
Chapter 3

Sequent Calculus

In the previous chapter we developed linear logic in the form of natural de-
duction, which is appropriate for many applications of linear logic. It is also
highly economical, in that we only needed one basic judgment (A true) and two
judgment forms (linear and unrestricted hypothetical judgments) to explain the
meaning of all connectives we have encountered so far. However, it is not well-
suited directly proof search, because this involves mixing forward and backward
reasoning even if we restrict ourselves to searching for normal deductions.

In this chapter we develop a sequent calculus as a calculus of proof search
for normal natural deductions. We then extend it with a rule of cut that allows
us to model arbitrary natural deductions. The central theorem of this chapter
is cut elimination which shows that the cut rule is admissible. We obtain the
normalization theorem for natural deduction as a direct consequence of this
theorem. It was this latter application which lead to the original discovery of
the sequent calculus by Gentzen [Gen35]. There are many useful immediate
corollaries of the cut elimination theorem, such as consistency of the logic, or
the disjunction property.

3.1 Cut-Free Sequent Calculus

In this section we transcribe the process of searching for normal natural deduc-
tions into an inference system. In the context of sequent calculus, proof search
is seen entirely as the bottom-up construction of a derivation. This means that
elimination rules must be turned “upside-down” so they can also be applied
bottom-up rather than top-down.

In terms of judgments we develop the sequent calculus via a splitting of the
judgment “A is true” into two judgments: “A is a resource” (A res) and “A
is a goal” (A goal). Ignoring unrestricted hypothesis for the moment, the main
judgment

w1:A1 res, . . . , wn:An res =⇒ C goal

expresses

Draft of October 4, 2001

46 Sequent Calculus

Under the linear hypothesis that we have resources A1, . . . , An we
can achieve goal C.

In order to model validity, we add inexhaustible resources or resource factories,
written A fact. We obtain

(v1:B1 fact, . . . , vm:Bm fact); (w1:A1 res, . . . , wn:An res) =⇒ C goal,

which expresses

Under the unrestricted hypotheses that we have resource factories
B1, . . . , Bm and linear hyptheses that we have resources A1, . . . , An,
we can achieve goal C.

As before, the order of the hypothesis (linear or unrestricted) is irrelevant, and
we assume that all hypothesis labels vj and wi are distinct.

Resources and goals are related in that with the resource A we can achieve
goal A. Recall that the linear hypothetical judgment requires us to use all linear
hypotheses exactly once. We therefore have the following rule.

initu
Γ; u:A res =⇒ A goal

We call such as sequent initial and write init. Note that, for the moment,
we do not have the opposite: if we can achieve goal A we cannot assume A as
a resource. The corresponding rule will be called cut and is shown later to be
admissible, that is, every instance of this rule can be eliminated from a proof. It
is the desire to rule out cut that necessitated splitting truth into two judgments.

Note that the initial rule does not follow directly from the nature of linear
hypothetical judgments, since A res and A goal are different judgments. In-
stead, it explicitly states a connection between resources and goals. A rule that
concludes Γ, A res =⇒ A res is also evident, but is not of interest here since we
never consider the judgment A res in the succedent of a sequent.

We also need a rule that allows a factory to produce a resource. This rule is
called copy and sometimes refered to as dereliction.

(Γ, v:A fact); (∆, w:A res) =⇒ C goal
copyv

(Γ, v:A fact); ∆ =⇒ C goal

Note how this is different from the unrestricted hypothesis rule in natural de-
duction. Factories are directly related to resources and only indirectly to goals.

The remaining rules are divided into right and left rules, which correspond to
the introduction and elimination rules of natural deduction, respectively. The
right rules apply to the goal, while the left rules apply to resources. In the
following, we adhere to common practice and omit labels on hypotheses and
consequently also on the justifications of the inference rules. The reader should
keep in mind, however, that this is just a short-hand, and that there are, for
example, two different derivations of (A,A); · =⇒ A, one using the first copy of
A and one using the second.

Draft of October 4, 2001

3.1 Cut-Free Sequent Calculus 47

Hypotheses.

init
Γ;A =⇒ A

(Γ, A); (∆, A) =⇒ C
copy

(Γ, A); ∆ =⇒ C

Multiplicative Connectives.

Γ; ∆, A =⇒ B
(R

Γ; ∆ =⇒ A(B

Γ; ∆1 =⇒ A Γ; ∆2, B =⇒ C
(L

Γ; ∆1,∆2, A(B =⇒ C

Γ; ∆1 =⇒ A Γ; ∆2 =⇒ B
⊗R

Γ; ∆1,∆2 =⇒ A⊗ B
Γ; ∆, A, B =⇒ C

⊗L
Γ; ∆, A⊗ B =⇒ C

1R
Γ; · =⇒ 1

Γ; ∆ =⇒ C
1L

Γ; ∆, 1 =⇒ C

Additive Connectives.

Γ; ∆ =⇒ A Γ; ∆ =⇒ B
NR

Γ; ∆ =⇒ ANB

Γ; ∆, A =⇒ C
NL1

Γ; ∆, ANB =⇒ C

Γ; ∆, B =⇒ C
NL2

Γ; ∆, ANB =⇒ C

>R
Γ; ∆ =⇒ > No > left rule

Γ; ∆ =⇒ A
⊕R1

Γ; ∆ =⇒ A ⊕B

Γ; ∆ =⇒ B
⊕R2

Γ; ∆ =⇒ A ⊕B

Γ; ∆, A =⇒ C Γ; ∆, B =⇒ C
⊕L

Γ; ∆, A⊕ B =⇒ C

No 0 right rule
0L

Γ; ∆, 0 =⇒ C

Draft of October 4, 2001

48 Sequent Calculus

Quantifiers.

Γ; ∆ =⇒ [a/x]A
∀Ra

Γ; ∆ =⇒ ∀x. A

Γ; ∆, [t/x]A=⇒ C
∀L

Γ; ∆, ∀x. A =⇒ C

Γ; ∆ =⇒ [t/x]A
∃R

Γ; ∆ =⇒ ∃x. A

Γ; ∆, [a/x]A=⇒ C
∃La

Γ; ∆, ∃x. A =⇒ C

Exponentials.

(Γ, A); ∆ =⇒ B
⊃R

Γ; ∆ =⇒ A ⊃B
Γ; · =⇒ A Γ; ∆, B =⇒ C

⊃L
Γ; ∆, A⊃B =⇒ C

Γ; · =⇒ A
!R

Γ; · =⇒ !A

(Γ, A); ∆ =⇒ C
!L

Γ; (∆, !A) =⇒ C

To obtain a normal deduction from a sequent derivation we map instances
of right rules to corresponding introduction rules. Left rules have to be turned
“upside-down”, since the elimination rule corresponding to a left rule works
in the opposite direction. This reverse of direction is captured in the proof
of the following theorem by appeals to the substitution property: we extend
a natural deduction at a leaf by substituting a one-step deduction for the use
of a hypothesis. Note that the terse statement of this theorem (and also of
the completeness theorem below) hide the fact that the judgments forming the
assumptions Γ and ∆ are different in the sequent calculus and natural deduction.

Theorem 3.1 (Soundness of Sequent Derivations)
If Γ; ∆ =⇒ A then Γ; ∆ ` A ↑.

Proof: By induction on the structure of the derivation of Γ; ∆ =⇒ A. Initial
sequents are translated to the ↓↑ coercion, and use of an unrestricted hypothesis
follows by a substitution principle (Lemma 2.2). For right rules we apply the
corresponding introduction rules. For left rules we either directly construct a
derivation of the conclusion after an appeal to the induction hypothesis (⊗L,
1L, ⊗L, 0L, ∃L, !L) or we appeal to a substitution principle of atomic natural
deductions for hypotheses ((L, NL1, NL2, ∀L, ⊃L). 2

The completeness theorem reverses the translation from above. In this case
we have to generalize the induction hypothesis so we can proceed when we en-
counter a coercion from atomic to normal derivations. It takes some experience
to find the generalization we give below. Fortunately, the rest of the proof is
then straightforward.

Theorem 3.2 (Completeness of Sequent Derivations)

Draft of October 4, 2001

3.2 Another Example: Petri Nets 49

1. If Γ; ∆ ` A ↑ then there is a sequent derivation of Γ; ∆ =⇒ A, and

2. if Γ; ∆ ` A ↓ then for any formula C and derivation of Γ; ∆′, A =⇒ C
there is a derivation of Γ; (∆′,∆) =⇒ C.

Proof: By simultaneous induction on the structure of the derivations of Γ; ∆ `
A ↑ and Γ; ∆ ` A ↓. 2

3.2 Another Example: Petri Nets

In this section we show how to represent Petri nets in linear logic. This example
is due to Mart̀ı-Oliet and Meseguer [MOM91], but has been treated several times
in the literature.

A Petri net is defined by a collection of places, transitions, arcs, and to-
kens. Every transition has input arcs and output arcs that connect it to places.
The system evolves by changing the tokens in various places according to the
following rules.

1. A transition is enabled if every place connected to it by an input arc
contains at least one token.

2. We non-deterministically select one of the enabled transitions in a net to
fire.

3. A transition fires by removing one token from each input place and adding
one token to each output place of the transition.

Slightly more generally, an arc may have a weight n. For an input arc this means
there must be at least n tokens on the place to enable a transition. When the
transition fires, n tokens are removed from the token at the beginning of an arc
with weight n. For an output arc this means that n new tokens will be added
to the place at its end. By default, an arc with no listed weight has weight
one. There are other variations and generalizations of Petri nets, but we will
not consider them here. Figure 3.1 displays some typical Petri net structures.

It is quite easy to represent a Petri net in linear logic. The idea is that the
fixed topology of the net is represented as a collection of unrestricted propo-
sitions Γ. The current state of the net as given by the tokens in the net is
represent as collection of resources ∆. We can reach state ∆1 from state ∆0

iff Γ; · ` (
⊗

∆0)((
⊗

∆1). That is, provability will correspond precisely to
reachability in the Petri net. We formulate this below in a slightly differently,
using the sequent calculus as a tool.

To accomplish this, we represent every place by an atomic predicate. If there
are k tokens on place p, we add k copies of p into the representation of the state
∆. For every transition we add a rule p1⊗ · · · ⊗ pm(q1⊗ · · · ⊗ qn to Γ, where
p1, . . . , pm are the places at the beginning of the input arcs and q1⊗· · ·⊗ qn are
the places at the end of the output arcs. If an arc has multiplicity k, we simply
add k copies of p to either the antecedent or the succedent of the corresponding

Draft of October 4, 2001

50 Sequent Calculus

Sequence

Conflict Concurrency

Synchronization Merging

Place

Transition

Token

Arc

Figure 3.1: Some Petri Net Structures

Draft of October 4, 2001

3.2 Another Example: Petri Nets 51

linear implication representing the transition. As an example, consider the
following Petri net (used in [?]).

rp

rr

ra

rc

CP R A

bb

nn

ready to release ready to consume

ready to acquire

counter

buffer

2

release acquireproduce consume

ready to produce

Note that arc form the buffer to the acquire transition has weight two, so
two tokens in the buffer are converted to one token to be in the place ready to
consume.

The representation of this Petri net consists of the following unrestricted
rule in Γ and the initial state in ∆0.

Γ = P : rp(rr
R : rr(rp⊗ nn⊗ bb
A : bb⊗ bb⊗ ra(rc
C : rc(ra

∆0 = rr, nn, nn, bb, bb, bb, ra

Informally, it is quite easy to understand that the propositions above rep-
resent the given Petri nets. We now consider a slightly different from of the
adequacy theorem in order exploit the sequent calculus

Adequacy for Encoding of Petri Nets.

Assume we are given a Petri net with places P = {p1, . . . , pn}, transi-
tions T = {t1, . . . , tm}. We represent the transitions as unrestricted
assumptions Γ as sketched above, and a token assignment as a col-
lection of linear hypotheses ∆ = (q1, . . . , qk) where qj are places,
possibly containing repetitions. Then the marking ∆1 is reachable
from marking ∆0 if and only if

Γ; ∆1 =⇒ C
...

Γ; ∆0 =⇒ C

for an arbitrary proposition C.

Draft of October 4, 2001

52 Sequent Calculus

Considered bottom up, this claims that, for any C, we can reduce the prob-
lem of proving Γ; ∆0 ` C to the problem of proving Γ; ∆1 ` C.

3.3 Deductions with Lemmas

One common way to find or formulate a proof is to introduce a lemma. In the
sequent calculus, the introduction and use of a lemma during proof search is
modelled by the rules of cut, cut for lemmas used as linear hypotheses, and cut!
for lemmas used as factories or resources. The corresponding rule for intuition-

istic logic is due to Gentzen [Gen35]. We write Γ; ∆
+

=⇒ A for the judgment
that A can be derived with the rules from before, plus one of the two cut rules
below.

Γ; ∆
+

=⇒ A Γ; (∆′, A)
+

=⇒ C
cut

Γ; ∆,∆′
+

=⇒ C

Γ; · +
=⇒ A (Γ, A); ∆′

+
=⇒ C

cut!
Γ; ∆′

+
=⇒ C

Note that the linear context in the left premise of the cut! rule must be empty,
because the new hypothesis A in the right premise is unrestricted in its use.

From the judgmental point of view, the first cut rule corresponds to the
inverse of the init rule. Ignoring extraneous hypotheses, the init rule states
A res =⇒ A goal. To go the opposity way means that we are allowed to assume
A res if we have shown A goal. This is exactly what the cut rule expresses. The
cut! expresses that if we can achieve a goal A without using any linear resources,
we can manufacture as many copies of the resource A as we like.

On the side of natural deduction, these rules correspond to substitution
principles. They can be related to normal and atomic derivations only if we allow
an additional coercion from normal to atomic derivations. This is because the
left premise corresponds to a derivation of Γ; ∆ ` A ↑ which can be substituted
into a derivation of Γ; ∆′, A ↓ ` C ↑ only we have this additional coercion. Of
course, the resulting deductions are no longer normal in the sense we defined
before, so we write Γ; ∆ `+ A ↓ and Γ; ∆ `+ A ↑. These judgments are defined
with the same rules as Γ; ∆ ` A ↑ and Γ; ∆ ` A ↓, plus the following coercion.

Γ; ∆ `+ A ↑
↑↓

Γ; ∆ `+ A ↓

It is now easy to prove that arbitrary natural deductions can be annotated
with ↑ and ↓, since we can arbitrarily coerce back and forth between the two
judgments.

Theorem 3.3 If Γ; ∆ ` A then Γ; ∆ `+ A ↑ and Γ; ∆ `+ A ↓

Proof: By induction on the structure of D :: (Γ; ∆ ` A). 2

Theorem 3.4

Draft of October 4, 2001

3.3 Deductions with Lemmas 53

1. If Γ; ∆ `+ A ↑ then Γ; ∆ ` A.

2. If Γ; ∆ `+ A ↓ then Γ; ∆ ` A.

Proof: My mutual induction on N :: (Γ; ∆ `+ A ↑) and A :: (Γ; ∆ `+ A ↓). 2

It is also easy to relate the cut rules to the new coercions (and thereby to
natural deductions), plus four substitution principles.

Property 3.5 (Substitution)

1. If Γ; ∆ `+ A ↓ and Γ; (∆′, u:A ↓) `+ C ↑ then Γ; (∆,∆′) `+ C ↑.

2. If Γ; ∆ `+ A ↓ and Γ; (∆′, u:A ↓) `+ C ↓ then Γ; (∆,∆′) `+ C ↓.

3. If Γ; · `+ A ↓ and (Γ, v:A ↓↓); ∆′ `+ C ↑ then Γ; ∆′ `+ C ↑.

4. If Γ; · `+ A ↓ and (Γ, v:A ↓↓); ∆′ `+ C ↓ then Γ; ∆′ `+ C ↓.

Proof: By mutual induction on the structure of the given derivations. 2

We can now extend Theorems 3.1 and 3.2 to relate sequent derivations with
cut to natural deductions with explicit lemmas.

Theorem 3.6 (Soundness of Sequent Derivations with Cut)

If Γ; ∆
+

=⇒ A then Γ; ∆ `+ A ↑.

Proof: As in Theorem 3.1 by induction on the structure of the derivation of

Γ; ∆
+

=⇒ A. An inference with one of the new rules cut or cut! is translated into
an application of the ↑↓ coercion followed by an appeal to one of the substitution
principles in Property 3.5. 2

Theorem 3.7 (Completeness of Sequent Derivations with Cut)

1. If Γ; ∆ `+ A ↑ then there is a sequent derivation of Γ; ∆
+

=⇒ A, and

2. if Γ; ∆ `+ A ↓ then for any formula C and derivation of Γ; (∆′, A)
+

=⇒ C

there is a derivation of Γ; (∆′,∆)
+

=⇒ C.

Proof: As in the proof of Theorem 3.2 by induction on the structure of the
given derivations. In the new case of the ↑↓ coercion, we use the rule of cut.
The other new rule, cut!, is not needed for this proof, but is necessary for the
proof of admissibility of cut in the next section. 2

Draft of October 4, 2001

54 Sequent Calculus

3.4 Cut Elimination

We viewed the sequent calculus as a calculus of proof search for natural de-
duction. The proofs of the soundness theorems 3.2 and 3.7 provide ways to
translate cut-free sequent derivations into normal natural deductions, and se-
quent derivations with cut into arbitrary natural deductions.

This section is devoted to showing that the two rules of cut are redundant
in the sense that any derivation in the sequent calculus which makes use of the
rules of cut can be translated to one that does not. Taken together with the
soundness and completeness theorems for the sequent calculi with and without
cut, this has many important consequences.

First of all, a proof search procedure which looks only for cut-free sequent
derivations will be complete: any derivable proposition can be proven this way.
When the cut rule

Γ; ∆
+

=⇒ A Γ; (∆′, A)
+

=⇒ C
cut

Γ; ∆′,∆
+

=⇒ C

is viewed in the bottom-up direction the way it would be used during proof
search, it introduces a new and arbitrary proposition A. Clearly, this introduces
a great amount of non-determinism into the search. The cut elimination theorem
now tells us that we never need to use this rule. All the remaining rules have
the property that the premises contain only instances of propositions in the
conclusion, or parts thereof. This latter property is often called the subformula
property.

Secondly, it is easy to see that the logic is consistent, that is, not every
proposition is provable. In particular, the sequent ·; · =⇒ 0 does not have a
cut-free derivation, because there is simply no rule which could be applied to
infer it! This property clearly fails in the presence of cut: it is prima facie quite

possible that the sequent ·; · +
=⇒ 0 is the conclusion of the cut rule.

Along the same lines, we can show that a number of propositions are not
derivable in the sequent calculus and therefore not true as defined by the natural
deduction rules. Examples of this kind are given at the end of this section.

We prove cut elimination by showing that the two cut rules are admissible
rules of inference in the sequent calculus without cut. An inference rule is
admissible if whenever we can find derivations for its premises we can find a
derivation of its conclusion. This should be distinguished from a derived rule of
inference which requires a direct derivation of the conclusion from the premises.
We can also think of a derived rule as an evident hypothetical judgment where
the premises are (unrestricted) hypotheses.

Derived rules of inference have the important property that they remain
evident under any extension of the logic. An admissible rule, on the other hand,
represents a global property of the deductive system under consideration and
may well fail when the system is extended. Of course, every derived rule is also
admissible.

Draft of October 4, 2001

3.4 Cut Elimination 55

Theorem 3.8 (Admissibility of Cut)

1. If Γ; ∆ =⇒ A and Γ; (∆′, A) =⇒ C then Γ; (∆,∆′) =⇒ C.

2. If Γ; · =⇒ A and (Γ, A); ∆′ =⇒ C then Γ; ∆′ =⇒ C.

Proof: By nested inductions on the structure of the cut formula A and the
given derivations, where induction hypothesis (1) has priority over (2). To state
this more precisely, we refer to the given derivations as D :: (Γ; ∆ =⇒ A),
D′ :: (Γ; · =⇒ A), E :: (Γ; (∆, A) =⇒ C), and E ′ :: ((Γ, A); ∆′ ` C). Then we
may appeal to the induction hypothesis whenever

a. the cut formula A is strictly smaller, or

b. the cut formulaA remains the same, but we appeal to induction hypothesis
(1) in the proof of (2) (but when we appeal to (2) in the proof of (1) the
cut formula must be strictly smaller), or

c. the cut formulaA and the derivation E remain the same, but the derivation
D becomes smaller, or

d. the cut formula A and the derivation D remain the same, but the deriva-
tion E or E ′ becomes smaller.

Here, we consider a formula smaller it is an immediate subformula, where [t/x]A
is considered a subformula of ∀x. A, since it contains fewer quantifiers and logical
connectives. A derivation is smaller if it is an immediate subderivation, where
we allow weakening by additional unrestricted hypothesis in one case (which
does not affect the structure of the derivation).

The cases we have to consider fall into 5 classes:

Initial Cuts: One of the two premises is an initial sequent. In these cases the
cut can be eliminated directly.

Principal Cuts: The cut formula A was just inferred by a right rule in D and
by a left rule in E . In these cases we appeal to the induction hypothesis
(possibly several times) on smaller cut formulas (item (a) above).

Copy Cut: The cases for the cut! rule are treated as right commutative cuts
(see below), except for the rule of dereliction which requires an appeal to
induction hypothesis (1) with the same cut formula (item (b) above).

Left Commutative Cuts: The cut formula A is a side formula of the last
inference in D. In these cases we may appeal to the induction hypotheses
with the same cut formula, but smaller derivation D (item (c) above).

Right Commutative Cuts: The cut formula A is a side formula of the last
inference in E . In these cases we may appeal to the induction hypothe-
ses with the same cut formula, but smaller derivation E or E ′ (item (d)
above).1

1[some cases to be filled in]

Draft of October 4, 2001

56 Sequent Calculus

2

Using the admissibility of cut, the cut elimination theorem follows by a
simple structural induction.

Theorem 3.9 (Cut Elimination)

If Γ; ∆
+

=⇒ C then Γ; ∆ =⇒ C.

Proof: By induction on the structure of D :: (Γ; ∆
+

=⇒ C). In each case except
cut or cut! we simply appeal to the induction hypothesis on the derivations of the
premises and use the corresponding rule in the cut-free sequent calculus. For the
cut and cut! rules we appeal to the induction hypothesis and then admissibility
of cut (Theorem 3.8) on the resulting derivations. 2

3.5 Consequences of Cut Elimination

The first and most important consequence of cut elimination is that every nat-
ural deduction can be translated to a normal natural deduction. The necessary
construction is implicit in the proofs of the soundness and completeness theo-
rems for sequent calculi and the proofs of admissibility of cut and cut elimina-
tion. In Chapter ?? we will see a much more direct, but in other respects more
complicated proof.

Theorem 3.10 (Normalization for Natural Deductions)
If Γ; ∆ ` A then Γ; ∆ ` A ↑.

Proof: Directly, using theorems from this chapter.

Γ; ∆ ` A Assumption
Γ; ∆ `+ A By Theorem 3.3

Γ; ∆
+

=⇒ A By completeness of sequent derivations with cut (Theorem 3.7)
Γ; ∆ =⇒ A By cut elimination (Theorem 3.9)
Γ; ∆ ` A ↑ By soundness of cut-free sequent derivations (Theorem 3.1)

2

As a second consequence, we see that linear logic is consistent : not every
proposition can be proved. A proof of consistency for both intuitionistic and
classical logic was Gentzen’s original motivation for the development of the
sequent calculus and his proof of cut elimination.

Theorem 3.11 (Consistency of Intuitionistic Linear Logic)
·; · ` 0 true is not derivable.

Proof: If the judgment were derivable, by Theorems 3.3, 3.7, and 3.9, there
must be a cut-free sequent derivation of ·; · =⇒ 0. But there is no rule with
which we could infer this sequent (there is no right rule for 0), and so it cannot
be derivable. 2

Draft of October 4, 2001

3.6 Another Example: The π-Calculus 57

A third consequence is called the disjunction property. Note that in ordinary
classical logic this property fails.

Theorem 3.12 (Disjunction Property for Intuitionistic Linear Logic)
If ·; · ` A⊕B true then either ·; · ` A true or ·; · ` B true.

Proof: Assume ·; · ` A⊕B true. Then, by completeness of the cut-free sequent
calculus, ·; · =⇒ A⊕B. But there are only two rules that end with this judgment:
⊕R1 and ⊕R2. Hence either ·; · =⇒ A or ·; · =⇒ B. Therefore, by soundness of
the sequent calculus, ·; · ` A true or ·; · ` B true 2

Note that these theorems are just special cases, and many other properties
of the connectives follow from normalization and cut elimination.

As another kind of example, we can show that various propositions are not
theorems of linear logic. Consider

·;A((B ⊗ C) ` (A(B) ⊗ (A(C)

Intuitively, this should clearly not hold for arbitrary A, B, and C (although it
could be true for some specific ones). But if we know the completeness of the
cut-free sequent calculus this is easy to show. Consider

·;A((B ⊗C) =⇒ (A(B) ⊗ (A(C).

There are only two possible rules that could have been used to deduce this
conclusion,(R and ⊗R.

In case the last rule is(R, one of the premises will be

·; · =⇒ A

which is not provable for arbitrary A. In case the last rule is ⊗R, the linear
hypothesis must be propagated to the left or right premise. Assume it goes to
the left (the other case is symmetric). Then the right premise must be

·; · =⇒ A(C

which could only be infered by (R, which leaves

·;A =⇒ C.

Again, unless we know more about A and C no rule applies. Hence the judgment
above has no proof.

3.6 Another Example: The π-Calculus

The π-calculus was designed by Milner as a foundational calculus to investigate
properties of communicating and mobile systems [?]. The first formulation

Draft of October 4, 2001

58 Sequent Calculus

below differs slightly from Milner’s in the details of specification, but one can
also give a completely faithful representation as shown in our second version.2

The basic syntactic categories in the π-calculus are names, actions, and
processes. Names are simply written as variables x, y or a. They serve simul-
taneously as communication channels and the data that is transmitted along
the channels. They constitute the only primitive data objects in the π-calculus,
which makes it somewhat tedious to write non-trivial examples. In this sense it
is similar to Church’s pure λ-calculus, which was designed as a pure calculus of
functions in which other data types such as natural numbers can be encoded.

Action prefixes π define the communication behavior of processes. We have

π ::= x(y) receive y along x
| x〈y〉 send y along x
| τ unobservable (internal) action

Process expressions P define the syntax of processes in the π-calculus. They
rely on sums M , which represent a non-deterministic choice between processes
waiting to perform an action (either input, output, or an internal action).

P ::= M sum
| 0 termination
| P1 | P2 composition
| new a P restriction
| !P replication

M | M1 +M2 choice
| π. P guarded process

Milner now defines a structural congruence that identifies process expressions
that are only distinguished by the limitations of syntax. For example, the
process composition operator P | Q should be commutative and associative
so that a collection of concurrent processes can be written as P1 | · · · | Pn.
Similarly, sums M +N should be commutative and associative. 0 is the unit of
composition so that a terminated process simply disappears.

Names require that we add the renaming of bound variables to our structural
congruence. In particular, new a P binds a in P and x(y). P binds y in P . Note
that, conversely, x〈y〉. P does not bind any variables: the name y is just sent
along x. The order of consecutive bindings by new a may be changed, and we
can extend or contract the scope of a new a binder across process composition
as follows:

new x (P | Q) ≡ P | (new x Q)

provided x is not among the free names of P . This law of scope extrusion (read
right to left) is important this it means a process can propagate a local names
to its environment.

2[None of the material in this example has been proven correct at this time. Nor have we
carefully surveyed the literature such as [?, ?].]

Draft of October 4, 2001

3.6 Another Example: The π-Calculus 59

Finally, we have a rule of replication !P ≡ P | !P . Read from left to right it
means a process !P can replicate itself arbitrarily many times. From right to left
the rule is of somewhat questionable value, since it would require recognizing
structural equivalence of two active process expressions and then contracting
them.

We will not formally model structural equivalence, because its necessary
aspects will be captured by properties of the linear context ∆ that contains
active process expressions. Instead of repeating Milner’s formal definition of
the reaction rules, we explain them through their encoding in linear logic. The
idea is the state of a process is represented by two proposition proc(P) for a
process P and choice(M) for a sum M . A linear context

∆ = proc(P1), . . . , proc(Pn), choice(M1), . . . , choice(Mm)

represents a state where processes Pi are executing concurrently and choices Mj

are waiting to be made. Furthermore an unrestricted context

Γ = proc(Q1), . . . , proc(Qp)

represents processes Qk that may replicate themselves an arbitrary number of
times. Informally, computation is modelled bottom-up in the sequent calculus,
so that

Γπ ,Γ1; ∆1 =⇒ C
...

Γπ ,Γ0; ∆0 =⇒ C

if we can transition from state ∆0 with replicating processes Γ0 to a state ∆1

with replicating processes Γ1. Here, C is arbitrary (in some sense, computation
never stops) and Γπ are the rules describing the legal reactions of the π-calculus
as given below.

Process Composition (P | Q). This just corresponds to a fork operation
that generates two concurrently operating processes P and Q.

fork : proc(P | Q)(proc(P)⊗ proc(Q)

Termination 0. This just corresponds to an exit operation, elimination the
process.

exit : proc(0)(1

Restriction new a P (a). The notation P (a) represents a process P with some
arbitrary number of occurrences of the bound variable a. We then write P (x)
for the result of substituting x for all occurrences of a in P . The new operation
simply creates a new name, x, substitutes this for a in P (a), and continues with
P (x). The freshness condition on x can be enforced easily by the corresponding
condition on the left rule for the existential quantifier ∃L in the sequent calculus.

gen : proc(new a P (a))(∃x. proc(P (x))

Draft of October 4, 2001

60 Sequent Calculus

While this is not completely formal at present, once we introduce the concept of
higher-order abstract syntax in Section ?? we see that it can easily be modeled
in linear logic.

Replication !P . This just moves the process into the unrestricted context so
that as many copies of P can be generated by the use of the copy rule as needed.

promote : proc(!P)(!proc(P)

Coincidentally, this is achieved in linear logic with the “of course” modality
that is also written as “!”.

Sum M . A process expression that is a sum goes into a state where it can
perform an action, either silent (τ) or by a reaction between input and output
processes.

suspend : proc(M)(choice(M)

It is now very tempting to define choice simply as internal choice. That is,

?choose : choice(M1 +M2)(choice(M1)Nchoice(M2)

However, this does not correspond to semantics of the π-calculus. Instead,
M1 + · · ·+Mn can perform an action if

1. either one of the Mi can perform a silent action τ in which case all alter-
natives Mj for j 6= i are discarded,

2. or two guarded actions x(y). P (y) and x〈z〉. Q react, leaving processes
P (z) and Q while discarding all other alternatives.

We model this behavior with two auxiliary predicates react(M,N, P,Q) which
is true if sums M and N can react, leaving processes P and Q, and silent(M,P)
which is true if M can make a silent transition to P . These are invoked non-
deterministically as follows:

external : choice(M)⊗ choice(N) ⊗ !react(M,N, P,Q)(proc(P)⊗ proc(Q)
internal : choice(M)⊗ !silent(M,P)(proc(P)

Note the use of “!” before the react and silent propositions which indicates that
proofs of these propositions do not refer to the current process state.

Reaction. Basic reaction is synchronous communication along a channel x.
This is augmented by a rule to choose between alternatives.

synch : react(x(y). P (y), x〈z〉. Q, P (z), Q)
choose2 : react(M,N, P,Q)((react(M +M0, N, P,Q)

Nreact(M0 +M,N, P,Q)
Nreact(M,N +N0, P, Q)
Nreact(M,N0 +M,P,Q))

Note that the synchronization rule synch again employs our notation for substi-
tution.

Draft of October 4, 2001

3.6 Another Example: The π-Calculus 61

Silent Action. A basic silent action simply discards the guard τ . This is
augmented by a rule to choose between alternatives.

tau : silent(τ. P, P)
choose1 : silent(M,P)((silent(M +M0, P)Nsilent(M0 +M,P))

That’s it! To model Milner’s notion of structural equivalence faithfully we
would need at least one other rule

?collect : !proc(P)⊗ proc(P)(!proc(P)

but this is of questionable merit and rather an artefact of overloading the notion
of structural congruence with too many tasks.

Draft of October 4, 2001

62 Sequent Calculus

3.7 Exercises

Exercise 3.1 Consider if ⊗ and N can be distributed over ⊕ or vice versa.
There are four different possible equivalences based on eight possible entail-
ments. Give sequent derivations for the entailments that hold.

Exercise 3.2 Prove that the rule

(Γ, ANB,A,B); ∆ =⇒ C
NL!

(Γ, ANB); ∆ =⇒ C

is admissible in the linear sequent calculus. Further prove that the rule

(Γ, A⊗ B,A,B); ∆ =⇒ C
⊗L!

(Γ, A⊗B); ∆ =⇒ C

is not admissible.
Determine which other connectives and constants have similar or analogous

admissible rules directly on resource factories and which ones do not. You do
not need to formally prove admissibility or unsoundness of your proposed rules.

Exercise 3.3 In the proof of admissibility of cut (Theorem 3.8) show the cases
where

1. D ends in(R and E ends in(L and we have a principal cut.

2. D is arbitrary and E ends in(L and we have a a right commutative cut.

3. D ends in !R and E and in !L and we have a principal cut.

Exercise 3.4 Reconsider the connective A ◦(B from Exercise 2.9 which is
true if A linearly implies B and vice versa.

• Give sequent calculus rules corresponding to your introduction and elim-
ination rules.

• Show the new cases in the proof of soundness of the sequent calculus
(Theorem 3.1).

• Show the new cases in the proof of completeness of the sequent calculus
(Theorem 3.2).

• Show the new cases for principal cuts in the proof of admissibility of cut
(Theorem 3.8).

Exercise 3.5 An extension of the notion of Petri net includes inhibitor arcs as
inputs to a transition. An inhibitor arc lets a transition fire only if the place it
is connected to does not contain any tokens. Show how to extend or modify the
encoding of Petri nets from Section 3.2 so that it also models inhibitor arcs.

Draft of October 4, 2001

Bibliography

[ABCJ94] D. Albrecht, F. Bäuerle, J. N. Crossley, and J. S. Jeavons. Curry-
Howard terms for linear logic. In ??, editor, Logic Colloquium ’94,
pages ??–?? ??, 1994.

[Abr93] Samson Abramsky. Computational interpretations of linear logic.
Theoretical Computer Science, 111:3–57, 1993.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in
linear logic. Journal of Logic and Computation, 2(3):197–347, 1992.

[Bar96] Andrew Barber. Dual intuitionistic linear logic. Technical Report
ECS-LFCS-96-347, Department of Computer Science, University of
Edinburgh, September 1996.

[Bib86] Wolfgang Bibel. A deductive solution for plan generation. New Gen-
eration Computing, 4:115–132, 1986.

[Bie94] G. Bierman. On intuitionistic linear logic. Technical Report 346, Uni-
versity of Cambridge, Computer Laboratory, August 1994. Revised
version of PhD thesis.

[Dos̆93] Kosta Dos̆en. A historical introduction to substructural logics. In Pe-
ter Schroeder-Heister and Kosta Dos̆en, editors, Substructural Logics,
pages 1–30. Clarendon Press, Oxford, England, 1993.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210, 405–431, 1935. Translated
under the title Investigations into Logical Deductions in [Sza69].

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[Gir93] J.-Y. Girard. On the unity of logic. Annals of Pure and Applied
Logic, 59:201–217, 1993.

[Lin92] P. Lincoln. Linear logic. ACM SIGACT Notices, 23(2):29–37, Spring
1992.

Draft of October 4, 2001

64 BIBLIOGRAPHY

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical
Logic, 1(1):11–60, 1996.

[MOM91] N. Mart́ı-Oliet and J. Meseguer. From Petri nets to linear logic
through categories: A survey. Journal on Foundations of Computer
Science, 2(4):297–399, December 1991.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science, 11:511–
540, 2001. Notes to an invited talk at the Workshop on Intuitionistic
Modal Logics and Applications (IMLA’99), Trento, Italy, July 1999.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm,
1965.

[Sce93] A. Scedrov. A brief guide to linear logic. In G. Rozenberg and A. Salo-
maa, editors, Current Trends in Theoretical Computer Science, pages
377–394. World Scientific Publishing Company, 1993. Also in Bul-
letin of the European Association for Theoretical Computer Science,
volume 41, pages 154–165.

[SHD93] Peter Schroeder-Heister and Kosta Dos̆en, editors. Substructural Log-
ics. Number 2 in Studies in Logic and Computation. Clarendon Press,
Oxford, England, 1993.

[Sza69] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen.
North-Holland Publishing Co., Amsterdam, 1969.

[Tro92] A. S. Troelstra. Lectures on Linear Logic. CSLI Lecture Notes 29,
Center for the Study of Language and Information, Stanford, Cali-
fornia, 1992.

[Tro93] A. S. Troelstra. Natural deduction for intuitionistic linear logic. Pre-
publication Series for Mathematical Logic and Foundations ML-93-
09, Institute for Language, Logic and Computation, University of
Amsterdam, 1993.

Draft of October 4, 2001

