7.3 Logical Frameworks 151

from a domain with a decidable equality theory. This appears to be a reasonable
compromise that can make the expressive power of dependent types available
to the programmer without sacrificing decidable and efficient type-checking.

7.3 Logical Frameworks

In the previous section, we illustrated how (linear) type theory could be used
as the foundation of (linear) functional programming. The demands of a com-
plete functional language and, in particular, the presence of data types and
recursion makes it difficult to attain decidable type-checking. In this section we
discuss another application of linear type theory as the foundation for a logical
framework.

A logical framework is a meta-language for the specification and implemen-
tation of deductive systems. This includes applications in various logics and
programming languages For surveys of logical frameworks and their applica-
tions, see [Pfe96, BM01, Pfe01].

One of the most expressive current frameworks is LF [HHP93] which is based
on a A-calculus with dependent types. There are many elegant encodings of de-
ductive systems in such a framework that can be found in the references above.
However, there are also many systems occurring both in logic and program-
ming languages, for which encodings are awkward. Examples are substructural
logic (such as linear logic), calculi for concurrency (such as the m-calculus), or
programming languages with state (such as Mini-ML with mutable references).
Even for pure languages such as Haskell, some aspects of the operational seman-
tics such as laziness and memoization are difficult to handle. This is because at
a lower level of abstraction, the implementations of even the purest languages
are essentially state-based.

In response to these shortcomings, a linear logical framework (LLF) has been
developed [CP96, Cer96, CP98]. This framework solved some of the problems
mentioned above. In particular, it allows natural encodings of systems with
state. However, it did not succeed with respect to intrinsic notions of concur-
rency. We will try to give an intuitive explanation of why this is so after showing
what the system looks like.

First, in a nutshell, the system LF. The syntax has the following form:

Types A = aMy...M, |Hx:A;... Ay
Objects M == claz | x:A. M| M M,

Here, a ranges over type families indexed by object M;, ¢ ranger over object
constants. Unlike the functional language above, these are not declared by
formation rules, introduction rules, and elimination rules. In fact, we must avoid
additional introduction and elimination rules because the corresponding local
reductions make the equational theory (and therefore type checking) difficult to
manage.

Instead, all judgments will be parametric in these constants! They are de-
clared in a signature Y which is a global analogue of the context I'. We need
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kinds in order to classify type families.

Kinds K = Ilzi:A;...1Hx,:A,. type
Signatures X = - |X,a:K|X,c¢A

As a simple example, we consider a small imperative language. We distin-
guish expressions (which have a value, but no effect) from commands (which
have an effect, but no value). Expressions are left unspecified, except that vari-
ables are allowed as expressions and that we must have boolean values true
and false. In other words, our example is parametric in the language of ex-
pressions; the only requirements are that they cannot have an effect, and that
they must allow variables. Commands are no-ops (skip), sequential composition
(C1; Cq), parallel composition (Cy || C2), assignment (z := e) and the alloca-
tion of a new local variable (newz. C). We also have a conditional construct
(if e then C; else C3) and a loop loop [. C.

Expression Types 7 = bool]|...
Expressions e = gz |true]|false]...
Commands C == skip|Cy;C2|Cy || Co|x:=€|newaz:r. C

| if e then C4 else Cs | loop 1. C

For the loop construct loop I. C', we introduce a label [ with scope C'. This
label is considered a new command in C', where invoking ! corresponds to a copy
of the loop body. Thus executing loop I. C reduces to executing [loop . C/I]|C.
Note that this only allows backwards jumps and does not model a general goto.
Its semantics is also different from goto if it is not the “last” command in a loop
(see Exercise 7?7 where you are also asked to model a while-loop using loop).
The simplest infinite loop is loop 1. I.

We now turn to the representation of syntax. We have a framework type
tp representing object language types, and index expressions by their object
language type. We show the representation function "7 and "e™.

tp 1 type
"bool? = bool bool : tp
var 1 tp — type
exp : tp— type
Tz = vitlz v : Viitp. var(t) — exp(?)
Ttrue? = true true : exp(bool)
Tfalse? = false false : exp(bool)

One of the main points to note here is that variables of our imperative
language are represented by variables in the framework. For the sake of conve-
nience, we choose the same name for a variable and its representation. The type
of such a variable in the framework will be var("77) depending on its declared
type. v is the coercion from a variable of type 7 to an expression of type 7. It
has to be indexed by a type t, because it could be applied to an expression of

any type.
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Commands on the other hand do not return a value, so their type is not
indexed. In order to maintain the idea the variables are represented by vari-
ables, binding constructs in the object language (namely new and loop) must
be translated so they bind the corresponding variable in the meta-language.
This idea is called higher-order abstract syntax [PE88], since the type of such
constructs in generally of order 2 (the constructors new and loop take functions
as arguments).

Tskip™' = skip

rCy; Oy = seq"C, 70,

o, H Cy7 = parTC, 770y

Tr:=e¢' = assign "7z "e! for z and e of type T
Tnew z:7. C™ = new 7' (Azwar("77). TCT)

Fif ethen Cy else Co7 = if Te'TC;7Cy7"  for e of type bool
Mloop 1. C™ = loop (Al:cmd. "C7)

In the declarations below, wee see that assign and new need to be indexed by
their type, and that a conditional command branches depending on a boolean
expression. In that way only well-typed commands can be represented—others
will be rejected as ill-typed in the framework.

cmd : type

skip : cmd

seq : cmd — cmd — cmd

par : cmd — cmd — cmd

assign : Vt:itp. var(t) — exp(t) — cmd
new  : Vétp. (var(t) — cmd) — cmd
if . exp(bool) = cmd — cmd
loop : (ecmd — cmd) — cmd

So far, we have not needed linearity. Indeed, the declarations above are just
a standard means of representing syntax in LF using the expressive power of
dependent types for data representation.

Next we would like to represent the operational semantics in the style of
encoding that we have used in this class before, beginning with expressions. We
assume that for each variable = of type 7 we have an affine assumption z = v for
a value v of type 7. In a context x; = v1,...,x, = v, all variables x; must be
distinct. In judgmental notation, our judgment would be ¥ I e — v, where ¥
represents the store and H is an affine hypothetical judgment. In our fragment
it would be represented by only three rules

ev_var

U rx=vFz—v

ev_true ev_false
T true — true ¥ ¥ false — false
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Since our framework is linear and not affine, we need to take care of elimi-
nating unconsumed hypotheses. We have

Te=v"' = wvalue"r7 2z 0"
Te—sv! = evall7 et

Note that these will be represented as type families since judgments are repre-
sented as types and deductions as objects.

value : Vititp. var(t) — exp(t) — type
eval : Viitp. exp(t) — exp(t) — type

Note that value and eval are both type families with dependent kinds, that
is, the type of the second and third index objects depends on the first index
object t in both cases. In the fragment we consider here, the evaluation rules are
straightforward, although we have to take care to consume extraneous resources
in the case of variable.

ev_true : T —oeval bool true true
ev_false : T —oeval bool false false
evvar ¢ Vtitp. Vauvar(t). Yuiexp(t). Ve:exp(t).

T —ovaluetzv—evalt(vtz)v

What did we need so far? We have used unrestricted implication and uni-
versal quantification, linear implication and additive truth. If we had a binary
operator for expressions we would also need an additive conjunction so that the
values of variables are accessible in both branches. Kinds and signatures change
only to the extent that the types embedded in them change.

Kinds K = Ilzi:A;...1x,:A,. type
Signatures X = | X, a:K |cA
Types A u= abMy...M,|Hx:A;... Ay
| A1 —OA2 | Al&AQ | T
Objects M == cla | x:A. M| M M,

| Az:A. M | My M,
| <M1,M2> |fStM | snd M
| ()

Note that in this fragment, uniform deductions are complete. Moreover,
every term has a canonical form, which is a S-normal, n-long form. Canonical
forms are defined as in Section 2.6 where the coercion from atomic to normal
derivations is restricted to atomic propositions. This is important, because it
allows a relatively simple algorithm for testing equality between objects, which
is necessary because of the rule of type conversion in the type theory.

The appropriate notion of definitional equality here is then defined by the
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rules for B-reduction and n-expansion.
Iz:A;AFM: B I'''FN:A
;AE (Ax:A. MYN = [N/z]M : [N/x]B

;A wAFM: B ;AN EN:A

[;A A" F (AwA. M) N = [N/ulM : B

IAEM, - A I'"AFMs: B IARM, - A INARM,:B
F;Al_fst<M1,M2>=M1 A F,Al—snd <M1,M2>=MQZB

AR M :Va:A. B
AR M=MXx:A. Mz :Ve:A. B

INAFM:A—-B

[;AF M = duA. Mu:A—B

I'A-DM: AB
;AR M = (fst M,snd M) : A&B

AREM:T
DAEM=():T

The remaining rules are reflexivity, symmetry, transitivity, and congruence
rules for each constructors. It is by no means trivial that this kind of equality
is decidable (see [CP98, VCO00]). We would like to emphasize once again that
in a dependent type theory, decidability of judgmental (definitional) equality is
necessary to obtain a decidable type-checking problem.

Next we come to the specification of the operational semantics of commands.
For this we give a natural specification in terms of two type families, exec D C'
where D is a label for the command, and done D which indicates that the
command labeled D has finished. The labels here are not targets for jumps
since they are not part of the program (see Exercise 77). Note that there are
no constructors for labels—we will generate them as parameters during the
execution.

lab : type
exec : lab — cmd — type
done : lab — type

According to our general strategy, exec D C' and done D will be part of
our linear hypothesis. Without giving a structural operational semantics, we
present the rules for execution of commands directly in the type theory.
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skip returns immediately.
ex_skip : VD:lab. exec D skip —done D

For sequential composition, we prevent execution of the second command
until the first has finished.

ex.seq : VD:lab. VCi:ecmd. VC5:cmd.
exec D (seq C1 C3)
—o(3d;:lab. exec d; Cy ® (done d; —oexec D C5))

For parallel composition, both commands can proceed independently. The
parallel composition is done, if both commands are finished. This is by no means
the only choice of an operational semantics.

ex_par : VD:lab. VCi:cmd. VCs:cmd.
exec D (par Cy Cs)
—o dd;:lab. Jds:lab. exec d; C1 ® exec da Cs
® (done d; ® done dy —o done D)

For assignment, we need to consume the assumption x = v’ for the variable
and assume the new value as z = v. We also want to allow assignment to an
uninitialized variables, which is noted by an assumption uninit "7 ' x.

uninit : Vé:tp. var(t) — type
ex_assign : VD:lab. VT:tp. VX:var(T). VE:exp(T). VV:exp(T).
exec D (assign T X E)
—o (eval T EV —0)
@ ((uninit T X @ IV":exp(T). value T X V')
—ovalue T X V ® done D)

The new command creates a new, uninitialized variable.

ex-new :  VD:lab. VT:tp. VC:var(T) — cmd.
exec D (new T (Az:var(T). C(z)))
—o Jy:var(T). uninit Ty ® exec D C(y)

Note type of C', which depends on a variable z. In order to emphasize this point,
we have created a variable y with a different name on the right-hand side. The
ex_new constant will be applied to a (framework) function (Az:var(T). C’) which
is applied to x on the left-hand side and y on the right hand side. We then have

C(x) = (Azwar(T). C") z = [z/2]C’

where the second equality is a definitionaly equality which follows by B-conversion.
On the right-hand side have instead

C(y) = (Azwvar(T). ")y = [y/z]C",
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again by (-conversion.

So here we take critical advantage of the rule of type conversion in order to
construct our encoding.

We leave the straightforward rules for the conditional to Exercise 77.

For loops, we give two alternative formulations. The first take advantage
of definitional equality in order to perform substitution, thereby unrolling the
loop.

ex_loop : VD:lab. VC:cmd — cmd
exec D (loop (M:ecmd. C(1)))
—oexec D (C (loop (Al:emd. C(1))))

Assume the command has form loop I. C’. Then
Moop I. C'7 = loop (Al:lab. "C'™).
Then the framework variable C' will be instantiated with
C = N:cmd. C'.
For the framework expression on the right-hand side we obtain

(C (loop (Al:emd. C(1))))
= (M:emd. C") (loop (Al:cmd. C(1)))
(loop (M:emd. C(1)))/1)C’

Q

[
[Mloop 1. C"7/1]™
Mloop . C'/1)C""

Here the last equation follows by compositionality: substitution commutes
with representation. This is a consequence of the decision to represent object-
language variables by meta-language variables and can lead to very concise
encodings (just as in this case). It means we do not have to explicitly axiom-
atize substitution, but we can let the framework take care of it for us. Since
formalizing substitution can be a significant effort, this is a major advantage of
higher-order abstract syntax over other representation techniques.

We can also avoid explicit substitution, instead adding an linear hypothesis
that captures how to jump back to the beginning of a loop more directly.

ex_loop’ : VD:lab. VC:cmd — cmd
exec D (loop (AM:cmd. C(1)))
—oJk:cmd. (Vd:lab. exec d k — exec d (C'(k)))
® exec D (C(k))

This completes our specification of the operational semantics, which is at
a very high level of abstraction. Unfortunately, the concurrency in the spec-
ification requires leaving the fragment we have discussed so far and including
multiplicative conjunction and existential quantification, at least. As mentioned
before, there is a translation back into the uniform fragment that preserves prov-
ability. This translation, however, does not preserve a natural notion of equality
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on proofs, or a natural semantics in terms of logic program execution. It is a
subject of current research to determine how concurrency can be introduced
into the linear logical framework LLF in a way that preserves the right notion
of equality.

So far, it seems we have not used the nm-conversion. Our representation
function is a bijection between syntactic categories of the object language and
canonical forms of the representation type. Together with G-reduction, we need
n-expansion to transform and arbitrary object to its canonical form. Without
it we would have “exotic objects” that do not represent any expression in the
language we are trying to model.
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