
2.5 An Example: Finite Automata 27

2.5 An Example: Finite Automata

One of the simplest example of computation with state is provided by finite
automata. In this section we discuss possible ways to model non-deterministic
finite automata in linear logic.

We represent each state of the automaton by a predicate on strings. If the
automaton can go from state p to state q while reading string x then we have
p(x)(q(ε), where ε represents the empty string. More generally, we should
have p(x · y)(q(y) for any y, where x · y represent string concatenation. It
is convenient to assume we have a single distinguished start state s and final
state f . If the automaton has more than one accepting state, we can transform
it by adding a new, sole accepting state f and add ε-transitions from all the
previously accepting states to f .

Consider a simple automaton to accept binary strings with odd parity.

1

1

0
0

s f

We can implement this with the following propositions, whose use is unre-
stricted.

s0 : ∀x. s(0 · x)(s(x)
s1 : ∀x. s(1 · x)(f(x)
f0 : ∀x. f(0 · x)(f(x)
f1 : ∀x. f(1 · x)(s(x)

Even though we do not have the tools to prove this at the moment, we should
keep in mind what we would like to achieve. In this example, we can recognize
strings with odd parity by adding the unrestricted assumption

∀x. (s(x)(f(ε))(odd(x).

Now we can prove odd(x) if and only if x is a binary string with odd parity.
More generally, our encoding should satisfy the following adequacy theorem.

Adequacy for Sequential Encoding of Automata.

Given a non-deterministic finite automaton M and its encoding Γ.
Then for all states p and q and strings x, p

x−→ q if and only if
Γ; · ` ∀y. p(x · y)(q(y). In particular, if M has initial state s and
final state f , then M accepts x if and only if Γ; · ` s(x)(f(ε).

The direct representation given above maps every possible single-step tran-
sition p

x−→ q to the proposition ∀y. p(x · y)(q(y). Typically, x would be a
character c or the empty string ε, but we can also translate automata that can
accept multiple characters in one step.

Draft of September 25, 2001

28 Linear Natural Deduction

Non-deterministic finite automata accept exactly the regular languages as
defined by regular expressions. In addition, regular languages are closed under
some other operations such as intersection or complement. We now consider
how to translate a regular expression into linear logic following a similar strategy
as for automata above. In this case we give the construction of the linear logic
propositions inductively, based on the shape of the regular expression. We write
L(r) for the language of strings defined by a regular expression.

Adequacy for Sequential Encoding of Regular Expressions.

Given a regular expression r and its encoding Γ with distinguished
predicates s (start) and f (final). Then x ∈ L(r) if and only if
Γ; · ` ∀y. s(x · y)(f(y).

For each form of regular expression we now go though the corresponding
construction of Γ. We write Γ(s, f) to identify the distinguished start and final
predicate.

Case: r = a for a character a where L(a) = {a}. Then

Γ(s, f) = ∀y. s(a · y)(f(y)

Case: r = r1 · r2 where L(r1 · r2) = {x1 · x2 | x1 ∈ L(r1) and x2 ∈ L(r2)}. Let
Γ1(s1, f1) and Γ2(s2, f2) be the translations of r1 and r2 respectively. We
construct

Γ(s, f) = ∀x. s(x)(s1(x),
Γ1(s1, f1),
∀z. f1(z)(s2(z),
Γ2(s2, f2),
∀y. f2(y)(f(y)

Case: r = 1 where L(1) = {ε}. Then

Γ(s, f) = ∀y. s(y)(f(y)

Case: r = r1+r2 where L(r1+r2) = L(r1)∪L(r2). Let Γ1(s1, f1) and Γ2(s2, f2)
be the translations of r1 and r2 respectively. We construct

Γ(s, f) = ∀x. s(x)((s1(x)Ns2(x)),
Γ1(s1, f1),Γ2(s2, f2),
∀y. f1(y)(f(y),
∀y. f2(y)(f(y)

Alternatively, we could replace the first rule with the following two:

∀x. s(x)(s1(x),
∀x. s(x)(s2(x)

Draft of September 25, 2001

2.5 An Example: Finite Automata 29

The first formulation may have the slight advantage that every state p
except the final state has exactly one transition ∀x. p(t)(A for some
string t and proposition A. We can also reaplce the last two propositions
by

∀y. (f1(y) ⊕ f2(y))(f(y)

This may be preferable if we would like to maintain instead the invariant
that every final state has one transition into it. These formulations are
equivalent, since

A((BNC) a` (A(B)N(A(C)
(A⊕ B)(C a` (A(C)N(B(C)

and the fact that an unrestricted assumption ANB valid is equivalent to
two unrestricted assumptions A valid, B valid.

Case: r = 0 where L(0) = { }.

Γ(s, f) = ∀x. s(x)(>

with no rule for f . In analogy with the previous case, we could also simply
not generate any propositions for s and f , or generate the proposition

∀y. 0(f(y)

for f .

Case: r = r∗1 where L(r∗1) = {x1 · · ·xn | xi ∈ r1 for 1 ≤ i ≤ n and n ≥ 0}. Let
Γ1(s1, f1) be the translation of r1. Then we construct

Γ(s, f) = ∀x. s(x)((f(x)Ns1(x)),
Γ1(s1, f1),
∀y. f1(y)(s(y)

Alternatively, the first proposition can be broken up into two as in the
case for r1 + r2.

Regular languages are closed under intersection (∩), the full language (T)
and complementation. At least the first two are relatively easy to implement.

Case: r = r1∩r2 where L(r1∩r2) = L(r1)∩L(r2). Let Γ1(s1, f1) and Γ2(s2, f2)
be the translation of r1 and r2. The difficult part of intersection is that
r1 and r2 must consume the same initial segment of the input. This can
be achieved using simultaneous conjunction.

Γ(s, f) = ∀x. s(x)((s1(x)⊗ s2(x)),
Γ1(s1, f1),Γ2(s2, f2),
∀y. (f1(y) ⊗ f2(y))(f(y)

Note how we exploit multiple linear hypotheses and force the synchroniza-
tion of their accepting states on y.

Draft of September 25, 2001

30 Linear Natural Deduction

Case: r = T where L(T) = Σ∗, the set of all strings over the alphabet Σ. T
accepts any initial segment of the input string.

Γ(s, f) = ∀x. ∀y. s(x · y)(f(y)

Strictly speaking, this proposition could present some problems in that
solving an equation such as a · b · c = x · y has multiple solutions if x
and y both stand for arbitrary strings. If we would like to avoid the
assumption that the logic understands the equational theory of strings,
we could decompose this clause into

Γ(s, f) = ∀x. s(x)(f(x),
∀a. ∀y. s(a · y)(s(y)

where a ranges only over characters.

Complement appears to be more complicated, and we presently have no
direct and elegant solution. Note that the encoding of T we take some alge-
braic properties of string concatenation for granted without axiomatizing them
explicitly.

In the representation, non-determinism arising from r1 + r2 is represented
by an internal choice in

∀x. s(x)((s1(x)Ns2(x)).

That is, in the course of the proof itself we have to guess (internal choice)
whether s1(x) or s2(x) will lead to success.

An alternative model of computation would try all successor states essen-
tially concurrently. The corresponds to the idea for transforming non-deterministic
automata into deterministic ones: we keep track of all the possible states we
might be in instead of guessing which transition to make. While in the encoding
above, we have essentially one linear hypothesis (the current state, applied to
the remaining input string), here we will have multiple ones. The adequacy for
this kind of representation is more difficult to formulate precisely, because the
additional threads of computation.

Adequacy of Concurrent Encoding of Automata.

Given a non-deterministic finite automaton M and its concurrent
encoding Γ. Then for all states p and q and strings x, p

x−→ q if
and only if Γ; · ` ∀y. p(x · y)((q(y) ⊗ >). In particular, if M has
initial state s and final state f , then M accepts x if and only if
Γ; · ` s(x)((f(ε) ⊗>).

While this expresses correctness, it does not explicitly address the concur-
rency aspects. For example, even our prior encoding would satisfy this require-
ment even though it does not encode any concurrency. We omit the hypothesis
labels in this encoding.

Draft of September 25, 2001

2.5 An Example: Finite Automata 31

Cases: r = a or r = r1 · r2 or r = 1. As before.

Case: r = r1 + r2. Let Γ1(s1, f1) and Γ2(s2, f2) be the translations of r1 and
r2 respectively. We construct

Γ(s, f) = ∀x. s(x)((s1(x)⊗ s2(x)),
Γ1(s1, f1),Γ2(s2, f2),
∀y. f1(y)(f(y),
∀y. f2(y)(f(y)

Now there is no alternative formulation of the first rule.

Case: r = 0 where L(0) = { }.

Γ(s, f) = ∀x. s(x)(1

with no rule for f .

Case: r = r∗1 where L(r∗1) = {x1 · · ·xn | xi ∈ L(r1) for 1 ≤ i ≤ n and n ≥ 0}.
Let Γ1(s1, f1) be the translation of r1. Then we construct

Γ(s, f) = ∀x. s(x)((f(x) ⊗ s1(x)),
Γ1(s1, f1),
∀y. f1(y)(s(y)

Cases: r = r1 ∩ r2 and r1 = T. As before.

This form of concurrent encoding requires some consideration of scheduling
the processes represented by linear hypotheses. For example, if we have a regular
expression ε∗ ·a we have to be careful not to schedule the process corresponding
to ε∗ indefinitely without scheduling the process for a, or we may never accept
the string a.

These issues foreshadow similar considerations for more complex concurrent
systems in linear logic later on. Note that computation in this setting corre-
sponds to a kind of forward-chaining proof search. Other models of computation
are also possible and often appropriate. In particular, we may describe com-
putation via backward-chaining search, or by proof reduction. We close this
section by showing a backward-chaining implementation of finite automata and
regular expressions.

Recall the simple automaton to accept binary strings with odd parity.

1

1

0
0

s f

Draft of September 25, 2001

32 Linear Natural Deduction

In the coding we now simply reverse all the arrows.

s0 : ∀x. s(0 · x) ◦− s(x)
s1 : ∀x. s(1 · x) ◦− f(x)
f0 : ∀x. f(0 · x) ◦− f(x)
f1 : ∀x. f(1 · x) ◦− s(x)

Then, the automaton accepts x if and only if we can prove

f(ε)(s(x),

again reversing the arrow from the previous statement where we prove s(x)(f(ε)
instead.

Adequacy for Backward-Chaining Encoding of Automata.

Given a non-deterministic finite automaton M and its encoding Γ.
Then for all states p and q and strings x, p

x−→ q if and only if
Γ; · ` ∀y. q(y)(p(x · y). In particular, if M has initial state s and
final state f , then M accepts x if and only if Γ; · ` f(ε)(s(x).

For completness, we now give the backward-chaining encoding of regular
expressions.

Case: r = c for a character c. Then

Γ(s, f) = ∀y. s(c · y) ◦− f(y)

Case: r = r1 · r2. Let Γ1(s1, f1) and Γ2(s2, f2) be the translations of r1 and r2

respectively. We construct

Γ(s, f) = ∀x. s(x) ◦− s1(x),
Γ1(s1, f1),
∀z. f1(z) ◦− s2(z),
Γ2(s2, f2),
∀y. f2(y) ◦− f(y)

Case: r = 1 where L(1) = {ε}. Then

Γ(s, f) = ∀y. s(y) ◦− f(y)

Case: r = r1 + r2. Let Γ1(s1, f1) and Γ2(s2, f2) be the translations of r1 and
r2 respectively. We construct

Γ(s, f) = ∀x. s(x) ◦−(s1(x)⊕ s2(x)),
Γ1(s1, f1),Γ2(s2, f2),
∀y. f1(y) ◦− f(y),
∀y. f2(y) ◦− f(y)

Draft of September 25, 2001

2.5 An Example: Finite Automata 33

Interestingly, the internal choice s1(x)Ns2(x) is turned into an external
choice s1(x)⊕s2(x) when we turn a forward chaining to a backward chain-
ing implementation. Again, there are some alternatives. For example, the
last two propositions can be combined into

∀y. (f1(y)Nf2(y)) ◦− f(y)

Case: r = 0 where L(0) = { }.

Γ(s, f) = ∀x. s(x) ◦−0

with no rule for f . Again, alternatives are possible.

Case: r = r∗1. Let Γ1(s1, f1) be the translation of r1. Then we construct

Γ(s, f) = ∀x. s(x) ◦−(f(x) ⊕ s1(x)),
Γ1(s1, f1),
∀y. f1(y) ◦− s(y)

Case: r = r1 ∩ r2. Let Γ1(s1, f1) and Γ2(s2, f2) be the translation of r1 and r2.
This case appears to be quite tricky, because of the lack of any natural
concurrency in the backward-chaining model.1

Case: r = T. Then

Γ(s, f) = ∀x. ∀y. s(x · y) ◦− f(y)

We now return to our first encoding of regular expressions. How can we
prove the adequacy of the representation? Recall the statement of the adequacy
theorem.

Adequacy for Encoding of Regular Expressions.

Given a regular expression r and its encoding Γ with distinguished
predicates s (start) and f (final). Then x ∈ L(r) if and only if
Γ; · ` ∀y. s(x · y)(f(y).

We first prove that if x ∈ L(r), then Γ(s, f); · ` ∀y. s(x · y)(f(y). In all
cases we reduce this to proving

Γ(s, f); s(x · y) ` f(y)

for a new parameter y. The adequacy follows from this in two steps by (I
and ∀I. The proof is now by induction on the structure of r. We restate the
translations, this time giving explicit labels to assumptions so we can refer to
them in the proof.

1Suggestions welcome!

Draft of September 25, 2001

34 Linear Natural Deduction

Case: r = a for a character a where L(a) = {a}. Then

Γ(s, f) = vs : ∀y. s(a · y)(f(y)

So we have to show

vs : ∀y. s(a · y)(f(y); s(a · y) ` f(y)

which follows in three steps.

vs : ∀y. s(a · y)(f(y); s(a · y) ` s(a · y) Linear hypothesis
vs : ∀y. s(a · y)(f(y); · ` ∀y. s(a · y)(f(y) Unrestricted hypothesis
vs : ∀y. s(a · y)(f(y); · ` s(a · y)(f(y) By rule ∀E
vs : ∀y. s(a · y)(f(y); s(a · y) ` f(y) By rule(E

Case: r = r1 · r2 where L(r1 · r2) = {x1 · x2 | x1 ∈ L(r1) and x2 ∈ L(r2)}. Let
Γ1(s1, f1) and Γ2(s2, f2) be the translations of r1 and r2 respectively. We
construct

Γ(s, f) = vs : ∀x. s(x)(s1(x),
Γ1(s1, f1),
vf1 : ∀z. f1(z)(s2(z),
Γ2(s2, f2),
vf2 : ∀y. f2(y)(f(y)

We have to show
Γ(s, f); s(x1 · x2 · y) ` f(y)

for a new parameter y.

Γ(s, f); s(x1 · x2 · y) ` s(x1 · x2 · y) Linear hypothesis
Γ(s, f); s(x1 · x2 · y) ` s1(x1 · x2 · y) From vs by ∀E and(E
Γ(s, f); s(x1 · x2 · y) ` f1(x2 · y) By i.h. on r1, weakening and subst.
Γ(s, f); s(x1 · x2 · y) ` s2(x2 · y) From vf1 by ∀E and(E
Γ(s, f); s(x1 · x2 · y) ` f2(y) By i.h. on r2, weakening and subst.
Γ(s, f); s(x1 · x2 · y) ` f(y) from vf2 by ∀E and(E

Case: r = 1 where L(1) = {ε}. Then

Γ(s, f) = vs : ∀y. s(y)(f(y)

This case is trivial, since ε · y = y.

Γ(s, f); s(ε · y) ` s(ε · y) Linear hypothesis
Γ(s, f); s(ε · y) ` f(y) From vs by ∀E, (E since ε · y = y

Case: r = r1+r2 where L(r1+r2) = L(r1)∪L(r2). Let Γ1(s1, f1) and Γ2(s2, f2)
be the translations of r1 and r2 respectively. We construct

Γ(s, f) = vs : ∀x. s(x)((s1(x)Ns2(x)),
Γ1(s1, f1),Γ2(s2, f2),
vf1 : ∀y. f1(y)(f(y),
vf2 : ∀y. f2(y)(f(y)

Draft of September 25, 2001

2.5 An Example: Finite Automata 35

Let x ∈ L(r). Then there are two subcases. We show the case where
x ∈ L(r1); the other subcase is symmetric.

Γ(s, f); s(x · y) ` s(x · y) Linear hypothesis
Γ(s, f); s(x · y) ` s1(x · y)Ns2(x · y) From vs by ∀E, (E
Γ(s, f); s(x · y) ` s1(x · y) By rule NEL

Γ(s, f); s(x · y) ` f1(y) By i.h. on r1, weakening and subst.
Γ(s, f); s(x · y) ` f(y) From vf1 by ∀E, (E

Case: r = 0 where L(0) = { }.

Γ(s, f) = vs : ∀x. s(x)(>

with no rule for f . Then the conclusion follows trivially since there is no
x ∈ L(0).

Case: r = r∗1 where L(r∗1) = {x1 · · ·xn | xi ∈ L(r1) for 1 ≤ i ≤ n and n ≥ 0}.

Γ(s, f) = vs : ∀x. s(x)((f(x)Ns1(x)),
Γ1(s1, f1),
vf1 : ∀y. f1(y)(s(y)

Assume x = x1 · · ·xn ∈ L(r∗1) where each xi ∈ r1 for 1 ≤ i ≤ n. We
conduct an auxiliary induction on n.

Subcase: n = 0. Then, by definition, x1 · · ·xn = ε.

Γ(s, f); s(ε · y) ` s(ε · y) Linear hypothesis
Γ(s, f); s(ε · y) ` f(y)Ns1 (x) From vs by ∀E, (E
Γ(s, f); s(ε · y) ` f(y) By rule NEL

Subcase: n > 0. Then

Γ(s, f); s(x1 · · ·xn · y) ` s(x1 · · ·xn · y) Linear hypothesis
Γ(s, f); s(x1 · · ·xn · y) ` f(x1 · · ·xn · y)Ns1(x1 · · ·xn · y) From vs
Γ(s, f), s(x1 · · ·xn · y) ` s1(x1 · · ·xn · y) By rule NER

Γ(s, f), s(x1 · · ·xn · y) ` f1(x2 · · ·xn · y) By i.h. since x1 ∈ L(r1)
Γ(s, f), s(x1 · · ·xn · y) ` s(x2 · · ·xn · y) From vf1
Γ(s, f), s(x1 · · ·xn · y) ` f(y) From i.h. on n− 1

We now also show the correctness for the encoding of intersection and all
strings.

Case: r = r1∩r2 where L(r1∩r2) = L(r1)∩L(r2). Let Γ1(s1, f1) and Γ2(s2, f2)
be the translation of r1 and r2.

Γ(s, f) = vs : ∀x. s(x)((s1(x)⊗ s2(x)),
Γ1(s1, f1),Γ2(s2, f2),
vf12 : ∀y. (f1(y) ⊗ f2(y))(f(y)

Assume x ∈ L(r1) ∩ L(r2). Then

Draft of September 25, 2001

36 Linear Natural Deduction

Γ(s, f); s(x · y) ` s(x · y) Linear hypothesis
Γ(s, f); s(x · y) ` s1(x · y) ⊗ s2(x · y) From vs
Γ(s, f); s1(x · y) ` f1(y) From i.h. since x ∈ L(r1)
Γ(s, f); s2(x · y) ` f2(y) From i.h. since x ∈ L(r2)
Γ(s, f); s1(x · y), s2(x · y) ` f1(y) ⊗ f2(y) By ⊗I
Γ(s, f); s(x · y) ` f1(y) ⊗ f2(y) By ⊗E
Γ(s, f); s(x · y) ` f(y) From vf12

Case: r = T where L(T) = Σ∗, the set of all strings over the alphabet Σ.

Γ(s, f) = vs : ∀x. ∀y. s(x · y)(f(y)

Let x by an arbitrary string. Then

Γ(s, f); s(x · y) ` s(x · y) Linear hypothesis
Γ(s, f); s(x · y) ` f(y) From vs

The other direction is much harder to prove. Assume we have a regular
expression r, its encoding Γ(s, f), and a deduction of Γ; ·∀y. s(x · y)(f(y). We
need to show that x ∈ L(r). In order to do this, we need to analyse the structure
of the given deduction. In some sense, we are showing that the deduction we
gave in the other direction above are “inevitable”. To illustrate the difficulty,
consider, for example, the (rule.

Γ; ∆1 ` A(B Γ; ∆2 ` A
(E

Γ; (∆1,∆2) ` B

If we are trying to prove B from Γ and ∆, two problems arise. First, we have
to decide how to split ∆ into ∆1 and ∆2. More importantly, however, how do
we choose A?

If we look back at the development of our logic, we introduced this rule to
answer the question “How do we use the knowledge that A(B true”. Above,
however, we think about how to prove B. It is this mismatch which makes rules
like(E intractable.

In the next section we will introduce a restriction on the application of
the inference rules whereby introduction rules are only applied bottom-up while
elimination rules are applied only top-down. With this restriction it will be pos-
sible to show to prove the more difficult direction of adequacy for the encoding
of regular expressions.

2.6 Normal Deductions

The judgmental approach to understanding propositions and truth defines the
meaning of the connectives by giving the introduction and elimination rules. We
claim, for example, that ANB true ifA true andB true. We see this as a defining
property for alternative conjunction (once the hypotheses have been added to

Draft of September 25, 2001

2.6 Normal Deductions 37

the rule). But does our final deductive system validate this interpretation of
alternative conjunction? For example, it could be the case C((ANB) true and
C true but there is no direct way of deriving A true and B true without the
detour through C.

Local soundness and completeness are important tools to verify the cor-
rectness of our system. They verify that if we introduce and then immediately
eliminate a connectives, this detour can be avoided. This is a local property of a
derivation. However, it is possible that we introduce a connective and eliminate
it at some later point in a proof, but not immediately. For example,

hyp
A⊗ B `̀ A⊗ B

D
A,B `̀ C

E
A,B `̀ D

NI
A,B `̀ CND

⊗E
A ⊗B `̀ CND

NEL
A ⊗B `̀ C

This deduction contains a detour, since we first introduce CND and then
later eliminate it. In a derivation of this form, we cannot carry out a local
reduction because CND is introduced above and eliminated below the applica-
tion ⊗E. In this case it is easy to see how to correct the problem: we move the
application of NE to come above the application of ⊗E, and then carry out a
local reduction.

hyp
A ⊗B `̀ A⊗ B

D
A,B `̀ C

E
A,B `̀ D

NI
A,B `̀ CND

NEL
A,B `̀ C

⊗E
A ⊗B `̀ C

This then reduces to

hyp
A⊗B `̀ A ⊗B

D
A,B `̀ C

⊗E
A ⊗B `̀ C

What we eventually want to show is global soundness and completeness.
Global soundness states that every evident judgment Γ; ∆ ` A true has a

derivation in which we only apply introduction rules to conclusions that we
are trying to prove and elimination rules to hypotheses or consequences we
have derived from them. We all such derivations normal. Normal derivations
have the important subformula property : every judgment occurring in a normal
derivation of Γ; ∆ ` A true refers only to subformulas of Γ, ∆, and A. This
means our definition of truth is internally consistent and well-founded. It also
means that our connectives are orthogonal to each other: we can understand

Draft of September 25, 2001

38 Linear Natural Deduction

each connective in isolation, falling back only on judgmental notions in their
definition.

Global completeness means that every evident judgment Γ; ∆ ` A true has
a derivation in which every conclusion is eventually inferred by an introduction
rule. For this to be the case, the elimination rules need to be strong enough
so we can decompose our hypothesis and reassemble the conclusion from the
atomic constituents, where a proposition is atomic if it doesn’t have a top-level
logical connective. We call such a derivation a long normal derivation, because
it corresponds to the notion of long normal form in λ-calculi.

In order to prove these properties for our logic, we need to define more
formally what normal and long normal deductions are. We postpone the dis-
cussion of long normal derivation and just concentrate on normal derivations in
this section. We express this by two mutually recursive judgments that reflect
the nature of hypothetical reasoning with introduction and elimination rules.

Γ; ∆ ` A ↑ A has a normal derivation, and
Γ; ∆ ` A ↓ A has an atomic derivation,

These formalize an intuitive strategy in constructing natural deductions is
to apply introduction rules backwards to break the conclusion into subgoals and
to apply elimination rules to hypotheses until the two meet. These judgments
are defined by the following inference rules.

Hypotheses.

u
Γ; u:A ` A ↓

v
(Γ, v:A); · ` A ↓

Multiplicative Connectives.

Γ; ∆1 ` A ↑ Γ; ∆2 ` B ↑
⊗I

Γ; (∆1,∆2) ` A⊗B ↑

Γ; ∆ ` A⊗B ↓ Γ; (∆′, u:A,w:B) ` C ↑
⊗E

Γ; (∆,∆′) ` C ↑

Γ; (∆, u:A) ` B ↑
(I

Γ; ∆ ` A(B ↑

Γ; ∆ ` A(B ↓ Γ; ∆′ ` A ↑
(E

Γ; ∆,∆′ ` B ↓

1I
Γ; · ` 1 ↑

Γ; ∆ ` 1 ↓ Γ; ∆′ ` C ↑
1E

Γ; (∆,∆′) ` C ↑

Draft of September 25, 2001

2.6 Normal Deductions 39

Additive Connectives.

Γ; ∆ ` A ↑ Γ; ∆ ` B ↑
NI

Γ; ∆ ` ANB ↑

Γ; ∆ ` ANB ↓
NEL

Γ; ∆ ` A ↓

Γ; ∆ ` ANB ↓
NER

Γ; ∆ ` B ↓

>I
Γ; ∆ ` > ↑ No > elimination rule

Γ; ∆ ` A ↑
⊕IL

Γ; ∆ ` A ⊕B ↑
Γ; ∆ ` B ↑

⊕IR
Γ; ∆ ` A⊕ B ↑

Γ; ∆ ` A ⊕B ↓ Γ; (∆′, u:A) ` C ↑ Γ; (∆′, w:B) ` C ↑
⊕E

Γ; (∆,∆′) ` C ↑

No 0 introduction rule

Γ; ∆ ` 0 ↓
0E

Γ; (∆,∆′) ` C ↑

Quantifiers.

Γ; ∆ ` [a/x]A ↑
∀Ia

Γ; ∆ ` ∀x. A ↑
Γ; ∆ ` ∀x. A ↓

∀E
Γ; ∆ ` [t/x]A ↓

Γ; ∆ ` [t/x]A ↑
∃I

Γ; ∆ ` ∃x. A ↑

Γ; ∆ ` ∃x. A ↓ Γ; (∆′, u:[a/x]A) ` C ↑
∃Ea

Γ; (∆′,∆) ` C ↑

Exponentials.

(Γ, v:A); ∆ ` B ↑
⊃I

Γ; ∆ ` A ⊃B ↑
Γ; ∆ ` A ⊃B ↓ Γ; · ` A ↑

⊃E
Γ; ∆ ` B ↓

Γ; · ` A ↑
!I

Γ; · ` !A ↑

Γ; ∆ ` !A ↓ (Γ, v:A); ∆′ ` C ↑
!E

Γ; (∆′,∆) ` C ↑

Draft of September 25, 2001

40 Linear Natural Deduction

Coercion.

Γ; ∆ ` A ↓
↓↑

Γ; ∆ ` A ↑

The coercion ↓↑ states that all atomic derivations should be considered nor-
mal. From the point of view of proof search this means that we can complete
the derivation when forward and backward reasoning arrive at the same propo-
sition. We obtain long normal derivation if we restrict the coercion rule to
atomic propositions. It easy to see that these judgments just restrict the set of
derivations.

Property 2.1 (Soundness of Normal Derivations)

1. If Γ; ∆ ` A ↑ then Γ; ∆ ` A.

2. If Γ; ∆ ` A ↓ then Γ; ∆ ` A.

Proof: By simultaneous induction on the given derivations. The computational
contents of this proof are the obvious structural translation from N :: (Γ; ∆ `
A ↑) to N− :: (Γ; ∆ ` A) and from A :: (Γ; ∆ ` A ↓) to A− :: (Γ; ∆ ` A).
Note that the coercion ↓↑ disappears, since the translation of the premise and
conclusion are identical. 2

The corresponding completeness theorem, namely that Γ; ∆ ` A implies
Γ; ∆ ` A ↑, also holds, but is quite difficult to prove. This is the subject
of the Normalization Theorem ??. Together with the two judgments about
atomic and normal derivations, we have refined substitution principles. Since
hypotheses are atomic, they permit only the substitution of atomic derivations
for hypotheses.2

Lemma 2.2 (Substitution Principles for Atomic Derivations)

1. If Γ; ∆ ` A ↓ and Γ; (∆′, u:A) ` C ↑ then Γ; (∆,∆′) ` C ↑.

2. If Γ; ∆ ` A ↓ and Γ; (∆′, u:A) ` C ↓ then then Γ; (∆,∆′) ` C ↓.

3. If Γ; · ` A ↓ and (Γ, v:A); ∆ ` C ↑ and then Γ; ∆ ` C ↑.

4. If Γ; · ` A ↓ and (Γ, v:A); ∆ ` C ↓ and then Γ; ∆ ` C ↓.

Proof: By straightforward inductions over the structure of the derivation we
substitute into, appealing to weakening and exchange properties. 2

2We have not formally stated the substitution principles for natural deduction as theorems
of the complete system. They can be proven easily by induction on the structure of the
derivation we substitute into.

Draft of September 25, 2001

