorphism.

Lemma 6.11 (Logical Relations) If ;A - M : A, n € ||T']| and 0 € |A|
then [n; 6] M € || A]|.

Before showing the proof, we extend the definition of the logical relations to
all the types we have been considering.

Me||A| iff M—VandV € |4
Ve |Ay—Ay| iff V= Az:dy. My and [Va/z]M; € || Ay || for any Vi € |Ag]
VelA1® Ay iff V =V1® Vs where Vi € |A1] and V5 € |Ag|
Velll iff V=x
Ve |A1&A2| iff V= <M1,M2> where M, € HAlH and M, € HAQH
VelT| if V=)
V € |A1&Ay| iff either V =inl*2 V; and V; € |Ay],
or V=inr" V5 and Vs € | As
V e |0 never
Vel|lldl it V=IMand M €| A
Ve |A2 — A1| iff V= Au:Ay. My and [MQ/U]Ml S HAlH
for any M, € || Az

These definitions are motivated directly from the form of values in the language.
One can easily see that it is indeed inductive on the structure of the type. If
we tried to add recursive types in a similar way, the proof below would still go
through, except that the definition of the logical relation would no longer be
well-founded.

Proof: (of the logical relations lemma 6.11). The proof proceeds by induction

on the structure of the typing derivation D :: (I A + M : A). We show three
cases—all others are similar.
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136 Linear A-Calculus
D, D,
F;AFMltAQ—OAl F7A|_M2A2
Case: D = - — E.
F; At Ml M2 : A1
n €| Assumption
0 € |A] Assumption
[; 0] M7 € || Az — Ay| By ind. hyp. on Dy
&1 ([n;0)My — Vp) and V) € |Ag —o A By definition of ||Az —o A4 ||
Vi = \x:A;. M and
[Va/z]M] € ||A1|| for any Va € | As] By definition of |Az —o A;|
[; 0] M2 € || Azl By ind. hyp. on Dy
Es i ([n; 0] Mz — Vo) and V; € |As| By definition of || As|
[Va/z]M] € || A1l Since Vs € |Ag|
Es i ([Vo/x]M{ — V) and V € | A4] by definition of || 4|
E ([ 9](M1AM2) V) by — Ev from &1, &, and &
[7:6](My M) € || Ay by definition of ||A;]|
D,
D5 (A, z:As) = My 2 Ay
Case: D = - — L.
F; A+ )\J?ZAQ. Ml . A2—0A1

n €| by assumption
0 € |A] by assumption
E : ([m; 0)(Ax:Ag. My) — [n; 0](Ax:Az. My)) by —oIv
Vo € |Ag| assumption
0, Va/x) € |A, z:A,] by definition of |A|
[n; (0, Va/x)| My € || Al by ind. hyp. on Dy
[Va/z]([n; (0, z/x)]|My) € || A4 by properties of substitution
(Az:As. [1; (0, 2/z)|My) € |Ay— Ay by definition of |As —o A;|
[; 0] (Az:Ag. My) € |Ay—o Ay by properties of substitution
[;0)(Az:Ay. My) € || Ay — Ay by definition of || Az — A4 ||

Case: D=———hyp

Iiz:Abx: A

0 €|, z:A| by assumption
[0z € |A] by definition of |-, z:A]
E :: ([m; 0]z = [n; 0]x) by Lemma 6.10
[n; 0]z € || Al by definition of || A||

O

The termination theorem follows directly from the logical relations lemma.
Note that the theorem excludes recursive types and the fixpoint operator by a

general assumption for this section.
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Theorem 6.12 (Termination) If -;- = M : A then M — V for some V.

Proof: We have - € ||| and - € |- | since the conditions are vacuously satisfied.
Therefore, by the logical relations lemma 6.11, [;-]M € ||A]|. By the definition
of ||A]| and the observation that [-;-]M = M, we conclude that M — V for
some V. 0

6.6 Exercises
Exercise 6.1 Prove that if ;A M : Aand ;AR M : A’ then A= A'.

Exercise 6.2 A function in a functional programming language is called strict
if it is guaranteed to use its argument. Strictness is an important concept in the
implementation of lazy functional languages, since a strict function can evaluate
its argument eagerly, avoiding the overhead of postponing its evaluation and
later memoizing its result.

In this exercise we design a A-calculus suitable as the core of a functional
language which makes strictness explicit at the level of types. Your calculus
should contain an unrestricted function type A — B, a strict function type
A — B, a vacuous function type A --» B, a full complement of operators
refining product and disjoint sum types as for the linear A-calculus, and a modal
operator to internalize the notion of closed term as in the linear A-calculus. Your
calculus should not contain quantifiers.

1. Show the introduction and elimination rules for all types, including their
proof terms.

2. Given the reduction and expansions on the proof terms.
3. State (without proof) the valid substitution principles.

4. If possible, give a translation from types and terms in the strict A-calculus
to types and terms in the linear A-calculus such that a strict term is well-
typed if and only if its linear translation is well-typed (in an appropriately
translated context).

5. Either sketch the correctness proof for your translation in each direction
by giving the generalization (if necessary) and a few representative cases,
or give an informal argument why such a translation is not possible.

Exercise 6.3 Give an example which shows that the substitution [M/w]N
must be capture-avoiding in order to be meaningful. Variable capture is a sit-
uation where a bound variable w’ in N occurs free in M, and w occurs in the
scope of w’. A similar definition applies to unrestricted variables.

Exercise 6.4 Give a counterexample to the conjecture that if M — 3 M’ and
AR M : Athen T'; A M : A. Also, either prove or find a counterexample
to the claim that if M —, M’ and [; A+ M’ : A then T; A M : A.
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138 Linear A-Calculus

Exercise 6.5 The proof term assignment for sequent calculus identifies many
distinct derivations, mapping them to the same natural deduction proof terms.
Design an alternative system of proof terms from which the sequent derivation
can be reconstructed uniquely (up to weakening of unrestricted hypotheses and
absorption of linear hypotheses in the TR rule).

1. Write out the term assignment rules for all propositional connectives.

2. Give a calculus of reductions which corresponds to the initial and principal
reductions in the proof of admissibility of cut.

3. Show the reduction rule for the dereliction cut.
4. Show the reduction rules for the left and right commutative cuts.

5. Sketch the proof of the subject reduction properties for your reduction
rules, giving a few critical cases.

6. Write a translation judgment S =— M from faithful sequent calculus
terms to natural deduction terms.

7. Sketch the proof of type preservation for your translation, showing a few
critical cases.

Exercise 6.6 Supply the missing rules for @E in the definition of the judg-
ment I'; Ar \ Ap b; M : A and show the corresponding cases in the proof of
Lemma 6.4.

Exercise 6.7 In this exercise we explore the syntactic expansion of extended
case expressions of the form case M of m.

1. Define a judgment which checks if an extended case expression is valid.
This is likely to require some auxiliary judgments. You must verify that
the cases are exhaustive, circumscribe the legal patterns, and check that
the overall expression is linearly well-typed.

2. Define a judgment which relates an extended case expression to its expan-
sion in terms of the primitive let, case, and abort constructs in the linear

A-calculus.

3. Prove that an extended case expression which is valid according to your
criteria can be expanded to a well-typed linear A-term.

4. Define an operational semantics directly on extended case expressions.

5. Prove that your direct operational semantics is correct on valid patterns
with respect to the translational semantics from questions 2.
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Exercise 6.8 Define the judgment M —7% M’ via inference rules. The rules
should directly express that it is the congruent, reflexive and transitive closure
of the S-reduction judgment M — 3 M’. Then prove the generalized subject
reduction theorem 6.6 for your judgment. You do not need to show all cases,
but you should carefully state your induction hypothesis in sufficient generality
and give a few critical parts of the proof.

Exercise 6.9 Define weak (3-reduction as allows simple (-reduction under ®,
inl, and inr constructs and in all components of the elimination form. Show that
if M weakly reduces to a value v then M — v.

Exercise 6.10 Prove type preservation (Theorem 6.8) directly by induction on
the structure of the evaluation derivation, using the substitution lemma 6.2 as
necessary, but without appeal to subject reduction.

Exercise 6.11 Prove the subject reduction and expansion properties for recur-
sive type computation rules.

Exercise 6.12 [ An exercise exploring the use of type conversion
rules without explicit term constructors. |

Exercise 6.13 Define a linear multiplication function mult : nat —o nat —o nat
using the functions copy and delete.

Exercise 6.14 Defined the following functions on lists. Always explicitly state
the type, which should be the most natural type of the function.

1. append to append two lists.
2. concat to append all the lists in a list of lists.

3. map to map a function f over the elements of a list. The result of map-
ping f over the list 21, 2, . .., x, should be the list f(x1), f(z2),... f(zn),
where you should decide if the application of f to its argument should be
linear or not.

4. foldr to reduce a list by a function f. The result of folding f over a
list 21, za, . . .y, should be the list f(x1, f(zo,..., f(zn, init))), where init
is an initial value given as argument to foldr. You should decide if the
application of f to its argument should be linear or not.

5. copy, delete, and promote.

Exercise 6.15 For one of the form of lazy lists on Page 130, define the functions
from Exercise 6.14 plus a function toList which converts the lazy to an eager list
(and may therefore not terminate if the given lazy lists is infinite). Make sure
that your functions exhibit the correct amount of laziness. For example, a map
function applied to a lazy list should not carry out any non-trivial computation
until the result is examined.

Further for your choice of lazy list, define the infinite lazy list of eager natural
numbers 0,1,2,....
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140 Linear A-Calculus

Exercise 6.16 Prove that there is no term v such that w (fold” w) < v.

Exercise 6.17 [ An exercise about the definability of fixpoint oper-
ators at various type. ]

Exercise 6.18 Prove Lemma 6.10 which states that all values evaluate to them-
selves.

Exercise 6.19 In this exercise we explore strictness as a derived, rather than
a primitive concept. Recall that a function is strict if it uses its argument at
least once. The strictness of a function from A to B can be enforced by the
type (A® !A) — B.

1. Show how to represent a strict function Xxz:A. M under this encoding.

2. Show how to represent an application of a strict function M to an argu-
ment V.

3. Give natural evaluation rules for strict functions and strict applications.

4. Show the corresponding computation under the encoding of strict func-
tions in the linear \-calculus.

5. Discuss the merits and difficulties of the given encoding of the strict in
the linear A-calculus.

Exercise 6.20 In the exercise we explore the affine A-calculus. In an affine
hypothetical judgment, each assumption can be used at most once. Therefore,
it is like linear logic except that affine hypotheses need not be used.

The affine hypothetical judgment I'; A F* A true is characterized by the
hypothesis rule

I A, z:Atruet® A true

and the substitution principle

if Ty A A true and T; A/, Atrue M C true then T; A, A’ H C true.

1. State the remaining hypothesis rule and substitution principle for unre-
stricted hypotheses.

2. Give introduction and elimination rules for affine implication (4 ~~ B)
simultaneous conjunction, alternative conjunction, and truth. Note that
there is only one form of truth: since assumptions need not be used, the
multiplicative and additive form coincide.

3. Give a proof term assignment for affine logic.

4. We can map affine logic to linear logic by translating every affine function
A ~~ B to a linear function (A&1) — B. Give a corresponding translation
for all proof terms from the affine logic to linear logic.
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5. We can also map affine logic to linear logic by translating every affine
function A ~~ B into function A —(B ® T). Again give a corresponding
translation for all proof terms from affine logic to linear logic.

6. Discuss the relative merits of the two translations.

7. [Extra Credit] Carefully formulate and prove the correctness of one of the
two translations.
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