
15-453 Formal Languages, Automata, and Computation

Some Notes on Regular Grammars

Frank Pfenning

Lecture 9
February 7, 2000

In this notes we describe restrictions to context-free grammars which ensure that the generated
languages are regular. We first discuss strictly right-linear grammars and show that they correspond
directly to non-deterministic finite automata (NFAs). We then generalize to right-linear grammars
which does not change the set of accepted languages, but allows more concise specifications. The
dual left-linear grammars also generate the same languages. A grammar is regular if it is either
right-linear or left-linear.

1 Strictly Right-Linear Grammars

We first review the definition of a context-free grammar.

Definition 1 (Context-Free Grammar)
A context-free grammar G is specified by a tuple (V,Σ, R, S) where

V is a finite set of variables (also called non-terminals),
Σ is a finite alphabet,
R ⊆ V × (V ∪Σ)∗ is the set of rules,
S ∈ V is the start variable.

We write rules (A,w) as A → w. A derivation step has the form uAv ⇒ uwv where A ∈ V and
A→ w ∈ R. A derivation has the form

u1 ⇒ u2 ⇒ · · · ⇒ un

which we abbreviate u1
∗

=⇒ un. Finally, we define the language generated by G

L(G) = {w ∈ Σ∗ | S ∗
=⇒ w}.

For a strictly right-linear grammar, we severely restrict the form of the rules.

Definition 2 (Strictly Right-Linear Grammar) A strictly right-linear grammar is a context-
free grammar G where each rule has one of the following forms:

A→ xB for x ∈ Σε

A→ ε

1

Any derivation of a word w from a start symbol S in a strictly right-linear grammar has the
form

S ⇒ x1A1 ⇒ x1x2A2 ⇒ · · · ⇒ x1 . . . xnAn ⇒ x1 . . . xn

where w = x1 . . .xn. Note that some of the xi may be ε. The form of these derivations suggests
the connection to non-deterministic finite automata.

2 Strictly Right-Linear Grammars Generate Regular Languages

Lemma 1 If G is a strictly right-linear grammar, then L(G) is regular.

Proof: Given a strictly right-linear grammar G = (V,Σ, R, S), we construct a non-deterministic
finite automaton N = (V,Σ, δ, S, F) such that L(G) = L(N). The set of states is simply the set of
non-terminals of G, with the start state corresponding to the start variable. We further define

δ(A, x) = {B | A→ xB ∈ R},
F = {C | C → ε ∈ R}.

It remains to show that L(G) = L(N). As usual, we do this in two parts, L(G) ⊆ L(N) and
L(N) ⊆ L(G). We write A

w
=⇒N B for computations of the NFA N .

1. L(G) ⊆ L(N). We show by induction on the structure of the derivation:

If A
∗

=⇒ w then either

(a) w = uB and A
u

=⇒N B for some u ∈ Σ∗, or

(b) w = u and A
u

=⇒N C for some u ∈ Σ∗ and final state C.

Base Case: A
∗

=⇒ A. Then A
ε

=⇒N A by definition of =⇒N .

Induction Step, Case 1: A ⇒ xA1
∗

=⇒ xw1 for x ∈ Σε and w = xw1. By induction
hypothesis on A1

∗
=⇒ w1, we have two subcases to consider:

(a) A1
∗

=⇒ vB and A1
v

=⇒N B. Then u = xv satisfies the claim, since A ⇒ xvB and
A

x
=⇒N A1

v
=⇒N B.

(b) A1
∗

=⇒ v and A1
u

=⇒N C for some final state C. Then u = xv satisfies the claim,
since A⇒ xv and A

x
=⇒N A1

v
=⇒N C where C is a final state.

Induction Step, Case 2: A⇒ ε. Then A ∈ F and A
ε

=⇒N A.

2. L(N) ⊆ L(G). We show by induction on the structure of the computation:

If A
w

=⇒N B then A
∗

=⇒ wB.

From this the claim follows by using S for A and a final state C for B.

Base Case: A
ε

=⇒N A. Then A
∗

=⇒ A by definition of
∗

=⇒.

Induction Step: A
x

=⇒N A1
u

=⇒N B where w = xu and x ∈ Σε. By induction hypothesis,
A1

∗
=⇒ uB so A⇒ xA1

∗
=⇒ xuB.

2

Lemma 2 If L is a regular language, then there is a strictly right-linear grammar G such that
L(G) = L.

2

Proof: If L is regular, then there is an NFA N = (Q,Σ, δ, q0, F) recognizing L. We construct a
strictly right-linear grammar G = (Q,Σ, R, q0) where

R = {q → xr | r ∈ δ(q, x)} ∪ {q→ ε | q ∈ F}.

We leave the proof that L(N) = L(G) to the reader. It follows by straightforward inductions in
both directions. 2

Theorem 1 A language L is regular if and only if there is a strictly right-linear grammar G such
that L(G) = L.

Proof: By the two preceding lemmas. 2

3 Right-Linear Grammars

Right-linear grammars allow more general right-hand sides for rules, but they can easily be trans-
lated to strictly right-linear grammars.

Definition 3 (Right-Linear Grammar)
A right-linear grammar is a context-free grammar G = (V,Σ, R, S) where each rule in R has one
of the following forms:

A→ wB for w ∈ Σ∗ε
A→ w for w ∈ Σ∗ε

Clearly, any strictly right-linear grammar is right-linear. In addition, strictly right-linear gram-
mars can easily simulate right-linear grammars.

Lemma 3 For any right-linear grammar G there exists a strictly right-linear grammar H such that
L(G) = L(H).

Proof: Let G = (V,Σ, R, S) be a right-linear grammar. We construct a strictly right-linear gram-
mar by transforming each rule

A→ a1 . . .anB

where n ≥ 2 into the set of rules
A → a1A1

A1 → a2A2

. . .

An → B

where A1, . . . , An are new non-terminals. Similarly, each rule

A→ a1 . . . an

for n ≥ 1 is translated into
A → a1A1

A1 → a2A2

. . .

An → ε

where A1, . . . , An are new non-terminals.

3

Then H = (V ′,Σ, R′, S), where V ′ contains V and all new non-terminals introduced in the
transformation above, and R′ contains the rules of R satisfying the strict right-linearity condition
and all rules resulting from the above transformation.

It is now easy to see that L(G) = L(H). We leave the details of an inductive proof to the
reader. 2

Theorem 2 A language L is regular if and only if there is a right-linear grammar G with L(G) = L.

Proof: By the preceding lemma and Theorem 1. 2

4 Regular Grammars

Regular grammars are grammars that are either right-linear or left-linear as defined below.

Definition 4 (Left-Linear Grammars)
A left-linear grammar is a context-free grammar G = (V,Σ, R, S) where each rule in R has one of
the following forms:

A→ Bw for w ∈ Σ∗ε
A→ w for w ∈ Σ∗ε

It is easy to show that left-linear grammars also define regular languages. This leads to the
theorem that a language L is regular if and only if it is generated by a regular grammar.

Note, however, that if we are allowed to mix left-linear and right-linear rules in a single grammar,
the result will not necessarily generate a regular language. For example, a grammar with the rules

S → 0A
S → 1B
S → ε

A → S0
B → S1

generates the language L = {wwR | w ∈ {0, 1}∗} which is not regular.

4

