15-453 Formal Languages, Automata, and Computation

Some Notes on Regular Grammars

Frank Pfenning

Lecture 9
February 7, 2000

In this notes we describe restrictions to context-free grammars which ensure that the generated
languages are regular. We first discuss strictly right-linear grammars and show that they correspond
directly to non-deterministic finite automata (NFAs). We then generalize to right-linear grammars
which does not change the set of accepted languages, but allows more concise specifications. The
dual left-linear grammars also generate the same languages. A grammar is regular if it is either
right-linear or left-linear.

1 Strictly Right-Linear Grammars
We first review the definition of a context-free grammar.

Definition 1 (Context-Free Grammar)
A context-free grammar G is specified by a tuple (V, 2, R, S) where

|4 is a finite set of variables (also called non-terminals),
by is a finite alphabet,

RCV x(VUZX)* is the set of rules,

SeV is the start variable.

We write rules (A,w) as A — w. A derivation step has the form uAv = uwwv where A € V and
A — w € R. A derivation has the form

UL = Uy = - = Uy,
which we abbreviate u1 == u,,. Finally, we define the language generated by G
L(G)={weX*|S= w}.
For a strictly right-linear grammar, we severely restrict the form of the rules.

Definition 2 (Strictly Right-Linear Grammar) A strictly right-linear grammar is a context-
free grammar G where each rule has one of the following forms:

A—xB forxz e,
A—e

Any derivation of a word w from a start symbol S in a strictly right-linear grammar has the
form
S =114 = 21004 = = a1 .. T AL = 2. Ty

where w = z1 ...x,. Note that some of the x; may be e. The form of these derivations suggests
the connection to non-deterministic finite automata.

2 Strictly Right-Linear Grammars Generate Regular Languages
Lemma 1 If G is a strictly right-linear grammar, then L(G) is regular.

Proof: Given a strictly right-linear grammar G = (V, X, R, S), we construct a non-deterministic
finite automaton N = (V, X, 9, S, F') such that £(G) = L(N). The set of states is simply the set of
non-terminals of G, with the start state corresponding to the start variable. We further define

d(A,z) = {B|A— zB € R},
F = {C|C —ec R}

It remains to show that £(G) = L(N). As usual, we do this in two parts, £(G) C L(N) and
L(N) C L(G). We write A ==y B for computations of the NFA N.

1. L(G) C L(N). We show by induction on the structure of the derivation:

If A== w then either

(a) w=uB and A ==y B for some u € ¥*, or
(b) w=wuand A==y C for some u € ¥* and final state C.

Base Case: A == A. Then A ==y A by definition of = .

Induction Step, Case 1: A = zA; = zw; for z € ¥, and w = zw;. By induction
hypothesis on A; == w1, we have two subcases to consider:

(a) A; = vB and A; ==x B. Then u = zv satisfies the claim, since A = zvB and
A=y Ay ==y B.

(b) Ax = v and A; == C for some final state C. Then u = zv satisfies the claim,
since A = zv and A ==y A; = C where C is a final state.

Induction Step, Case 2: A =¢. Then A€ F and A ==y A.
2. L(N) C L(G). We show by induction on the structure of the computation:
If A==y B then A== wB.
From this the claim follows by using S for A and a final state C' for B.

Base Case: A ==y A. Then A == A by definition of ==

Induction Step: A ==y A; = B where w = zu and = € ¥.. By induction hypothesis,
A = uB so A = zA; = zuB.

a

Lemma 2 If L is a regular language, then there is a strictly right-linear grammar G such that

L(G) = L.

Proof: If L is regular, then there is an NFA N = (Q, %, d, qo, F') recognizing L. We construct a
strictly right-linear grammar G = (Q, X, R, qp) where

R={q—zr|reilqgz)}U{qg—c|qe F}.

We leave the proof that £L(N) = L(G) to the reader. It follows by straightforward inductions in
both directions. O

Theorem 1 A language L is regular if and only if there is a strictly right-linear grammar G such
that L(G) = L.

Proof: By the two preceding lemmas. g

3 Right-Linear Grammars

Right-linear grammars allow more general right-hand sides for rules, but they can easily be trans-
lated to strictly right-linear grammars.

Definition 3 (Right-Linear Grammar)
A right-linear grammar is a context-free grammar G = (V, %, R, S) where each rule in R has one
of the following forms:

A —wB forweX]

A—=w forwe X}

Clearly, any strictly right-linear grammar is right-linear. In addition, strictly right-linear gram-
mars can easily simulate right-linear grammars.

Lemma 3 For any right-linear grammar G there exists a strictly right-linear grammar H such that

L(G) = L(H).

Proof: Let G = (V, 3, R, S) be a right-linear grammar. We construct a strictly right-linear gram-
mar by transforming each rule
A—ay...a,B

where n > 2 into the set of rules
A — a1A1
A1 — a2A2
A, — B
where A1, ..., A, are new non-terminals. Similarly, each rule

A—=ar...an

for n > 1 is translated into
A — a1A1
A1 — a2A2
A, — ¢

where A1, ..., A, are new non-terminals.

Then H = (V',X, R/, S), where V' contains V' and all new non-terminals introduced in the
transformation above, and R’ contains the rules of R satisfying the strict right-linearity condition
and all rules resulting from the above transformation.

It is now easy to see that £(G) = L(H). We leave the details of an inductive proof to the
reader. a

Theorem 2 A language L is regular if and only if there is a right-linear grammar G with L(G) = L.

Proof: By the preceding lemma and Theorem 1. a

4 Regular Grammars

Regular grammars are grammars that are either right-linear or left-linear as defined below.

Definition 4 (Left-Linear Grammars)
A left-linear grammar is a context-free grammar G = (V, X, R, S) where each rule in R has one of

the following forms:
A — Bw forweX}

A—=w forweX;

It is easy to show that left-linear grammars also define regular languages. This leads to the
theorem that a language L is regular if and only if it is generated by a regular grammar.

Note, however, that if we are allowed to mix left-linear and right-linear rules in a single grammar,
the result will not necessarily generate a regular language. For example, a grammar with the rules

S — 0A
S — 1B
S — €

A — SO
B — S1

generates the language L = {ww® | w € {0,1}*} which is not regular.

