
1

February 11, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Parametric Representations
Cubic Polynomial Forms
Hermite Curves
Bezier Curves and Surfaces

[Angel 10.1-10.6]

Curves and Surfaces

15-462 Computer Graphics I
Lecture 9

02/11/2003 15-462 Graphics I 2

Goals

• How do we draw surfaces?
– Approximate with polygons
– Draw polygons

• How do we specify a surface?
– Explicit, implicit, parametric

• How do we approximate a surface?
– Interpolation (use only points)
– Hermite (use points and tangents)
– Bezier (use points, and more points for tangents)

• Next lecture: splines, realization in OpenGL

02/11/2003 15-462 Graphics I 3

Explicit Representation

• Curve in 2D: y = f(x)
• Curve in 3D: y = f(x), z = g(x)
• Surface in 3D: z = f(x,y)
• Problems:

– How about a vertical line x = c as y = f(x)?
– Circle y = § (r2 – x2)1/2 two or zero values for x

• Too dependent on coordinate system
• Rarely used in computer graphics

02/11/2003 15-462 Graphics I 4

Implicit Representation

• Curve in 2D: f(x,y) = 0
– Line: ax + by + c = 0
– Circle: x2 + y2 – r2 = 0

• Surface in 3d: f(x,y,z) = 0
– Plane: ax + by + cz + d = 0
– Sphere: x2 + y2 + z2 – r2 = 0

• f(x,y,z) can describe 3D object:
– Inside: f(x,y,z) < 0
– Surface: f(x,y,z) = 0
– Outside: f(x,y,z) > 0

02/11/2003 15-462 Graphics I 5

Algebraic Surfaces

• Special case of implicit representation
• f(x,y,z) is polynomial in x, y, z
• Quadrics: degree of polynomial · 2
• Render more efficiently than arbitrary surfaces
• Implicit form often used in computer graphics
• How do we represent curves implicitly?

02/11/2003 15-462 Graphics I 6

Parametric Form for Curves

• Curves: single parameter u (e.g. time)
• x = x(u), y = y(u), z = z(u)
• Circle: x = cos(u), y = sin(u), z = 0
• Tangent described by derivative

• Magnitude is “velocity”

2

02/11/2003 15-462 Graphics I 7

Parametric Form for Surfaces

• Use parameters u and v
• x = x(u,v), y = y(u,v), z = z(u,v)
• Describes surface as both u and v vary
• Partial derivatives describe tangent plane at

each point p(u,v) = [x(u,v) y(u,v) z(u,v)]T

02/11/2003 15-462 Graphics I 8

Assessment of Parametric Forms

• Parameters often have natural meaning
• Easy to define and calculate

– Tangent and normal
– Curves segments (for example, 0 · u · 1)
– Surface patches (for example, 0 · u,v · 1)

02/11/2003 15-462 Graphics I 9

Parametric Polynomial Curves

• Restrict x(u), y(u), z(u) to be polynomial in u
• Fix degree n

• Each ck is a column vector

02/11/2003 15-462 Graphics I 10

Parametric Polynomial Surfaces

• Restrict x(u,v), y(u,v), z(u,v) to be polynomial of
fixed degree n

• Each cik is a 3-element column vector
• Restrict to simple case where 0 · u,v · 1

02/11/2003 15-462 Graphics I 11

Approximating Surfaces

• Use parametric polynomial surfaces
• Important concepts:

– Join points for segments and patches
– Control points to interpolate
– Tangents and smoothness
– Blending functions to describe interpolation

• First curves, then surfaces

02/11/2003 15-462 Graphics I 12

Outline

• Parametric Representations
• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces

3

02/11/2003 15-462 Graphics I 13

Cubic Polynomial Form

• Degree 3 appears to be a useful compromise
• Curves:

• Each ck is a column vector [ckx cky ckz]T

• From control information (points, tangents)
derive 12 values ckx, cky, ckz for 0 · k · 3

• These determine cubic polynomial form
• Later: how to render

02/11/2003 15-462 Graphics I 14

Interpolation by Cubic Polynomials

• Simplest case, although rarely used
• Curves:

– Given 4 control points p0, p1, p2, p3

– All should lie on curve: 12 conditions, 12 unknowns

• Space 0 · u · 1 evenly
p0 = p(0), p1 = p(1/3), p2 = p(2/3), p3 = p(1)

02/11/2003 15-462 Graphics I 15

Equations to Determine ck

• Plug in values for u = 0, 1/3, 2/3, 1

Note:
pk and ck
are vectors!

02/11/2003 15-462 Graphics I 16

Interpolating Geometry Matrix

• Invert A to obtain interpolating geometry matrix

02/11/2003 15-462 Graphics I 17

Joining Interpolating Segments

• Do not solve degree n for n points
• Divide into overlap sequences of 4 points
• p0, p1, p2, p3 then p3, p4, p5, p6, etc.

• At join points
– Will be continuous (C0 continuity)
– Derivatives will usually not match (no C1 continuity)

02/11/2003 15-462 Graphics I 18

Blending Functions

• Make explicit, how control points contribute
• Simplest example: straight line with control

points p0 and p3

• p(u) = (1 – u) p0 + u p3

• b0(u) = 1 – u, b3(u) = u

1

1
b3(u)b0(u)

u

4

02/11/2003 15-462 Graphics I 19

Blending Polynomials for Interpolation

• Each blending polynomial is a cubic
• Solve (see [Angel, p. 427]):

02/11/2003 15-462 Graphics I 20

Cubic Interpolation Patch

• Bicubic surface patch with 4 £ 4 control points

Note: each cik is
3 column vector
(48 unknowns)

[Angel, Ch. 10.4.2]

02/11/2003 15-462 Graphics I 21

Outline

• Parametric Representations
• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces

02/11/2003 15-462 Graphics I 22

Hermite Curves

• Another cubic polynomial curve
• Specify two endpoints and their tangents

02/11/2003 15-462 Graphics I 23

Deriving the Hermite Form

• As before

• Calculate derivative

• Yields

02/11/2003 15-462 Graphics I 24

Summary of Hermite Equations

• Write in matrix form
• Remember pk and p’k and ck are vectors!

• Let q = [p0 p3 p’0 p’3]T and invert to find
Hermite geometry matrix MH satisfying

5

02/11/2003 15-462 Graphics I 25

Blending Functions

• Explicit Hermite geometry matrix

• Blending functions for u = [1 u u2 u3]T

02/11/2003 15-462 Graphics I 26

Join Points for Hermite Curves

• Match points and tangents (derivates)

• Much smoother than point interpolation
• How to obtain the tangents?
• Skip Hermite surface patch
• More widely used: Bezier curves and surfaces

02/11/2003 15-462 Graphics I 27

Parametric Continuity

• Matching endpoints (C0 parametric continuity)

• Matching derivatives (C1 parametric continuity)

02/11/2003 15-462 Graphics I 28

Geometric Continuity

• For matching tangents, less is required

• G1 geometric continuity
• Extends to higher derivatives

02/11/2003 15-462 Graphics I 29

Outline

• Parametric Representations
• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces

02/11/2003 15-462 Graphics I 30

Bezier Curves

• Widely used in computer graphics
• Approximate tangents by using control points

6

02/11/2003 15-462 Graphics I 31

Equations for Bezier Curves

• Set up equations for cubic parametric curve
• Recall:

• Solve for ck

02/11/2003 15-462 Graphics I 32

Bezier Geometry Matrix

• Calculate Bezier geometry matrix MB

• Have C0 continuity, not C1 continuity
• Have C1 continuity with additional condition

02/11/2003 15-462 Graphics I 33

Blending Polynomials

• Determine contribution of each control point

Smooth blending
polynomials

02/11/2003 15-462 Graphics I 34

Convex Hull Property

• Bezier curve contained entirely in convex hull of
control points

• Determined choice of tangent coefficient (?)

02/11/2003 15-462 Graphics I 35

Bezier Surface Patches

• Specify Bezier patch with 4 £ 4 control points

• Bezier curves along the boundary

02/11/2003 15-462 Graphics I 36

Twist

• Inner points determine twist at corner

• Flat means p00, p10, p01, p11 in one plane
• (∂2p/∂u∂v)(0,0) = 0

7

02/11/2003 15-462 Graphics I 37

Summary

• Parametric Representations
• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces

02/11/2003 15-462 Graphics I 38

Preview

• B-Splines: more continuity (C2)
• Non-uniform B-splines (“heavier” points)
• Non-uniform rational B-splines (NURBS)

– Rational functions instead of polynomials
– Based on homogeneous coordinates

• Rendering and recursive subdivision
• Curves and surfaces in OpenGL

02/11/2003 15-462 Graphics I 39

Announcements

• Handing back Assignment 2 Thursday
• Model solution coming soon
• Assignment 3 due a week from Thursday
• Movie from Assignment 1!
• Thursday: Texture Mapping [Ian Graham]
• Next Tuesday: Splines

