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1 Introduction

Theorem proving in intuitionistic predicate logic is not a highly developed subject, no
doubt because it has as yet few applications. We are only aware of a few published
articles on the subject ([1], [4], [8], [9]). In the present report we present a complete
theorem prover for intuitionistic predicate logic with (a restricted) identity, based on the
rules of the intuitionistic sequent calculus.

The calculus of sequents, formulated by G. Gentzen, is a system of rules for deriving
expressions, called sequents, of the form

I'-A

where I and A are sequences of predicate logic formulas. In the intuitionistic version of

the calculus to be used here, A always consists of exactly one formula, and T is a finite
sequence of formulas, possibly empty . Thus a sequent has the form

Al’"An - C

where n20. A sequent will here be interpreted as a predicate logic formula in an alternative
notation: if n=0 the sequent is interpreted as the formula C, and for n>0 we read it as the
formula A1 &..&A > C.

The idea of using the rules of the classical sequent calculus in automatic theorem
proving is as old as the subject itself. In particular, the pioneering paper [7] contains a
presentation of the basic ideas developed in this article. However, in the case of classical
logic, the sequent calculus was soon displaced in automatic theorem proving by the much
more efficient resolution method. To see why it makes sense to develop and refine the
method based on the sequent calculus in the case of intuitionistic logic, one must
appreciate the great difference in formal properties between that logic and classical
predicate logic. In particular, there are no known reductions of validity and satisfiability in
intuitionistic logic similar to those available in classical logic (and used e.g. in the
resolution method). For an overview of intuitionistic logic and its peculiarities, see [2].

Automatic theorem provers can be classified as incorporating heuristic or "intelligent"”
methods to a greater or lesser extent. Because intuitionistic logic is computationally
difficult, one would expect a practical intuitionistic theorem prover to draw on heuristic



methods to a considerable extent. The algorithms to be presented here, however, are
chiefly "mechanical” in character. That is to say, with few exceptions, there is no logical
or pattern-based analysis of the set of premisses, and no checking for special cases.
Instead a set of rules is applied to each formula as it appears, without regard to the
formulas that appeared before. The aim is to produce such a mechanical procedure which
is not grossly inefficient, and yiclds a complete theorem prover for intuitionistic logic. Of
course this is a losing battle. It would be idle to pretend that the present system is a
satisfactory theorem prover, since it is easy to find fairly short examples that take
"forever" to prove. Nevertheless we consider the material in this article to be of general
interest, for several reasons:

1) A number of useful and non-obvious techniques are presented by which large
classes of problems that are otherwise intractable (on a sequent calculus approach)
become solvable. These techniques may well be applicable in other contexts. Also, the
algorithm yields a reasonably efficient decision procedure for propositional intuitionistic
logic (presented explicitly in §17).

2) A theorem prover is presented which is complete for problems involving free
variables, i.e. all provable instances of a given formula are presented through
backtracking. This feature (inspired of course by logic programming) is combined with a
treatment of identity that allows us to pose questions and receive replies of a form not
traditionally considered in theorem proving (and not available in standard logic
programming). The identity theory, including a unification algorithm and a delay
mechanism, is applicable in a classical as well as a constructive context.

3) The system is available in source code from SICS by anonymous ftp, and may be
used as a starting point or for purposes of comparison by others with an interest in these
matters. To this end, we have also included an appendix containing a number of
propositional and predicate logic problems, with execution times.

In brief summary, the following is the content of this article. The logical system -
intuitionistic predicate logic with a restricted "quasi-free" identity - to which the theorem
prover applies is presented in §2 and §4. §3 discusses in general outline the kind of
procedure used and the problems connected with it. The following sections present
various fundamental aspects of the system: the presentation of answers to queries (§5),
the unification algorithm (§6), the delay mechanism (§7), the rotation of formulas in
applications of rules (§8). A full specification of the basic algorithm is given in §9, while
§10 completes the description of the top level procedure for answering questions. §§11-
16 introduce various modifications of the basic procedure which form an important part of
the working system. §17 describes a decision procedure for propositional logic obtainable
from the algorithm. The Appendix, finally, contains information on implementations
together with a collection of problems and execution data.



As far as theory is concerned, the main result needed but not established in the present
article is that the algorithm is in fact complete. For a completeness proof, see the
forthcoming [6]. Here only the soundness of the methods used will be considered. In the
presentation of the algorithm in this article we have tried to avoid introducing unnecessary
formalities. Our aim is to describe a fairly complex algorithm in clear terms, giving formal
definitions when they are needed, and stating but not always proving the technical
observations on which it rests.

2 The system GI without identity

Although some acquaintance with intuitionistic predicate logic will be presupposed in
the following, an explanation of our notation and terminology is in order.

The language used will be that of predicate logic with equality. Two points should be
noted: the use of the constant L (interpreted as a logically false statement) as a logical
primitive instead of negation, and the separation of variables into those that are only used
as bound variables (called variables) and those that are only used as free variables (called
parameters). The negation —A is defined as an abbreviation of (A> 1). The letters x,y,z
will be used for variables and o,B for parameters. Thus we have terms which are either
parameters or individual constants or composite terms f(ty,..,t,) where ty,..,t, are terms
and f is an n-place function symbol. Individual constants will also be regarded as 0-place
function symbols. The letters s,t,u,v will be used to denote terms. Note that variables do
not occur in terms. The formulas are either atomic or composite. Atomic formulas are the
special atomic formula L (falsum or the absurdity) and p(ty,...t,) where p is an n-place
predicate symbol. We also admit O-place predicate symbols, so that p is an atomic formula
for every O-place predicate symbol p. Composite formulas are (A>B), (A=B), (AvB),
(A&B), VxA(x/a), 3xA(x/a). Here A(x/a) stands for the result of substituting x for
every occurrence of o in A. When this notation is used it is presupposed that o does not
occur in A within the scope of any quantifier Vx or 3x.The expressions A(t/c) and u(t/or)
are interpreted similarly. A closed term or formula is one not containing any parameters.
Among the predicate symbols is the identity symbol =. Equalities are written in the usual
way as s=t. The letters A,B,C,D will be used to denote formulas. Parentheses will
normally be omitted in accordance with the following conventions: 1)_the outermost
parentheses are omitted when formulas occur in isolation; 2) association to the right is
used for v and &; 3) v and & bind harder than > and =. Thus e.g. AvBoC&D&E stands
for (AvB)D(C&(D&E))), whereas A&BvC is undefined.



It will be assumed that an unlimited supply of function symbols is available in the
language.

The intuitionistic system defined by the system of rules given below will be referred to
as GI. The system GF - taken as basic in this article - which differs from GI in including
identity rules is presented in §4.

The composite formula introduced in the antecedent or consequent in an application of
a rule is called the principal formula. To make the rules more readable, they are
formulated with the principal formula leftmost in the antecedent. The rules are to be
understood, however, as covering every permutation of the formulas in the antecedent.

For example, &— covers every step of the form

I'-C

I'->C
where I' is a permutation of A,B,A and I' is a permutation of A&B,A.
GI differs from standard formulations of the (cut-free) intuitionistic sequent calculus

in two respects: the absence of a separate contraction rule and the inclusion of the rules for

=. Contraction will be commented on in §3. The reason for the inclusion of the =rule -
theoretically unnecessary, since A=B is intuitionistically equivalent to (ADB)&(BDA) - is
that this makes the proof procedure more efficient.

The system GI
Axioms: (called logical axioms)
1 I'-C

B,I'-B



Rules:

AB,I'-C
—_— &—
A&B,I'-C

AT'-C B,I'-C

A\ 4

AvB,I'>C

AoB,I'-A BJTI'-C

oo
ADB,I'=C

A=A I5A; A1 A -C dislor2

=—
AI'-C
(*) 3—
IxAx/a),[—-C
VxA(x/a),A(t/a), [ —C
Vo
VxA(x/a),'=C

T'—-A I'-B
—>&

I'—A&B

I'-A; iislor2

- -V
IT'-A 1 VA2
ATl—-B
-S>
T'-A>B

ApI>A, Ay I'—A,

I'—-A 1 EAZ

IF'—A(t/o)
R — |
-3IxA(x/a)

I'-A
(*) -V
F->VxA®x/o)

(*) Restriction on the rules 3— and —V': the parameter o must not occur in C or in

any formulain T
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Note: An equivalent system will be obtained if we restrict the logical axioms to
sequents B,I'->B where B is atomic.

3 The basic procedure and its problems.

In seeking a proof of a sequent I we start with X and try to construct a proof of =
from the bottom upwards. In fact we will consistently regard the rules in this light, so
when an "application” of a rule is spoken of in the following, what is intended is always a
backwards application: a step from the conclusion to the premiss or premisses. The first
problem we encounter in such a construction of a proof is how to deal with the

substitutions required in applications of the rules ¥~ and —3. The solution is to
introduce a meta-logical variable - called "dummy variable" in [7] - to be used in
substitutions. At various points in the procedure we will attempt to perform unifications
with respect to these variables so as to produce an axiom. Since we use parameters
instead of free variables in the logical language, we will simply speak of these meta-
logical variables as "free variables". The letters X, Y, Z, W will be used as free variables.
Expressions obtained by substituting free variables into formulas will be called free-
variable formulas. Free-variable terms and free-variable sequents are defined similarly.
We will occasionally drop the "free-variable” when no confusion is possible. We also
need a name for the structures with which the algorithm works, i.e. sequent calculus
deductions using free-variable sequents. Rather than using the cumbersome "free-variable
deduction” we will speak of these structures as attempted proofs

Unification with respect to free variables is complicated at least by the need for an

occur check and a mechanism for ensuring that the restrictions on the rules 3— and —V
are respected. The kind of unification to be used in the present system is in addition made

considerably more complicated by the treatment of identity. The unification algorithm is
presented in §6.

The other major problems connected with the basic algorithm are those of contraction,
non-determinism, and what will here be called "rotation.” Before we describe in outline
the treatment of these problems, the relevant aspects of the rules call for some comments.
First there is the concept of invertibility. That the rules of the sequent calculus are
logically valid means that the conclusion in an application of a rule is logically valid if the
same is true of the premiss or premisses. A rule is called invertible if the converse holds,
i.e. if the logical validity of the conclusion implies the logical validity of the premisses.

There are four non-invertible rules in GI: =3, —v, D—, =—, (That these and only these

rules are non-invertible is semantically obvious.) The rules >— and =— are semi-
invertible: the right premiss of these rules is valid whenever the conclusion is, but this



does not hold for the left premiss.

Invertibility has large consequences for the bottom-up construction of derivations.
Suppose we are secking to formulate a complete system of rules for the sequent calculus,
i.e. a system such that every logically valid sequent is provable. If the system is complete
it will always be possible to construct a proof of a valid sequent by means of some kind
of bottom-up procedure. If a rule is invertible we know that the task of proving the
conclusion can always be reduced to that of proving the premisses. If, on the other hand,
a rule is not invertible, the corresponding reduction may lead to an impossible task. As a
consequence, an invertible rule is always easier to deal with than a non-invertible rule. An
invertible rule may be applied deterministically at any point in the (bottom-up) procedure,
that is, we need not consider alternatives to applying that particular rule, since we know
that the premisses will still be provable if the original sequent is provable. If we apply a
non-invertible rule to a provable sequent, however, there is no guarantee that the
premisses can be proved, and we must be prepared to backtrack and try another rule or try
several rules in parallel.

A semi-invertible rule admits a certain amount of determinism: if the rule is invertible
w.r.t the right premiss and the right premiss turns out not to be provable, we need not
consider any alternative to applying the rule in question, but can reject the conclusion as
unprovable. If, on the other hand, the right premiss is proved but the left premiss not, we
must still be prepared to try applying another rule or using another formula.

The second aspect of the rules that calls for some comment is contraction. The sequent
calculus was originally formulated with a contraction rule of the form

AAT'-B
AT'-B

When proofs are constructed in bottom-up fashion, use of the contraction rule means that
a copy is made of the principal formula before it is "dissolved" (as it appears when the
rules are applied backwards) so that essential information will not be lost. The rules given
above do not include any contraction rule. Instead the unavoidable uses of contraction

have been incorporated into the formulation of the rules 5—, =, and V—.

Contraction is responsible for the lack of any computable bound on the size of a proof
of a given sequent. If no use is made of contraction - i.e. if no contraction rule is used,
and the rules 5—, =—, and V— are formulated without any repetition of the principal

formula - a logical system results which is a decidable fragment of standard (classical or
intuitionistic) logic.1



Hence the contraction problem: the use of the rules >—, =—, and V— may never
end because of contraction. Of course, in general we must expect any proof procedure to
go on forever if a sequent for which a proof is sought is not in fact valid. The problem
here however is that even if the sequent is valid we may get trapped in unending
sequences of applications of rules which cannot lead to a proof. This is because of the

non-invertibility of the rules -3, —v, >—, =-. (In seeking proofs in the classical
sequent calculus, in contrast, it is possible, because every rule is invertible, to avoid all
such traps by systematically using each formula in turn.)

One method of dealing with the contraction problem is to use a parallel or breadth-first
procedure in seeking proofs. Here, however, we will deal only with sequential or depth-
first procedures. Thus we must impose a limit on the use of contraction. A contraction
parameter is associated with each universal formula, implication, and equivalence. The
value of the contraction parameter determines how many times the formula may be used in
any one branch of the proof being sought. When the contraction parameter falls to 0, the

rules V—, 5—, and =— can only be applied without repetition of that formula as
principal formula. If the attempt to find a proof using one set of values for the contraction
parameters fails, we increase those parameters and try again. (This kind of method is also
adopted e.g. in [4].)

This will be recognized as a variant of the familiar "bounded depth first iterative
deepening” ([10]). The details, indeed, are different, since the contraction parameters
considered here are a finer instrument than the wholesale depth parameter of that
technique. The problems of using this kind of method are the same, however: how are we
to choose 1) the initial values of the contraction parameters, and 2) the value by which
those parameters are incremented on failure? Since these two choices often make a
dramatic difference to execution times, it would be nice to be able to incorporate some
intelligent way of making them into the algorithm. We know on general grounds,
however, that making intelligent choices of the kind 1) and 2) is a problem of unlimited
difficulty, much like theorem proving itself. In the system presented here we have not
attempted to include any such choices, but simply leave it to the user to specify the values
of the parameters involved.

The problem of non-determinism consists of course in the fact that we must, as noted
above, be prepared to apply the non-invertible rules in every possible order with every
possible choice of principal formula. This non-determinism leads to a combinatorial
explosion already at the propositional level, and with the introduction of variables and

1 For semantic and proof-theoretic studies of this fragment in the intuitionistic case, see [3], [10]. In
intuitionistic propositional logic, there is a computable upper bound on the use of contraction since
that logic is decidable. (See §17.) In predicate logic, however, there is no such bound either in the case
of implications and equivalences or in that of universal formulas.



quantifiers it becomes totally crippling. Hence a number of techniques will be introduced
below to reduce the amount of non-determinism: compaction, consequent locking,
implication locking, sifting of bindings, use checking. The obvious (and traditional) first
step towards reducing the non-determinism is to stipulate that a non-invertible rule will be
applied only when no invertible rule is applicable, and that the semi-invertibility of the

rules >— and =— will be exploited as described above.2 (As it turns out, semi-
invertibility will only be partially exploited in the present algorithm - see §14.)

The rotation problem is less straightforward: it concerns the question in what order we
are to use the formulas in a sequent (as principal formula in an application of a rule). To
obtain a complete proof procedure we must ensure that every formula is used sooner or
later, but there are many ways of doing this, some of which are worse than others.

We will speak of horizontal and vertical rotation. Horizontal rotation concerns the
use of formulas in a sequent at one and the same level of an attempted proof. That is, we
have the task of proving a sequent Aj,..A;—C, and must be prepared to try using each of
the formulas A,..A;,C as principal formula in an application of a rule. To stipulate a
horizontal rotation scheme is to say in what order we are to use Ay,..A,,,C. Vertical
rotation concerns the universal formulas, implications, and equivalences, which are
carried over into the premiss sequents: what is to be their relative order in the premisses?
For example, should we keep using the same universal formula in a branch of an

attempted proof as long as any contractions remain, or should we try another universal
formula?

One horizontal rotation principle is immediately dictated by the need to reduce non-
determinism, as noted in the preceding paragraph. We have, therefore, two questions
regarding horizontal rotation. First, in what order are we to use the formulas that may
appear as principal formula in an application of an invertible rule, i.e. conjunctions,
disjunctions, and existential formulas in the antecedent, and conjunctions, universal
formulas, implications, and equivalences in the consequent? Here we have found no basis
for specifying any particular order (with one minor exception), so these rules will be
simply be applied in whatever order the formulas happen to arise. The second question
concerns the order in which to use formulas as principal formula in an application of a
non-invertible rule. Certain specific choices in this regard are dictated by the optimizations
mentioned above in connection with the problem of non-determinism. In addition we have
implemented a principle of using universal formulas before implications and equivalences.

As regards vertical rotation, we treat universal formulas and implications (or
equivalences) differently. Universal formulas follow a principle of strict vertical rotation,
whereas implications and equivalences are carried over in unchanged order to the

2 The invocation of semi-invertibility is of course a bit more complicated when bounded contraction
is used, since failure to prove a formula at a certain contraction depth does not in general imply that the
formula is unprovable. These matters will be relegated to [6).



premisses. These principles and their justification, such as it is, will be presented in §8.

4 Identity: the system GF

In order to improve the prospects for a computationally feasible identity theory, we
will use the free interpretation of terms. That is, the universe is assumed to be freely
generated from some set by the operations for which function symbols occur in the
language. In fact, usually we take the universe of discourse to be the Herbrand universe
of closed terms. To obtain a complete system of logic we must however consider a wider

class of interpretations, as will be commented on later in this section.

The resulting system, which will be called GF, has the following rules and axioms for
identity in addition to the rules and axioms of GI:

Axioms:
Equality axiom:

I—t=t /

Inequality axioms:

f(s1,..sp)=g(t1,..ty), [ >A m,n20 for different function symbols f,g
o=s[a], = A

s[a)=a, > A

In the last two axioms, s[a] is a term which properly contains the parameter c.

Rules:

$1=tp,. Sp=ty, T —A
injectivity rule

£(s1,..80)=f(ty,..ty), [ >A

10



['(s/a)—A(s/c)

replacement rule
=s,['—A
I(s/o)—>A(s/a)
replacement rule
s=a,'—-A

In the replacement rules, s is a term which does not contain the parameter o. The
injectivity rule has a special case n=0 in which an equation e=e, where e is an individual
constant, is introduced in the antecedent. (Corresponding to the special case of the
replacement rules in which s is o.)

The inequality axioms and the injectivity rule are not valid on the ordinary
interpretation of identity, unlike the replacement rules. A computationally pleasant aspect
of the identity rules is that none of them incorporates contraction: thus formulas s=t are
eliminated once and for all when a proof is sought. That no contraction is needed is clear
since these three rules are all invertible (in the case of the replacement rules because of the

restriction that o does not occur in s). Nevertheless we will find that it is sometimes
necessary in seeking a proof to retain part of the information contained in the premiss a:=s
or s=0. in an application of a replacement rule.

Since being freely generated (in the standard algebraic sense) from some set is not in
fact a first-order property of structures, the above axioms and rules necessarily hold for a
wider class of structures, which we will call quasi-free. Thus a structure is quasi-free if
the functions are injective and have pairwise disjoint ranges, and no sequence of
applications of functions can lead from an individual a to a.

To amplify this point: note that the axioms of GF do not rule out e. g. an infinitely
descending sequence ag,a;,.. such that f(a;,)=a; for all i. No matter what rules and
axioms valid in all freely generated structures we put down, they will have models
containing such sequences. Thus we cannot formulate a logic of free identity in the sense
of a first order logic all of whose models are freely generated. We could of course extend
the present system to include e.g. induction principles valid in all freely generated
structures. We know, however, that the set of formulas valid in all freely generated
structures is not effectively enumerable, so any formalizable extension of GF will
necessarily be incomplete regarded as an identity theory for such structures. Hence we opt
instead for a complete logical theory of quasi-free identity in general structures.

11



One particular possibility of extending the identity axioms of GF calls for special
comment. Identity is not in general a decidable relation in intuitionistic logic. That is, the
formula VxVy(x=yv-x=y) is not provable. Identity between the elements in a Herbrand
domain generated by a decidable set of function symbols and individual constants is
however intuitionistically decidable (as is easily proved by induction). Thus if we intend
GF to be a logical theory of Herbrand domains only, rather than of quasi-free structures,
it is logically proper to include VxVy(x=yv—x=y) as an axiom or a rule. Since we
haven't found any way of incorporating the decidability of identity that greatly improves

on the mere addition of VxVy(x=yv—x=y) to the antecedent of a sequent, we have not
included decidability of identity in the system.

We have spoken of structures and logical validity above without benefit of any formal
definitions. Definitions of these concepts and a completeness proof for GF as a
formalization of the logic of quasi-free Kripke models can be found in [5]. The
completeness of GF implies in particular that all the usual identity rules are derivable in
GF, and that the cut rule holds as a derived rule; i.e. if '—A and A,A—B are provable in
GF, then so is I',A—B.

Some remarks about the interest and utility of the identity theory of GF may be in
order. Clearly we cannot deal with e.g. such standard problems for identity logic theorem
provers as elementary theorems in group theory, since no operations are associative in the
sense of quasi-free identity: f(o,f(0t3,000))=f(f(0tg,0t1),;) implies og=f(0g,0t1) by the
injectivity rule, and this conclusion is false by the inequality axioms. To appreciate the
range of application of quasi-free identity we must turn from mathematics to the kind of
applications found in data base handling and logic programming.

5 Queries, answers, and completeness

As stated in §1, our procedure for proving theorems in GF applies to free-variable
formulas. For convenience in describing the system we will take formulas rather than
sequents as input - in practice it is of course a simple matter to allow sequents. We will
adopt the terminology of logic programming and refer to a free-variable formula fed to the
system as a question. The free variables in a question A(Xy,..X,) will be called input
variables.

The question A(X,..X) gives the automatic proof system the task of finding closed
terms ty,..ty such that the formula A(ty,..t) is provable in GF. Thus, as is usually the
case, we do not demand the production of a proof in GF, but only a statement of
provability. Since there will in general be infinitely many such sequences t;,..t,, not all of

12



which can be presented or found together, the system must, to be a complete theorem
prover, have a mechanism for presenting a possibly infinite sequence of answers to a
question. This again is familiar from logic programming. The answers given by the
system will consist of bindings and constraints. These terms will be formally defined
below; but first we present an example. The following question is put to the system

p(a) & IwyVz(p(z2)oz=wvz=y)>—(p(X))&p(X2)&p(X3))

The premiss in this example formalizes "Jane is a philosopher, and there are at most two
philosophers”. We ask for terms ty,ty,t3 such that the premiss implies that not all of
t1,tp,t3 are philosophers.

Among the answers given there will be four essentially different solutions:

1 Xy=A,X,=B,X3=C where A#B and A#C and B=C;
2 X1=A,X,=B where A#B and A=a and B+a;
3 X1=A,X3=C where A#C and A=a and Csa;
4 X,=B,X3=C where B#C and B#a and Cza.

In ordinary language: the implication is valid if ty,ta,t3 are three different closed terms, or
if two of them are different from a and from each other. That these solutions are
essentially different means that none of them subsumes any of the others. The definition
of completeness stated below does not say anything about redundancies in the
presentation of solutions. In practice it is all but necessary to check for subsumption,
since otherwise we will be flooded with seemingly interminable repetitions of solutions.

Now for some general definitions:

An affirmative answer - which we also call a solution - delivered by the system has
two parts: a possibly empty set of bindings and a possibly empty set of constraints.

A binding has the form X;=S, where X; is an input variable and S a free-variable term
in which no input variable occurs. The free variables that occur in S will be called
auxiliary variables. No input variable occurs in more than one binding in the set.

The stipulation that no input variable occurs in S is convenient in presenting solutions
and entails no restriction on bindings. For example, we do not present a set of bindings in

the form X=X, X3=g(X), but instead as X,=Y, X7=Y,X3=g(Y).

The meaning of the binding regarded an answer is that the input variable Xi may be
taken to stand for any closed term obtainable by substituting closed terms for the auxiliary

13



variables in S (those closed terms possibly being subject to further conditions stated in the
constraints).

A constraint has the form Y#T, where Y is an auxiliary variable and T is an auxiliary-
variable term with place markers in which Y does not occur. By this we mean an
expression formed from a term which in addition to auxiliary variables (i.e. free variables
in bindings other than input variables) may contain place markers of the form %n. (T is

not allowed to be a place marker, however.) Y can occur as the left term in any number
of constraints.

The meaning of the constraint Y=T is that Y is not a term obtainable from T by
substituting closed terms for the place markers and the values of the auxiliary variables for

those variables. Again it is a matter of convenience to stipulate that no input variables
occur in constraints.

In slightly more formal terms: a sequence t,..t, of closed terms is an instance of a set
of bindings and constraints if there are substitutions of closed terms for the auxiliary
variables such that the equations X;=S and inequations Y#T with tj substituted for X;

everywhere (j=1,..n) are true for all values (in the domain of closed terms) of the place
markers.

Besides affirmative answers, the system can produce negative answers, a simple "no"
meaning that no solutions, or no further solutions, can be found. In general, of course,
the search for solutions will go on for ever.

Using this terminology, we can define what it means for the proof system to be sound
and complete: soundness means that for every answer to a question A(Xj,..X;)
delivered by the system and every instance ty,..t, of that answer, A(t,,..t,) is provable in
GF. Completeness means that for every sequence t,,..t, of closed terms, if A(ty,..t,) is
provable in GF, then there is some answer delivered by the system to the question
A(X1,..X,) such that ty,..t,, is an instance of that answer.

Another example illustrates the role of the place markers in constraints. We put the
question

Vx(p(x)=y3z(p(y)&p(z)&x=1(y,y,z)))>—p(W)

Here we have an infinite sequence of essentially different solutions:

1 W=A where A=f(%1,%1,%2)
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2 W=f(A1,A1,A2) where Al12f(%1,%1,%2)
3 W=£f(A1,A1,A2) where A2#f(%1,%1,%2)
4 W=£(f(A1,A2,A2),f(B1,B1,B2)) where Al1%f(%1,%1,%2)

An affirmative answer is of little interest (although by definition correct) if it doesn't
have any instances. In fact this can't happen given the definition of an answer and the
unlimited supply of function symbols in the language. We formulate this observation as a

Constraint lemma Every set of bindings and constraints has at least one instance.

We argue by induction on the number of auxiliary variables in the set. If there are no
auxiliary variables, there are no constraints, but only a set of bindings of input variables
to closed terms. Now suppose the auxiliary variable Y occurs in the constraints

Y#T,,..Y=T,, where Ty,..T, are not variables, and also in the constraints

Y#W,..Y#Wy, where the Wy,..Wy, are variables. Let a be a new individual constant
(i.c. one that doesn't occur in any of the terms involved). Then a is different from Ty,.. Ty
for every value of the place markers and the auxiliary variables in T},..T,. Form a new

set of bindings and constraints by i) removing Y#T,,..Y#T, and Y#W1(,..Y#W,, ii)
substituting a for Y everywhere in the remaining bindings and constraints, iii) adding the

constraints Wy#a,..Wy#a. An instance of this set together with the term a yields an
instance of the original set.

A variant of the constraint lemma will be used in §7 to justify the treatment of delayed
sequents.

6 Variables, parameters, and unification

In applying the rules 3— and —V we introduce new parameters, and in applications
of the rules =3 and V— we introduce new free variables. We must ensure that the

parameter restrictions on the rules 3— and —V are respected, not only when these rules
are applied, but when substitutions are made for the free variables.

To this end, we use the following method. Each sequent is annotated with a
parameter index i, which is set to 0 in the bottom sequent. When one of the rules 3—

and —V is applied, we use the parameter o; where i is the current parameter index and
increment the parameter index of the premiss sequent to i+1. In applications of other rules

the index is unchanged. When we apply —3 or V— we use a new variable - one that has
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not been used previously in the attempted proof - and furthermore annotate this variable
with the current parameter index. We will write a variable X thus annotated as Xi. The
meaning of the annotation is:

terms substituted for Xi must not contain any parameter oy where k>i.

This method has the considerable advantage of making a single numerical parameter carry
the information what is an admissible substitution for a variable. There is a difference, it
will be noted, between the way variables and parameters are generated. Free variables are
global: substitutions for a variable are carried out throughout an attempted proof,
wherever the variable appears. Hence it is essential to make the new variable X unique: it
must not already appéar elsewhere in the proof. Parameters, on the other hand, are not
unique: the parameter o may already have appeared in other places when we introduce it

in an application of 3— or —V. This is of no consequence, since we know that o; does
not occur in the present sequent.

A term t will be called i-admissible if it does not contain any parameter o for k2i.
Thus a variable Xi varies only over i-admissible terms. A substitution of a term t for a
variable Xi will be called legal if t is i-admissible.

In order to find free-variable terms to substitute for the variables we perform a
unification: at certain points in the procedure - exactly where will be considered later -
when we have a sequent A,I'-B, with A and B free-variable formulas, we try to unify A
and B so as to get an axiom, thus introducing bindings of the free variables. Similarly we
use unification of free-variable terms S and T to make an axiom out of a sequent '>S=T.
In the unification we must take into account the restrictions on the variables.

To see how this unification works, let us for the moment disregard everything having

to do with identity and suppose that we are looking for a proof of a sequent in which the
symbol = does not occur.

The unification procedure applies to a pair of free-variable expressions (terms or
formulas) and yields as result either a failure report or a set of bindings of free variables to
free-variable terms. It is only the unification of a variable with a free-variable term that
needs to be defined here: unification between non-variables proceeds precisely as in
standard syntactic unification.

To unify the variable X1 with the free-variable term T, we first check whether Xi
properly occurs in T. If it does, the unification fails. In the trivial case where T is the
variable Xi itself, we return the empty binding. If Xi does not occur in T, we goon to
check whether T is i-admissible. If it is not, the unification fails. If T is i-admissible, we
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give the binding of X1 to T as output, but in addition we adjust the restriction values of the
variables in T: every variable YK in T for which k>i is given the new restriction i, and thus
becomes Yi. This will be called i-adjusting the term T. To i-adjust T is clearly necessary
if the restriction on X1 is to remain in force after the substitution of T for Xi. The
adjustment applies only as long as the binding of X! to T holds: when that binding is

undone in the course of the execution of a backtracking algorithm, the former restrictions
on the variables in T must be restored.

To avoid any possibility of notational confusion, we will use the notation Xi:=T to
denote the binding of Xi to T.

A few examples will illustrate these points. In these examples, we ignore contraction
and everything not directly pertaining to the use of unification.

In trying to prove the sequent
IxVyp(x,y) = Vy3xp(x,y)
we will come to the free-variable sequent
p(0g.X?) = p(Y2,0)
Unifying the free-variable formulas succeeds with the bindings X2:=0;, Y2:=0, and the

corresponding substitutions will yield the usual proof of this sequent. If, on the other
hand, we try to prove

Vx3yp(x,y) = JyVxp(x,y)
we will come to
p(X0,09) = p(at;,Y0)
or a variant. In any case, the unification will fail because of the variable restrictions.
The need for parameter adjusting free-variable terms is shown e.g. by the formula
3x3yVzAw( (p(x)Dpf(y,w))) & (p(f(y,w))op(f(a,z))) )
This formula is not valid. In trying to prove it we will come to something like
(P(XN)>p(f(Y0,Z1))) & (p(F(Y0,Z1)>p(f(a,0)))
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Here the left formula will be proved using the binding X0:=f(Y0,Z1). If we now go on to
prove the right formula without adjusting the restriction on Z, we will succeed in proving

it with the bindings Y0:=a, Z1:=0y), and thus the procedure will not be sound.

When seeking proofs of sequents in which = does not occur the above unification is
sufficient. When we take identity into account, a new kind of situation arises, one in
which the unification described so far is insufficient. An example will make this clear.

Suppose we wish to prove the following sequent (obtained through applications of
quantifier rules which are here left out):

a3 =f(0p,07), p(Y6) — p(f(X8,07))

The only rule of GF applicable to this sequent is the left replacement rule, and applying
that rule merely removes the first formula in the antecedent, since there are no

substitutions to make. Nor is it possible to unify p(Y6) and p(f(X6,07)) in the sense of
the procedure defined above, and indeed there is no substitution for the free variables
which makes an attempted proof with this sequent as an end sequent into a proof. Hence
we are stuck if there is nothing else we can do with the free variables.

There is something else to do, however: we can make legal substitutions for the free
variables so as to produce a sequent that can be proved using replacement. By substituting
a; for Y6 and o, for X6 we get

o =f(0,0t7), p(ey) — p(f(02,017))
which is provable by one application of the replacement rule. Note that it would not have

been possible to find this provable instance of the sequent if we had thrown away the first
antecedent formula.

In general there may well be several different ways of making substitutions of this
kind. For example, if our original sequent is

oy =f(0p,017), 03=f(h(0ag),0t7), cty=h(cxg), p(Y6) — p(f(X6,017))

we have two possibilities. One is the substitution given above, the second possibility is to
substitute o3 for Y6 and o4 for X6, getting

oy =f(0y,07), a3=f(h(o),017), oty=h(atg), p(3) — p(f(aLy,07))
which is provable by two applications of replacement.
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In order to incorporate the detection of such substitution possibilities into the
algorithm we have chosen to modify the unification procedure so that it is sometimes
possible to unify X; and T even though T is not i-admissible. This means that the
corresponding substitutions in an attempted proof will not always yield a correct proof,
since the parameter restrictions are violated. Instead we must understand the bindings
produced by unification as follows: from those bindings together with a set of equations
of the form 0y=S can be extracted substitutions and finishing applications of replacement
rules by which an attempted proof is turned into a proof.

We can now give a full specification of the unification algorithm to be used. Two free-
variable expressions S and T (terms or formulas) are unified relative to a sequence Uf of

equations of the form a;=U, where U is a composite free-variable term. For each such
equation in Uf, the following three conditions hold:

Uf1) o does not occur in S,T, or U, or in any other equation in Uf;
Uf2) U contains o, for some m>j;
Uf3) U does not contain any variable Xi where i>j.

The information carried by the equation a;=U is that the term U is allowable as a value for

Xi where i>j, even though U may not be i-admissible. How the sequence Uf is generated
will appear from the full specification of the algorithm in §9.

To describe the procedure for unifying two expressions relative to Uf we again
consider only the unification of X! with T, the other cases agreeing with ordinary
syntactic unification. Because of the different possibilities of substitution exemplified
above, unification is no longer deterministic - there is not always a most general unifier.
Hence there will be a finite number of choice points in the procedure, alternatives that will
be systematically tried in the proof algorithm. These points are marked by the word
“alternative" in the description. The different outputs are obtained by making different
choices at these points. Each output consists of a list of unification bindings Yj:=S;
(=1,..k) where S ; is a free-variable term. Corresponding to each such list is a substitution
operation on free-variable expressions whereby S; is substituted for every occurrence of
Y; (j=1,..k) until no occurrences of the Y; remain. There are no circular unification
bindings, so the order of substitution is immaterial.

To unify Xi with T we go through the following steps:
*If T is Xi, return the empty binding. If T properly contains Xi, return failure.
* Otherwise, check whether T is i-admissible. If so, i-adjust T and return the binding
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Xi:=T.

* If T is not i-admissible, first check whether T is a parameter. If so, return failure.
Otherwise pick an equation a;=U in Uf where j<i and try to unify T and U. If this
succeeds, return the resulting bindings together with the binding X!:=T, after i-adjusting
T. Each output from such a unification of T with the right side of some equation in Uf
provides an alternative output for the unification of X! and T.

As an alternative to the above step:

* T must be a composite term, say f(Ty,..Ty). Let Ty ,.. T be the terms among
T},..Tp. that are not i-admissible. Pick an equation a,;=U in Uf where j<i and try to unify
Ty, and U. Apply the substitution yielded by the resulting list of bindings to the
remaining terms Ty, Tk obtaining Tkz'v-Tkn' and continue in the same way with
these terms. Return the union of the resulting lists of bindings together with the binding
Xi:=T, after i-adjusting T. Each combination of bindings from such a set of unifications
of the non-i-admissible Tkj with right side terms of equations in Uf provides an

alternative output for the unification of Xi and T. If there is no such combination of
bindings, the unification of X! and T fails.

We must verify that a consistent set of bindings is output. This follows from that fact
that Xi does not occur in T by the first step of the procedure, and does not occur in any

a;=U in Uf where j<i by the condition Uf3. Hence no binding of Xlis returned by the
other unifications performed.

In connection with the alternatives in the procedure, it should be recalled that the
parameter adjustments of terms entailed by the introduction of one set of bindings must be
undone when alternatives to those bindings are sought.

If the sequence Uf is empty, the unification procedure coincides with the simpler
procedure not involving identity described earlier.

The justification for this unification procedure consists in the observation that if free-
variable formulas A and B are unifiable relative to Uf, the sequent

Uf,A—>B
is provable using replacement, once suitable legal substitutions, found in the unification

procedure, have been made for the free variables. (Similarly for sequents with consequent
S=T.) The details can be verified by an inductive argument, but need not concern us here.
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One important special case should be noted: a simple inspection of the procedure
shows that a variable X0 with restriction parameter 0 cannot be unified with a T
containing parameters. This observation is needed to verify that bindings of input
variables yield provable instances of a question.

7 The delay mechanism. Producing answers.

The inequality axioms of GF make it possible to introduce a delay mechanism which
applies to two classes of free-variable sequents.

The first kind of delay, called a parameter delay, occurs when we encounter a sequent
of the form

o;=5,'-C or S=0;I'-C

where § is a free-variable term not containing ; in which occurs at least one variable Xk
with k>i. If this holds, S will be said to satisfy the i-parameter condition. When a
parameter delay is triggered it will because of the detection of some particular variable Xk
in S with k>i: this variable will be called the delaying variable. Thus a parameter delay
consists of a delayed sequent together with a delaying variable.

The idea in delaying a sequent of the above form is that we may not have to do
anything more about proving it, for if the variable Xk remains unbound it is always
possible to make the sequent into an inequality axiom by substituting a term containing o;

for Xk. Should S contain oy, we already have an inequality axiom, whatever terms are
substituted for the variables.

The second kind of delay, called a variable delay, is triggered by sequents of the
form

Xi=S,'-C or S=XiI-C

where S is a free-variable term other than a parameter, i.e. a composite free-variable term
or a free variable, in which Xi does not occur. In this case too there will in general be
several possible choices of delaying variable, corresponding to different possibilities of
making the sequent into an inequality axiom. Xi can always be taken as delaying variable,
but in addition any variable in S with a restriction index that is greater than or equal to the
restriction index of every other variable in Xi=S can be designated as delaying variable. In

21



case S is also a variable, say YJ, we will always follow this second principle and take the
delaying variable to be the variable with the greater restriction index (i.e. the less
restricted variable). Variable delays, like parameter delays, will be taken to consist of the
delayed sequent together with a delaying variable.

In talking about delays, we will sometimes refer to a delay as simply "the delay Xi#S"

or "the delay o#S", indicating only the formula prompting the delay, when the remainder
of the sequent is not germane to the point at issue.

A delayed sequent remains in cold storage as long as no binding is created by which
the condition for delaying the sequent is destroyed. When such bindings do arise, the
delayed sequent is awakened and input anew to the proof procedure. Thus, if there are
delayed sequents, a watch must be kept upon the delaying variables in those sequents. A
full description will be given in §9.

When a sequent has been proved, the contraints, if any, given as part of the answer
will be constructed from the delayed sequents. Not every delayed sequent will be relevant
to the answer, however. In particular, if there are no input variables in the question, all
remaining delayed sequents are ignored when a proof of the input formula has been
found. The justification for this and the details of the construction of answers from
bindings and delayed sequents are the topic of this section.

Delay lemma For any set of delays, there is a legal substitution of terms for the
delaying variables such that whatever further substitutions of terms are made for variables
other than delaying variables, the delayed sequents become inequality axioms.

We argue by induction on the number of delays. Pick a delaying variable X. Suppose
X is delaying variable in

i) the variable delays X#8S1,...X#S, where S1,...S, are composite terms;

it) the variable delays X#Wy,.. X#W,, where W,..W_, are variables;

i) the variable delays Y#T1,.. Y #Ty, (where X occurs in T; for i=1,..k);

iv) the parameter delays ail;tUl,...aip#Up.
By the induction hypothesis, there is a substitution for the other delaying variables such
that all other delays become inequality axioms whatever the value of X. Let W*,. .W*_,
be the terms substituted for Wy,..W, in that substitution. (If W; is not a delaying
variable, W¥; is W;). Similarly Y*,,..Y*, are the terms substituted for Y},..Yy. Now
substitute f(ail,...aip,W* 1 W¥0, Y*1,..Y*)) for X, where f is different from the main
function symbol of each of Si,...S;,. This makes inequality axioms out of the delays in
which X is delaying variable, whatever substitutions are made for the remaining
variables. The substitution is legal by the conditions on delaying variables.
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Now for the relation between delays and the constraints described in §5. The output of
the proof procedure, if it succeeds in proving a free-variable sequent given as input,
consists of i) a set of bindings of free variables, ii) a set of delayed sequents. Just how
this output is produced need not concern us at the moment. We need only know that the
delayed sequents conform to the definitions above and that the variable bindings have
been obtained by unification. Furtnermore, because of substitutions that are made in the
algorithm, it will hold that no variable occurs both in a delay and as the left side of a
binding. From this output we need to construct an answer in the sense of §5, i.c. a set of
bindings (possibly empty) of the input variables and a set of constraints (possibly empty)
on the auxiliary variables contained in the bindings. For clarity we will speak of the
bindings output by the proof procedure as "unification bindings" and the bindings given
in answers (which apply only to input variables) as "answer bindings".

We need some definitions. The input related variables are an inductively defined
subset of the variables occurring in the unification bindings and delays: every input
variable is an input related variable, and if X:=S is a unification binding and X an input
related variable, then every variable in S is input related. Note that all input related
variables have restriction value 0. An input related binding is a unification binding X:=S
where X and hence all variables in S are input related. An input related delay is a variable

delay X#S where X and all variables in $ are input related.

In constructing the answer, we disregard every unification binding and delay that is
not input related. The justification for this is the following

Answer lemma 1 There is a substitution of terms for the variables that are not input
related by which the non-input related delays become inequality axioms whatever the
value of the input related variables.

This follows from the delay lemma applied to the set of non-input related delays. For
no input variable can be delaying variable in a parameter delay, and if an input variable X

is delaying variable in a non-input related delay XS, we can take a non-input related
variable Y in S and make Y the delaying variable instead of X.

Hence we can safely ignore the non-input related unification bindings and delays
when extracting an answer to a question.

Now in order to make an answer out of the input related bindings and delays we
introduce compositions of the unification bindings and new auxiliary variables as needed
SO as to get an answer in the sense of §5, and produce a constraint from each delay by
substituting place markers for the parameters occurring in S. The fairly obvious details
(utilizing the fact that unification bindings have been produced with an occur check) are
omitted. An example will show the pattern. Suppose we have input variables
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X1,X2,X3,X4 and an output from the proof procedure consisting of the unification
bindings X;0:=f(X,0,Y0), Y0:=g(W0), X50:=X30, and the delays a3=h(Z,5),
Z,2#g(X30), WO(X10,0,4,01;) (delaying variable W), W0xX 30, (delaying variable W),
X4#Zs3 (delaying variable Xg4). Disregarding all that is not input related and dropping the
restriction indices (all implicitly 0), we get X;=f(X>,Y), Y=g(W), Xp=X3,
W=f(X3,04,001), WX3. Introducing new auxiliary variables and cleaning up, we get
X1=f(A,g(W)), Xa=A, X3=A, W=f(A,%1,%2), WA or a variant of this.

The central point is to verify that the delayed sequents will be provable for every
instance (in the sense of §5) of the answer thus produced. This follows from

Answer lemma 2 If t;,..t,, is an instance of an answer constructed from unification
bindings and delays, substitution of ty,..t;, for the input variables in an input related
delayed sequent yields a sequent provable using the rules and axioms for identity.

Suppose the delay is X#S(Y 1. Yi,0j;5--0 ). A term t which is not of the form
S(sq,.-5k,%1,..%m), where sy,..sy are the terms substituted for Yy,..Yy, will make this

delay provable using inequality axioms and the injectivity rule. Again the details are
omitted.

8 Rotation and the ordering of premisses

Before giving a full specification of the basic algorithm in §9, we will spell out here
the rotation scheme (in the sense explained in §3) used, and our reasons for using that
particular scheme.

First a simpler matter: the order in which to prove the premisses in applications of
two-premiss rules. There are four two-premiss rules: =&, v—, D—,=—. In the cases
—&, v— we prove the left premiss first, for no particular reason. In applications of >—
and =—, however, there is a good reason for proving the right premiss first, viz. that this
makes it possible to exploit the semi-invertibility of these rules. If the attempt to prove the
right premiss fails we fail the attempted proof of the conclusion. (A precise formulation is
given in §9.) As it turns out, there is also a good reason for proving the left premiss first,
viz. that this accords better with some of the optimizations to be explained below, and this
is the principle that has prevailed in the implementations. More on this in later sections. In
the basic algorithm described in §10, however, the right premiss is proved first in
applications of semi-invertible rules.
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Our treatment of rotation is the most notably "mechanical" aspect of our algorithm. To
try to prove a sequent in an intelligent way consists to a large extent in scanning the
premisses and looking for a premiss which seems suitable to use in order to arrive at the
conclusion. Some efficient partial theorem provers like Prolog implement a very specific
method of locating a premiss to use in proving a given formula. In the present system,
however, we have not implemented any principle of this kind whatsoever. We do not take
the conclusion into account at all when choosing a premiss to use.

By a reduction we mean an application of an invertible rule other than V—. Because

of the limits on contraction, V— will be treated as a non-invertible rule. The algorithm
begins work on a sequent by performing all possible reductions. All left reductions - i.e.
applications of &—, v—,3— - are performed first, then all right reductions -
applications of =&, >, —=, V. An application of =D or —= may introduce the
possibility of further left reductions, which are then performed before continuing with any
remaining right reductions. This order between left and right reductions does not have any
known significance; the only observation we can make here is that there is some slight
advantage in applying one-premiss reductions before two-premiss reductions, since this
reduces the number of invocations of the proof procedure.

When all possible reductions have been performed we have a sequent '=C where C
is atomic or a disjunction or an existential formula, and every formula in I is atomic or an
implication, an equivalence, or a universal formula. We must have a scheme for using
each of these formulas in turn in trying to prove the sequent.

The first principle (of horizontal rotation) we apply is to use the consequent, if it is a
disjunction or existential formula, before the antecedent formulas. This principle is
dictated by later optimizations (consequent locking). In the basic algorithm it has no other
justification than the observation that it seems to work at least as well as other choices.

As regards the antecedent formula, we have further implemented a principle of using
the universal formulas before the implications and equivalences. The motivation for this is
not theoretical, but consists in the observation that this in practice appears to give very
much better results than using implications before universal formulas, and perhaps even
better results than letting uncontrolled factors decide the matter. We have not found any
theoretical or practical reason for separating implications and equivalences, however.

These are the only horizontal principles. No distinction is made between different

universal formulas: they are used in the order in which they happen to have been stored in
the universal formula list, and similarly for implications and equivalences.
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In the matter of vertical rotation, implications and universal formulas are treated
differently. Implications and equivalences are not rotated vertically at all: the implication
list is carried over unchanged to the left premiss in an application of >~ or =—, and in
the right premiss we just remove the formula used. In the basic algorithm this entails that
in any branch of an attempted proof the formula at the head of the list wi!l be the one to be
used as long as any contractions of that formula remain. This is not always a good thing,

but the technique of implication locking described in §14 makes the vertical non-rotation
of implications a reasonable principle.

Universal formulas are rotated vertically as follows:
1. Each sequent has an active list and a dormant list of universal formulas.

2. When a new universal formula appears (in the examination of the working list as
described in §9), it is put at the head of the active list.

3. The formulas in the active list are used in order. When a formula from the active list
is used it is transferred (if the contraction parameter is not zero) to the dormant list in the
premiss sequent.

4. When every formula in the active list has been used, the formulas in the dormant
list are transferred to the head of the active list. They will appear in the active list in the
order in which they have been used in the branch.

The precise form of this rotation has no very profound motivation. A vertical rotation
of universal formulas is called for, however, since there is nothing corresponding to
implication locking in the case of universal formulas. Without any vertical rotation, each
universal formula will be used repeatedly in a branch of an attempted proof until no
contractions remain, with - as experience has shown - awful results.

The general tendency of the rotation principles is to assume that every premiss in a
sequent has its role to play in a derivation of the consequent. When there are many or
complicated irrelevant premisses this assumption does not promote efficiency. The

technique of use checking (§15) counteracts the effect of irrelevant premisses to some
extent.

9 Specification of the basic algorithm

The following description concerns the general internal operation of the algorithm.
The description of how the algorithm works at top level, begun in §5, will be completed
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in §10.

The input to the algorithm consists of a structured and annotated free-variable sequent
together with a list of delayed free-variable sequents. The output is either failure or a list
of (unification) bindings together with a list of delayed sequents. The algorithm yields
multiple output by backtracking: there are a number of choice points, to be pointed out
below, where alternatives are systematically tried. When there are no further alternatives,
failure is returned.

Just how a free-variable sequent is structured and annotated varies to some extent
between different versions and modifications of the algorithm. In all versions, however,
sequents have at least the basic structure now to be described.

The sequent is divided into antecedent and consequent. The consequent consists of a
single formula. The formulas in the antecedent are distributed over 1) the active and
dormant lists of universal formulas, as described in §8, 2) a list of implications and
equivalences, 3) a list of atomic formulas, 4) the Uf list introduced in §6, 5) a list of as
yet unanalyzed formulas, called the working list. The sequent is also annotated with a
parameter index, as explained in §6.

Furthermore, the structured sequent includes the contraction annotations for universal
formulas, implications, and equivalences. In order to achieve flexibility in the treatment of
contraction, we have two ways of determining the number of available contractions of a
formula. The first is through an explicit annotation of subformulas of the input formula.
The second is by annotating each formula when it is encountered in the working list with
an adjustable default contraction value. There is a separate default contraction parameter
for universal formulas, implications, and equivalences.

A point concerning substitutions in formulas. Because we always apply the rules from
the conclusion to the premisses, we will never make substitutions of bound variables for
parameters. We will substitute free variables for bound variables and for parameters and
free-variable terms for free variables and for parameters. Thus there is no possibility of
variables being captured by quantifiers in substitutions.

Unification occurs, as noted in §3, when we are trying to make a logical axiom or
equality axiom out of a sequent (whereas the inequality axioms are utilized in the delay
mechanism and at a couple of other points as described below). In the case of logical
axioms, we have a choice between seeking axioms A,’=A for general formulas A or
only for atomic formulas. In the description below, the second alternative has been
chosen, but it is a simple matter to move the check for logical axioms to the beginning of
the analysis of the working list. The main reason for restricting axiom checking to atomic
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formulas is that the unification algorithm can entail very cumbersome computations if
there are many equalities in Uf, so we prefer to minimize the applications of unification. A
further reduction in the checking for axioms is possible: 8 in the description below is not
logically necessary, but can be eliminated.

The algorithm:
For our working sequent, we will use the notation

Work,Atoms,Uf,Univs,Imps — C

where Work is the working list, Atoms and Uf are as stated above, Univs stands for the
pair U_active, U_dormant, and Imps is the list of implications and equivalences. In the
following, I stands for Atoms,Uf,Univs,Imps. We will use Prolog list notation and write

[AlTail] for a list with first element A, with Tail being the remainder of the list. Similarly
[A,BITail] is a list with A,B as first two elements.

To make the description of the algorithm more readable, we will use some special
terminology for recurring operations.

First, to continue with a sequent is to return as output the results of applying the
algorithm to the input delays together with that sequent.

The two-premiss procedure is activated in the treatment of two-premiss rules. Given
the premisses X and X, of a free-variable sequent X, we obtain an output by

1) getting an output from the algorithm applied to X, together with the input delays,
and

2) feeding the output delays of step 1 to the algorithm as input delays together with the
sequent obtained by performing the substitutions yielded by the output bindings of step 1
in the sequent Zj.

As output we deliver the output bindings from step 1 together with the output bindings
from step 2 and the delayed sequents output in step 2. We get alternative outputs from the
two-premiss procedure by getting alternative outputs from step 2, and when these are

exhausted (and thus failure returned in step 2), beginning again with an alternative output
from step 1.

The unify-axiom procedure is invoked when we seek to produce a logical axiom or
equality axiom by unification. Thus, to make an axiom out of '—S=T we seek to unify S
and T, giving to the unification algorithm as input the free-variable terms S and T together
with the Uf list of the sequent. Similarly in seeking to make a logical axiom out of

A,I'>B. Given an output of bindings from the unification algorithm we apply a
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generalization of the two-premiss procedure to the input delayed sequents Z;,..Z.
Explicitly: for i=1,..k we determine an input and output as follows:

for i=1 (step 1), we input the empty list of delays, and the sequent Z;' obtained by
making the substitutions yielded by the unification in the sequent Z;, and output the
unification bindings and either X', if the delaying variable of Z, has not been bound, or
the result of applying the algorithm to Z;"

for i>1, we input the output delays of step i-1 and the sequent Z;' obtained by making
the substitutions corresponding to the bindings output in step i in the sequent sequent X,
and output the union of the lists of bindings output in previous steps together with either
Z;', if the delaying variable of Z;' has not been bound, or the result of applying the
algorithm to Z;'.

Here we get alternative outputs in analogy to the two-premiss case, but in addition we get
alternatives by getting alternative output from the unification that started the whole thing.

The substitution procedure operates on a sequent and a pair of terms, one of which is
a parameter. We substitute the other term for the parameter throughout the sequent. Next
we check the resulting Uf list to see if it has become possible to delay the sequent as a
result of the substitution. If so, we output the empty list of bindings together with the
input delays and the present sequent as new delay. If the sequent has not become
delayable after the substitution, we continue with that sequent.

Now for the description of the procedure. If the working list is [AIWork] and thus

non-empty, we begin by determining the form of A and taking various actions. The
numbered cases below represent actions and alternative actions, as indicated.

1. A is L. In this case we return the empty list of bindings together with the input list
of delays.

2. Ais A;&A;. We continue with the sequent
[A1,AzIWork],I'-> C

3. Ais AjvAj,. We apply the two-premiss procedure to [A;IWork],[—C and
[A;lWork],I'-C.

4. A is AjDA; or A=A, possibly with a contraction annotation. If A is not already
annotated, we annotate it with the default implication or equivalence annotation. We
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continue with the sequent
Work,Atoms,Uf,Univs,[AlImps]—C
5. A is 3xB(x). We continue with the sequent
[B(oy)|Work],Atoms,Uf,Univs,Imps—C

where i is the current parameter index, and the parameter index of the indicated sequent is
set to i+1.

6. A is VxB(x), possibly with a contraction annotation. If A is not already annotated,
we annotate it with the default contraction value for universal formulas. We continue with
the sequent

Work,Atoms,Uf,[AlU_active],U_dormant,Imps—C

7. A is an equality S=T. There are a number of mutually exclusive cases.

a. A is X=X for some variable X. In this case we continue with Work,I'—C.

b. A is X=S where S properly contains the variable X. In this case we return the
empty list of bindings together with the input list of delays.

¢. A is X"=0y, where k=n. We apply the substitution procedure to Work,I'—C and
the substitution of XM for oy.

d. A is X=S where none of a-c applies. In this case we add our working sequent to
the input list of delays as a new variable delay with X as delaying variable. We return the
resulting list of delays together with the empty list of bindings.

e. A is S=X where S is not a variable. We continue with [X=SIWork],I'=C.

f. A is oz=0,. In this case we continue with Work,I'—C.

g. A is ;=0; where i#j. We continue with the result of substituting o; for a; (if i<j)
or o for o (if j<i) everywhere in Work,I'—=C.

h. A is a,=S where S properly contains o,. In this case we return the empty list of
bindings together with the input list of delays.

i. A is a,=S where S contains an n-admissible variable. In this case we add our
working sequent to the input list of delays as a new parameter delay with the n-admissible
variable found as delaying variable. We return the resulting list of delays together with the
empty list of bindings.

J- A is ap=S where none of f-i applies. We apply the substitution procedure to
Work,I'—=C with the substitution of S for o, but with the following added twist: if S
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contains a parameter oy, where k>n, we add o,=S to the Uf-list, and do not substitute for

this particular occurrence of o,

k. A is f(s,..s)=g(t1...ty), with different function symbols f,g (m,n20). In this
case we return the empty list of bindings together with the input list of delays.

I. A is f(sq,..5y)=f(t},..ty). In this case we continue with the sequent

[s1=tq...8p=t,|Work],'>C.

8. A is an atomic formula other than an equality. Here we apply the unify-axiom
procedure to A and the consequent C. An alternative is given in 9.

9. As an alternative to 8 we continue with the sequent

Work,[AlAtoms],Uf,Univs,Imps—C

If the working list is empty, we turn our attention to the consequent C in the sequent
I'>C. In the following cases 10-20 it is assumed that the working list is empty.

10. If C is C;&C;, apply the two-premiss procedure to —C;, [—>C,.

11. If C is C;>Cy, continue with [C;],'>C,, where [C,] is the working list.

12. If C is C1=C,, apply the two-premiss procedure to [C;],T-C, and [C,],T—C;.

13. If C is VxA(x), we continue with the sequent

I'-A(x)

where i is the current parameter index, and the parameter index of the indicated sequent is
set to i+1.

14. If C is C;vC,, we continue with '—C;. As an alternative, we continue with
I'=C,. A further alternative is given in 18.

15. If C is 3xA(x) we introduce a new variable Xi, where i is the current parameter
index, and continue with T-»A(X}). An alternative is given in 18.

16. If C is an equality S=T, we apply the unify-axiom procedure to S and T. An
alternative is given in 18.
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17. If C is atomic formula, we apply the unify-axiom procedure to C and a formula in
the Atoms list. Each choice of formula in the Atoms list gives an alternative output. A
further alternative is given in 18.

18. We use each universal formula VxA(x) in the active list to obtain outputs, by

introducing a new variable Xi where i is the current parameter index and applying the
procedure to the input delays and the sequent

[A(X1)],Atoms,Uf,Univs',Imps—C

Here Univs' is Univs with VxA(x) removed if no contractions remain, or otherwise with
its contraction count decremented by one and moved to the head of the dormant list. An
alternative is given in 19.

19. We use an implication ADB or equivalence A;=A; in the implication list to obtain
an output by applying the two-premiss procedure to the corresponding premiss sequents,
taking the right premiss first.

Thus in the case of an implication we have right premiss
[B],Atoms,Uf,Univs,Imps'—>C , where Imps' is Imps with ADB removed, and left
premiss Atoms,Uf,Univs,Imps'— A, where Imps' is Imps with ADB removed if its
current contraction count is 1, or otherwise with the contraction count of ADB
decremented by one. In the case of an equivalence we have the right premiss
[A1,Az],Atoms,Uf,Univs,Imps'—C and left premiss Atoms,Uf,Univs,Imps'—A;.

Each choice of implication or equivalence yields an alternative output. The choice of
A; to use in the left premiss also gives alternatives in the case of the =—-rule. The
following special rule applies, however: if for any of the implications or equivalences the
right premiss cannot be proved at all - i.e. the first time we apply the procedure to that
premiss, failure is returned - we do not continue with the remaining implications and

equivalences, but go directly to the alternative given in 20. (This is where we use the
semi-invertibility of these rules.)

20. This alternative to 19 consists in reinstating the universal formulas in the dormant
list as described in §8 and continuing with the resulting sequent.
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10 Top level procedure

Given a question in the form of a free-variable formula A(X;,..X,) optionally
annotated with contraction values, we apply the following procedure to produce a series
of answers.

Form a starting sequent by setting the consequent equal to A(X;90,..X,0), the
antecedent lists being empty. Feed this sequent with the initial parameter index O to the
algorithm specified in §9, together with the empty list of delays. There are two matters to
be considered: what to do with an individual output returned by the algorithm, and how to
prompt for further outputs.

First the treatment of individual outputs. If the algorithm yields a non-failure output,
this output is transformed into an answer as described in §5, and possibly presented as
output of the top level procedure. Every answer presented is saved in a data base of
answers. Whether or not an answer derived from the algorithm is presented as output
depends both on whether it returns any bindings and on how thorough we are in our
subsumption checking.

The strictest possible criterion for presenting an answer is that not every instance of
that answer (in the sense of §5) is an instance of some previously presented answer. For
example, if we have previous solutions

1) X=f(g(Y)) and

2) X=f(Y) where Y=g(%1),
the strict criterion will eliminate a later answer X=f(Y), since every instance of that
answer is an instance of one of the previous answers. However, since it may not be
immediately obvious to the user of the system in such cases that the new answer is
subsumed by previous answers, one may well prefer to present the answer, and use the
subsumption checking only to weed out dreary repetitions or obvious variants of
previously given answers. Since we have at present no well thought-out algorithm for
doing strict subsumption checking, we leave the matter open.

The second question to be considered is how to get further answers. We must of
course prompt the algorithm to produce every output of which it is capable given the
many choice points indicated, where alternative outputs may be sought. At the top level
there are, however, further alternatives to be considered. In the algorithm as described in
§9 there are no alternatives to delaying a sequent. There are alternatives to all operations in
which variables are bound, for even if there are no input variables we must in general find
every binding of the internally generated free variables that yields a provable instance of a
free-variable formula. (Consider e.g. an attempted proof of a sequent of the form

I'-3x(A(x)&B(x)), where every binding of X for which I’ —A(X) is provable may have
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to be found). Delays, however, bind no variables, and it would in general be a waste of
time to investigate alternatives to making those delays. At top level, on the other hand, we
must consider alternatives to delays in order to obtain a complete algorithm in the sense of

§5.
For example, the question Vy(X=g(y)>Vz(—=X=£(z))) leads to the sequnt

X0=g(0tp) >V z(—X0=f(z))
This sequent will be delayed without further ado, and we extract the answer

X=A where A#g(%1)

Clearly this answer is not sufficient, however, since the formula is in fact valid for every
substitution of a closed term for X.

We therefore adopt the following procedure. When an answer has been extracted from
an output we check for alternatives to each of the input related delays in the output. These

alternatives are generated by taking an input related delay X=S,I'>C and attempting to
prove the sequent I"'—C' obtained by substituting S for X everywhere in '->C. (Here
we utilize the fact that general replacement holds as a derived rule in GF.) Thus in the
above example, we try to prove g(og)=g(0tg)—Vz(—g(0o)=f(z)) and succeed with an
output of no bindings and no delayed sequents; hence we report an answer with X
unbound and unconstrained.

Thus the top level procedure for extracting answers consists in applying the algorithm
with the invocation of additional alternatives at certain points. Because of the limited
contraction, only a finite number of answers can be generated for a given default
contraction value and a given annotation of the input formula. In order to generate further
answers we increase the default contraction value and start over. Of course, if all
universal formulas, implications, and equivalences in the input are annotated with
contraction values, there is no point in starting over with new default values.
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11 Locking the consequent

The large number of choice points is a striking aspect of the algorithm described.
Clearly the alternatives multiply at a computationally very unpleasant rate. In the
following sections we will present several restrictions of the algorithm. By this we mean
a modification of the algorithm which consists in cutting away some alternatives. A
particularly unproblematic form of restriction is that which we will call a pruning: an
elimination of alternatives that cannot, in the circumstances in which the pruning is
applied, lead to any new successful bindings. The only way in which a pruning can slow
down the algorithm is by consuming more time in checking that the necessary conditions
are satisfied than is gained by avoiding unnecessary computations. Most useful
restrictions turn out not to be prunings. For example, using invertible rules before non-
invertible rules is an example of a restriction that is not a pruning. Of course for the
algorithm to remain complete, a restriction must not eliminate every way in which a
particular successful binding can be found. For any restriction that is not a pruning there
will be cases where proofs that would have been easy to find without the restriction are
eliminated in favor of proofs that are hard to find. Nevertheless, in practice it appears that
the high degree of non-determinism is so detrimental to the performance of the algorithm
that the over-all effect even of quite drastic restrictions, by no means obviously
completeness preserving, is almost wholly beneficial. Some of the restrictions to be
described entail that formulas will sometimes require higher contraction values to be
provable than are necessary when the basic algorithm is used. These matters are
considered in [6].

The restrictions presented in the present section are, however, prunings: v-locking
and 3-locking. They work as follows. Before seeking alternatives to using a disjunction
or existential formula in the consequent we annotate the sequent with a flag indicating that
the consequent of the sequent is locked. That the consequent is locked means that we are
not allowed to apply a consequent rule to the sequent. The consequent is unlocked - i.e.
the annotation is removed - at any application of the v—-rule, and in the left branch of an
application of 5— or =—. In addition, if the locked consequent is an existential formula,
it is unlocked an any application of 3—. It should be noted that this optimization exploits
the sequential nature of the algorithm and is not obviously applicable when different
branches of an attempted proof are explored in parallel.

Locking the consequent is an inexpensive pruning and will give good results when
added to the basic algorithm. However, in practice it is seldom of importance because the
effects of locking are usually subsumed by those of compaction, which is an important
and indeed indispensable form of restriction in our algorithm.
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12 Compaction

In seeking a proof of a sequent '=(AvB)vC we will, in the basic algorithm, first try

to prove '—=AvB. This in turn leads us to the task of proving '—A. We thus have two
steps in the attempted proof:

I'—-A
I'-AVB
I'-(AvB)vC

To apply compaction in this case is to squeeze these two steps into one:

I'-A
I'-(AvB)vC

The point of this is not to reduce the number of invocations of the proof procedure from
three to two, but to do away with a large number of alternatives: all of the alternative

proofs of ' AvB using formulas in I that will be attempted in the basic algorithm are
eliminated. We retain the alternative of proving I'-B and also the alternative attempted

proofs of I'=(AvB)vC using either C as consequent or one of the formulas in I, and for
the algorithm to remain complete these must suffice to obtain every successful binding
otherwise yielded by the eliminated deductions.

The above type of compaction will be called v-v-compaction. Various forms of
compaction are possible. Those that seem to notably increase the efficiency of the basic
algorithm are, in addition to v-v-compaction, v-3-compaction, 3-v-compaction, 3-3-
compaction, V->-compaction, V-=-compaction, and V-V-compaction, all of them
defined below. The use of these forms of compaction is most simply described as a
modification of some of the logical inference rules.

We define the v3-expansions of a formula A inductively as follows: A is a vI—
expansion of A; if B(t) is a v3—expansion of A then 3xB(x) is a v3—expansion of a; if B
is a v3—expansion of A and C is any formula, BvC and CvB are v3-expansions of A.

To implement v-v-compaction, v-3-compaction, 3-v-compaction, and 3-3-
compaction we replace the —v-rule and —3-rule by the following rule:
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I'-A

I'-B

where A is not a disjunction or an existential formula, and B is a vd-expansion of A. In
applying this rule (from the conclusion to the premiss) in the algorithm, we take as
alternatives every I'>A where B is a v3-expansion of A, before going on to use the
formulas in I'.

To implement V->-compaction, V-=-compaction, and V-V-compaction we introduce

three new rules of inference to replace the V—-rule:

D,A(t)..t))2B(t1..tp). I =A  D,B(t;..ty),'=C

Vx1..Vxp(A(X}..Xp)DB(X1..x)), =C

where D is Vx;..Vxp(A(X1..X5)DB(X1..Xp)).

D,A(t1..t)=A0(t)..t,), >4, DA 1(ty..ty),Ax(ty..t,),[>C

Vx1..Vxp(A1(X]..Xp)=A2(X1..Xp)), [ =C

where D is Vx;..VxX (A (X1..Xp)=A0(X1..Xp)).

VX1.. VXA (X1..Xp),A(t)..t,),—=C

Vx1..VXpA(X]..x,), T —=C

In the last of these rules A(x;..x;) must not be a universal formula, an implication, or an
equivalence.

The algorithm is adapted to these rules in the fairly obvious fashion. Note that the
modified V—-rule is semi-invertible in the first two cases.
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13 Sifting bindings

The two-premiss procedure described in §9 has the following defect: in seeking
alternative proofs of the first premiss, we don't check whether the bindings yielded by
those alternatives ar: in fact new. Because of this we may spend & lot of time trying to
prove the second premiss over and over, with the same set of bindings. Hence we
introduce a sifting of bindings now to be described, and to be called two-premiss sifting.

Let Z; and Z, be the premisses of X in an application of the two-premiss procedure.
The following sifting principles apply in two-premiss sifting:

1) Every output - bindings and delays - returned by alternative proofs of Z; is saved
and then labeled "success” or "failure” depending on whether or not the corresponding
attempted proof of X, succeeds. On backtracking to the attempted proof of £, and

obtaining another solution of X;, we compare that solution to the stored previous
solutions, and reject it if there is a previous solution such that

i) the delays of that solution form a subset of the delays of the present solution, and

ii) the previous solution was a success and the current solution is an instance of that
solution, or the previous solution was a failure and the current solution is an instance of

that solution with respect to the free variables in X,.

2) If the first attempt to prove Z, using bindings and delays returned by a proof of )
returns failure, check whether both of the two following conditions are satisfied: i) there

is no binding of any variable in Z; in the bindings returned, ii) no delaying variable in any
of the delays returned by the proof of X, occurs in . If both conditions are satisfied, we

know that alternative proofs of Z; cannot help us prove Z,, and so we do not seek any
such alternative proofs.

Note that even if conditions i) and ii) in 2) are satisfied, we must still backtrack to Z
if an attempted proof of X, fails in the course of backtracking, rather than on the first try.

It is, however, inexpensive to incorporate a further check of proofs of 2q:if Zy is proved
without binding any variable whatever (which is not infrequently the case) and without

returning any delays, we know that we need not seek alternative proofs of Z; under any
circumstances. This further check has been incorporated in at least one implementation.

Two-premiss sifting also applies to proving delayed sequents in the unify-axiom-
procedure. We omit the details.

Clearly two-premiss sifting is not the only sifting that can be introduced into the
algorithm. We have in fact experimented with what may be called choice point sifting: at
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various choice points in the algorithm, solutions are stored and on backtracking it is
ensured that only essentially new solutions are accepted. However, experience indicates
that choice point sifting quickly becomes very expensive and yields only meager results,
whereas the form of two-premiss sifting specified above is a highly successful
optimization of the algorithm.

14 Implication locking

Implication locking is a technique for drastically restricting the use of implications and
equivalences in the antecedent. First some definitions.

An application of —> will be called a transfer; the antecedent A of the principal

formula ASB in the application will be called the transferred formula. We extend the
structure of sequents by adding a transfer list to the other lists. In each transfer, the
transfer list of the premiss is extended to contain the transferred formula.

To explain implication locking, we start by considering the simpler case of
propositional logic. Here there are two principles:

1) If, in an application of —> to a sequent '>A>SB the formula A already occurs in
the transfer list of the sequent, we continue with the sequent '-B; and similarly in
applications of —=.

2) If, after an application of >D— or =— to a sequent '—=C, we come in the left
premiss branch, via applications of consequent rules, to T—-C' (no new formula having
been transferred) and thus should, according to the basic algorithm, use an implication or
equivalence in I', we throw away instead everything done after the initial application of
D— or =—, and start on the next alternative to that application.

As a simple example to see what this entails, consider the sequent

P1-P2:P22P3:--Pn-1=Pn:P1—Pn

This sequent can be proved using the premiss implications in any order and is handled
very quickly by the algorithm without implication locking. However, since there will be
no transfer at all in a proof of the sequent, implication locking constrains the implications
to be used in one particular order, viz. that exhibited above. Thus in this case we have a

drastic restriction of the algorithm whereby only one out of n! possible proofs remains to
be found.
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This extreme example illustrates both the power and the possible drawbacks of
restrictions. In fact the above sequent will take some considerable time to prove for large
n using the algorithm described, so it would appear that implication locking is not always
beneficial. However, the trouble with this example is not due to the implication locking as
such, but to the implication locking in combination with the principle that the right
premiss will be proved first in applications of >— or =— to. Accordingly, implication
locking must be coupled with the stipulation that the premisses in applications of these
rules will be proved in the other order, the left premiss being proved first. This
completely eliminates the drawbacks of implication locking. In the propositional case we
can still make use of the semi-invertibility of >— and = whenever the attempted proof
of the right premiss fails.

In the predicate logic case we also use a transfer list, and principle 1 remains as above.
The second principle is somewhat different:

Suppose we apply D— or = to a sequent '=C and then come to '—C', without
having transferred any new formula (i.e. one not in the transfer list). We then insert a
barrier at the head of the implication list in I" before continuing with '—C'. A barrier in
the implication list has the effect of preventing the use of any implication or equivalence

after the barrier. Whenever a new formula is transferred, the first barrier is removed from
the implication list.

The use of implication locking in the predicate logic algorithm is also coupled with a
left to right order in proving the premisses of >— or =—. These remarks also apply to
allimp and alliff compaction. In the predicate logic case we can still incorporate a certain
exploitation of semi-invertibility in two-premiss sifting, as follows: if the left premiss has

been proved without binding any variable in the right premiss, and the attempted proof of
the right premiss fails, we reject the parent sequent.

15 Use checking

In order to weed out some of the irrelevant computations that are inevitable when
proofs are sought - particularly, of course, if irrelevant premisses appear at an early stage
- the following checks can be made in applications of two-premiss rules.

To make essential use of an occurrence of a formula in proving a sequent is to use
some subformula of that occurrence as the formula A in a logical axiom A,I'—A. Thus

40



this notion presupposes that we work with analyzed proofs, i.e. proofs in which each
occurrence of a formula is kept track of across the proof.

1) >—-use checking: If, in proving a sequent ADB,I'->C we apply D— to the

formula ASB and prove the right premiss B,'—C without making essential use of the
indicated occurrence of the formula B, we return the resulting bindings and delays as
output of the attempted proof, without trying to prove the left premiss.

2) =—-use checking: If, in proving a sequent A=B,I'~>C we apply =— to the formula
A=B and prove the right premiss A,B,I'->C without making essential use of either of the
indicated occurrences of the formulas A,B, we return the resulting bindings and delays as
output of the attempted proof, without trying to prove the left premiss.

3) —»&-inconsistency checking: If, in proving a sequent T—->A&B we prove T-A
without making essential use of the indicated occurrence of A, we return the resulting

output as output of the attempted proof of '—>A&B without proving the right premiss.
(Note that in this case I" must be inconsistent.)

4) v—-use checking: If, in proving a sequent AvB,I'-C we prove A,'—C without
making essential use of the indicated occurrence of A, we return the resulting output as

output of the attempted proof of AvB,I'-C without proving the right premiss.

However, 1) and 2) presuppose that the right premiss is proved first in applications of

D—> and =—, and hence are not available in the optimized algorithm. Instead we apply
the inconsistency check applied to —& also in the case of of >— and =—:

5) D—»-inconsistency checking: If, in proving a sequent ADB,I'—C we apply o— to
the formula ADB and prove the left premiss ADB,I'5A without making essential use of
the indicated occurrence of the formula A, we return the resulting bindings and delays as
output of the attempted proof, without trying to prove the right premiss.

6) =—-inconsistency checking: If, in proving a sequent A=B,'-C we apply =— to
the formula A=B and prove the left premiss A=B,I’=D (where D is A or B) without
making essential use of the indicated occurrence of the formula D, we return the resulting

bindings and delays as output of the attempted proof, without trying to prove the right
premiss.

3)-6) have been implemented for propositional logic, to good effect.
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16 Collecting implications

Intuitionistic logic does not offer many possibilities of rewriting sequents into
equivalent and more easily handled forms. The two obvious ways of combining
implications in the antecedent have, however, turned out to be of some use.

The first of these operations consists in checking an implication ASB whenever it
appears in the course of the analysis of the working list to see if an implication ASC
already exists in the implication list. If so we replace ASC in the implication list by
ADB&C, taking the contraction value of this implication to be the maximum of the
separate values of ASC and BoC.

The use of conjunction is just a matter of convenience. Essentially, we are introducing
arule

ADB,,..ASB,I'->A By,.Bp I —C

A>DB4,.ADB,I'-C
in addition to the standard >—-rule.

The second operation works similarly, but looks for implications ASC and BoC to
combine into AvBOC. In other words, we introduce a rule

A1DB,. A DBI'—>A; B,I'-C

A1DB,..ADBI'-C

Again it is convenient to use rewriting in implementing this rule. In this case, however,
we use a special connective ov (splitting disjunction) for which we have a rule to the
effect that '—->AcVB can only be proved by proving one of ' A or '-B, and rewrite

ADSB and CoB as AcvC—B. The further alternatives that would be tried with an
ordinary disjunction are clearly redundant here.

42



17 A propositional decision procedure

In applying the algorithm to propositional formulas, simplifications can be made. The
entire delay mechanism falls away, and everything having to do with binding variables.
Unification reduces to a simple comparison of atomic formulas for equality. Input to the
procedure consists only of a sequent, and the output of success (formerly the empty list of
bindings) or failure. In the two-premiss procedure there is no need to consider any
alternatives to a proof of X, if the proof of X, fails; instead we just return failure as output
of the procedure. Alternatives remain to be considered only in proving a sequent '=C
where C is atomic or a disjunction and I" consists of atomic formulas, implications, and
equivalences: here we must be prepared to try using each of the non-atomic formulas.
Implication locking, which is essential for the feasibility of the algorithm, eliminates the
need for contraction deepening, since no implication ASB can be used more times than
there are subformulas to transfer from A (and similarly for equivalences). Thus we obtain
a decision procedure for propositional intuitionistic logic. Of the other optimizations
introduced above, oror-compaction, —&-inconsistency checking, v-checking, D—-

inconsistency checking and =—-inconsistency checking, and combining implications
carry over immediately to propositional logic. All except combining implications have
been found to contribute greatly to the efficiency of the algorithm.

The resulting decision procedure has a different character than that of [9] in not
attempting any reduction of a problem in propositional logic to a problem involving (a

large number of) simpler formulas. Instead it is based on exploiting the complexity of
formulas.
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APPENDIX

Implementations of the algorithm in SICStus Prolog (which is fully Quintus
compatible) and in C (the latter for 4.2BSD or 4.3BSD) are available by anonymous ftp
from sics.se, IP address 192.16.123.90. The implementations can also be obtained by
email: send your request to either dan@sics.se or torkel@sics.se. The execution times
given in the following files pertain to the C implementation, which does not incorporate
-any treatment of identity; hence the omission of identity logic from the examples. Unless
otherwise noted, all examples have been given to the algorithm with the following
settings:

i) all forms of compaction active, ii) implication locking, or-locking, and existence-
locking active, iii) &-checking, v-checking, D->-inconsistency checking and =—-
inconsistency checking active for propositional input only, iv) two-premiss sifting active,
V) initial contraction parameters all have value 1, and all are incremented by 1 on failure.

The examples have not been chosen with a view to possible applications of
intuitionistic logic, but only in order to test various aspects of the algorithm. Note, for
example, that it makes very little sense to use a decision procedure for intuitionistic
propositional logic to test the validity of a negated propositional formula, since we know
that —A is valid in intuitionistic propositional logic iff it is valid classically, and so we can
use instead a much more efficient algorithm for classical propositional logic.



examples Tue Mar 28 10:32:07 1989 1

[ This file contains some solvable but non-trivial predicate logic
problems. ]

Ax (p (x) <->ql (x) |r(x))
;x(s(x)&AY(P(Y)->q(X,Y)))
ngy(s(y)<->Az(h(z)—>b(x,y,2)))
:x(p(X)lq(XIX))

;;Eyq(y,x).

$ 2820 at 1 1 1.

[1] AxAy(p(x)&g(y)<->r(x))
&

{2] Ex(p(x) lxr(x))
&

(3] Ax{(q(x) I~g(x))
->

Ex(p(x)&~q(x)) | Axq(x).

% 62170 at 2 2 2. With pcheck 127: 140 at 2 2 2.
[1] AxAy(p(x)&q(y)->r(x))&AxAy (r(x)->p(x)&q(y))
TZ] Ex(p(x) lr(x))

?3] Ax (q(x) | ~q(x))

->

Ex(p(x)&~q(x)) | Axqg(x).
% 1020 at 1 1 1.

Ax (p(x)->p(h(x)) Ip(g(x))) & p(a) & Ax~p(h(x))~->Exp(g(g{g(g(g(x)))))).
% 74170 at 3 3 3.

ASx(p(x)->p(h(x)) Ip(g(x))) & p(a) & Ax~p(h(x))->Exp(g(g(g(g(g(x)))))).
% 20110 at 1 1 1.

~Ex(p(x)&~p(h(x))&~p(g(x))) & p(a) & ~Exp(h(x)) -> ~~Exp(g(g(g(g(x))))).
% 350 at 4 4 4.

Ax (p(x)->p(g(x))) & (p(a)lp(b)) -> Exp(g(g(g(gl(g(g(g(g(x))))))))).
% 1000 at 4 4 4.

pla)&~p(E(E(£(E(E(E(£(£(a))))))))) -> ~~Ex(p(X)&~p(£(x))).
% 28080 at 8 8 8.

p(a)&~p(£(£(£(£(£(£(£(£(a))))))))) => ~~Ex(~p(f(x))&p(x)).
% 1410 at 8 8 8.

~Ex(p(x)&~p(g(x))) & (p(a)lp(b)) -> ~~Exp(g(g(g(g(g(g(g(g(x))))))))).
% 9440 at 8 8 8.

Alx append(nil, x,x) & AxAyAzAw(append(y,z,w)->append(cons(x,y),z,cons(x,w)))
->

Ex append(cons (al,cons(a2,cons(a3,cons(a4,cons(a5,cons(a6,nil)))))),nil,x).

% 1610 at 3 3 3. Without the annotation: 29670.



examples

Tue Mar 28 10:32:07 1989 2

Alx append(nil,x,x) & AxAyAzAw(append(y,z,w)->append(cons(x,y),z,cons(x,w)))

->

Ex append(cons(al,cons(a2,cons(a3,cons(a4,cons(a5,cons(a6,cons (a7,

cons (a8, cons(a9,cons(all,nil)))))))))),nil,x).
% 47500 at 4 4 4. Without the annotation: hard.

p(a) & Ax(p(x)->p(£f(x)))
% 1730 at 4 4 4.

=> PIE(E(E(E(E(E(E(E£(£(£(a))))))))))).

P(a) &AX (P (X) =>p(£(x))) -> P(E(E(£(E(E(E(E(E(E(E(E(E(ECE(EC(E(R))) )N,

% 21350 at 5 5 5, (With ucon 16:140)

AxEyAz (p(x) &r(y) &q(z) ) <->AZEyAx (p(x) &r(y) &q(z)) .

$ 230 at 2 2 2.

[*¥**kAAxk XXX XX X** gome problems from Pelletier ***xaxxkxakkkkk*x]

(39]
% 10 at 2 2 2

~ExAy (member (y, x) <->~member (x, x)) .

[(40] EyAx(member (x,y)<->member (x,x)) -> ~AXEyAz (member (z, y) <->~member (z,x)) .

$ 710 at 2 2 2

(41]
% 80 at 2 2 2
(42]
% 30 at 2 2 2
(43]

->

AzZEyAx (member (x,y) <-> member (x,z) & ~member(x,x)) -> ~ExAy member (y, x) .
~ExAy (member (y, x) <-> ~Ew(member (x,w) &member (w,x))) .

AxAy (equal (x,y) <-> Az (member (z, x) <->member (z,y)))

AxAy (equal (x,y) ->equal (y,x)) .

% 21560 at 2 2 2

Ax(~~11(~pl | ~p2 | ~p3 | ~p4 | ~p5 |
(Pl & p2 & pP3 & p4 & p5 & p6 &
%$ 50at 111

% Without the annotation this takes a
% logic algorithm (but is trivial for

~p6 | ~p7 | ~p8 | ~p9 |
p7 & p8 & p9 & pl0))).

~pl0 |

very long time for the predicate
the propositional algorithm).

((AxEyp (x,y) <->AxXEyq(x,y) ) <-> (AXEyp (x, y) <->AxXEyq(x,y) ) ) <->
( (AxEyp (x,y) <->AxEyq(x,y) ) <-> (AXEyp (x, y) <->AXEyq (x,y)) ) .

% 476260 at 1 1 1



easytest Mon Mar 27 16:28:39 1989 1l

[ The formulas in this collection are easily proved using the default
settings, taking a few seconds in all.]

Ex1Ax2Ex3Ax4p (x1, x2, x3, x4) ->Ax2Ex1Ax4Ex3p (x1, x2, %3, x4) .
Ax1Ax2Ey1Ey2 (p(x1) &q(x2) &r (yl) &3 (y2) ) <->EylEy2Ax1Ax2 (p (x1) &q(x2) &r(yl) &s(y2)) .

Ax (pl (x) ->p2(x))
:x(pZ(x)—>p3(x))
:X(p3(X)->p4(X))
EX(pQ(X)_>p5(X))

Ax (p5 (x) ->p6 (x))
:x(pG(x)->p7(x))
Zx(p7(x)—>p8(x))
§X(p8(X)->pQ(x))

Ax(p9(x)->pl0(x))
&

Expl (x)

-

Expl0(x) .

Ax (p(x)->~Ey(q(y)&r(x,y)))
&
Ax(t(x)->BEy(s(y)&r(x,vy)))
&

Ax(p(x) ->~~t (%))

&

Ay (s (y) —>q(y))
->
~Exp(x) .

AxAy (p (x) ->q(y)) <~> (Exp(x)->Ayq(y)).

~Ex1Ex2Ex3Ex4ExX5EX6ExX7Ex8Ex9Ex10p (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)
<-> Ax1Ax2Ax3Ax4AxS5Ax6Ax7Ax8Ax9Ax10~p (x1,x2, x3,x4,x5,x6,x7,x8,x9,x10).

Ex(p(x) &Ay(q(y) =>r(x,y))) & ~Ex(q(x)&Ay(p(y)->r(x,y))) -> ~Ax(p(x)->q(x)).
Ax (p (%) <->Ey(q(y) &r(x,y))) -> Ax(~p(x)<->Ay~(q(y)&xr(x,y))).
Ax(p(x)<->q(x)) & Ax(r(x)<->s(x)) -> Ax(p(x)&~r(x)<->qg(x)&~s(x)).

Ax (p(X)->q(x)) & Ax(g(x)->s(x)) -> Ax(~~p(x)->~~s8(x)).

Ex(p(x)) & AxAy(p(y)&q(x)->~r(x)) -> Ax(qg(x)&r(x)->s(x)).

Ax (p(x)->Ey(q(x,y)&r(y))) & ExEy(q(x,y) ip(x)) -> ExEyq(x,y).

Ax (p(x)->r(x) |[Eyq(x,y)) & Ax(r(x)->~Exp(x)) & Exp(x) -> ExEyq(x,y).



easytest Mon Mar 27 16:28:39 1989 2

Ex (p(x) &Ay (q(y) =>r(x,y) lr(y,X))) & Ex(q(x)&Ay(p(y)->~r(x,y))) >
EXEy(p(x) &q(y)&r(x,y)).

~ExAy (q(y) ->r(x,y)) &EXAy (s (y) =>r(x,y) ) ->~hx(q(x) ->8(x)) .
Pla)&~p(£(£(£(£(£(a)))))) => ~~Ex(p(x)&~p(f(x))).

Ax(p (%) <->q(x) Ir(x) |EBys(x,y)) & ExEy(s(y,x) ig(x)) &
Ax(g(x)<->Eys(x,y) |Ez(r(2) |q(z) Is(a,2z))) ->
Exq(x) |Exr (x) |[EXxEys(x,y) .

EX1Ex2EX3EX4EXSEX6EXTEX8EX9Ex10ExX11Ex12Ex13Ex14Ex15Ex16Ex17Ex18Ex19Ex20
p(xl,x2,x3,x4,xS,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20)
<=>
Ex20Ex19Ex18Ex17Ex16Ex15Ex14Ex13Ex12Ex11Ex10EX9EX8EX7EX6EXSEX4EX3EX2Ex1
p(xl,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20).

Ex1Ex2Ex3EX4EX5EX6EXTEX8EX9EX10Ex11Ex12Ex13EX14Ex15 (

Pl (x1) {p2(x2) |p3(x3) |p4 (x4) |p5(x5) |

p6(x6) Ip7 (x7) |p8 (x8) Ip9 (x9) |pl0 (x10) |

Pl1l(x11) |pl2(x12) |p13(x13) |pl4(x14) |pl5(x15))

<=>

Exlpl (x1) |Ex2p2 (x2) |Ex3p3 (x3) |Ex4p4 (x4) |Ex5p5 (x5) |Ex6p6 (x6) |
Ex7p7(x7)lEx8p8(x8)IEx9p9(x9)|Ex10p10(x10)|Ex11p11(x11)|Ex12p12(x12)|
Ex13p13(x13) |Ex14p14 (x14) |[Ex15pl5(x15).

Ex1Ex2Ex3EX4EXSEX6ExTExX8EX9EX10Ex11Ex12Ex13Ex14Ex15 (

pl{x1l) &p2 (x2) &p3 (x3) &p4 (x4) &p5 (x5) &

P6 (x6) &p7 (x7) &p8 (x8) &p9 (x9) &p10 (x10) &
p11(xll)&p12(x12)&p13(x13)&p14(x14)&p15(x15))

<->

Exlpl(xl)&Ex2p2(x2)&Ex3p3(x3)&Ex4p4(x4)&Ex5p5(x5)&Ex6p6(x6)&
Ex7p7(x7)&Ex8p8(x8)&Ex9p9(x9)&Ex10p10(x10)&Ex11p11(x11)&8x12p12(x12)&
Ex13pl13(x13) §Ex14p14(x14) §Ex15p15 (x15) .
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As this example illustrates, a setting of 2 for ustep may
make a problem unsolvable, whereas a setting of 1 makes it simple:

>AXEyAz ({p(x) &r (y) &q(z) ) <->AzEyAx (p(x) &r(y)&q(z)).
111

333

120 seconds timeout

>set ustep 1.

>AxEyAz (p(x) &r (y) &q(z) ) <~>AzEyAx (p(x) &x (y) &q(z)) .
111

332

yes

230

It also illustrates the importance of twosift:

>set twosift 0.
>AxXEyAz (p (X) &r (y) &g (z) ) <->AzZEyAx (p(x) &xr(y) &g(z)) .

111

332

yes

69900

The following illustrates another possibility: the problem is trivial

if we set ucon sufficiently high. With ucon=1 the problem is solved
at a lower contraction level in a much more complicated way.

>set ucon 15.
>p(a) & Ax(p(x)->p(f(x))) > p(E(E(E(E(E(E(E(E(E(E(E(E(E(E(E(@NI)INIIININIINIINY .

1115
yes
100

>p(a) & Ax(p(x)->p(£(x))) ~> p(E(E(E(E(E(E(E(E(E(E(E(E(E(E(E(R))) NI NI
111

333
555

yes
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11070

Again it illustrates the importance of two-premiss sifting:

>set twosift 0.
>p(a) & Ax(p(x)->p(f(x))) => p(E£(E(E(E(E(E(E(E(E(E(E(E(E(E(E(A))) )N .

111
333
555

Aborted
time used 1135730

And also of allimp compaction:

>set twosift 1,allimp 0.
>p(a) & Ax(p(x)=>p(£(x))) -> P(E(E(E(E(E(E(E(E(E(E(E(E(E(E(E(Q))))I)INIINININI).

111
333
555
;es

147870

Similar lessons from this example:

>[43] AxAy(equal(x,y) <-> Az (member (z, x) <~->member (z,y)))
->
AxAy (equal (x,y) ->equal(y,x)).
112
yes

1350
>set twosift 0.
>{43] AxAy(equal(x,y) <-> Az (member (z, x) <->member (z,y)))
->
AxAy (equal (x,y) ->equal (y,x)) .

112

Aborted
time used 58800
>set twosift 1,alliff 0.

>[43] Axay(equal(x,y) <-> Az (member (z, x) <->member (z,y)))
->
AxAy (equal (x,y) ->equal(y,x)).

112
yes

20750
>set twosift 1,alliff 1,ucon 1.
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>[43] AxAy(equal(x,y) <-> Az (memims(z, ) <->memieatmapk)y) 0 00 sneld0ig
AxAy.(equal (x, ;)>->equal (y.,x)).

111 L

333

Aborted Cneand o
time used 137360 ‘ T
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benchprop Tue Mar 28 10:16:57 1989 1

[ These are problems for the propositional algorithm.]

[1] % valid 1650

t& (p<->(g&r->gir))&

~~ (p<=>q<->pis) &

(s->p)&

(t&e->f) &

(81g<=>(q<=>~~(p->8))) &

(s<=>~(p~>(q<~>r))) & e
->f.

(2] % valid 640

t&~~ (p<->g<=->pls) &

(p<->(q&r->gir)) &

(s->p) &

(t&e->f) ¢e&

(s1g<=>(q<=>~~(p->8)))&

(8<=>~(p=>(q<->r)))
=->f.

{3] % valid 640

~~(p<~>q<->pls8) &
(p<->(g&r->gir)) &
(s->p)&t&
(tse->f) &
(s1g<=>(g<=>~~(p->8))) &e&
(s<=>~(p=->(q<=>r)))

->f.

[4] % valid 4240

t& (p<->(g&r->glr))&

~~(p<=>g<->pls) &

{s->p) &

(tee->f) &

(81g<=>(q<=>~~(p->3))) &

(3<=>~ (p=>(g<->r))) & e
->p.

[5] % not valid 4400

t& (p<->(g&r->gir))s&

~~(p<->q<->pls) &

(s=->p) &

(t&e->f) &

(8]g<=>(q<~>~~(p->8))) &

(8<=>~ (p~>(q<~>r))) & e
->u.

% not valid 1490

~~(p<->q<->p|s) &
(p<~>(g&r->glr))&
(s->p) &té
(tse->f) &
(81g<=>(q<~->~~(p->8))) &e&
(8<->~ (p=>(gq<->r)))

->u.



benchpzrop Tue Mar 28 10:16:57 1989 2

prop 50 ~Ax~(p(x)->Axp(x)).
$ 32890

~~((pl <=> (p2 <-> (p3 <-> p4))) <=> ((((pl<->p2)<->p3)<->p4))).
% 140

~~((pl <=> (p2 <=> (p3 <=> (p4<~>p5)))) <-> ((((pl<->p2)<->p3)<->p4)<~>p5)).
% 820

~~((Pl <=> (p2 <=> (p3 <-> (p4<->(p5<->p6))))) <=> ((((pl<->p2)<->p3)<->p4d)<->p5)<->pb).
% 4650

~~((pl <=> (p2 <-> (p3 <=> (p4<->(p5<->(p6<->p7)))))) <-> ((((((pl<->p2)<->p3)<->p4)<->p!
<->p6)<->p7)).
% 28490

(~~~p (X) <=D>~~~q(x) <=D~~~r (X)) <=> ((~~~p(X)<=D>~~~g(X))<=D>~~~r(x)).

% 70

(~~~~P(X) <=D>~~rrg (X) <=D~~~~vp (X)) <=> ((~~~~p(X)<=D>~~~~q(X))<=D>~~~~r(x)).
% 100

[ these are very hard with eq true, but quite feasible with eq false ]

(~~~p(X) <-D>~~~q(X) <=>~~r (X))} <-> ((~~~p(X)<=->~~~g(X))<=D>~~~r(X)).
% no in 860

(~~~~p(X) <=D~~~~q(X)<=D>~~~r (X)) <=> ((~~~~pP(X)<=D~r~mrq(X))<=D~~~~r(x)).
% no in 1670

prop 100 ~~(Ex~p(x) |Axp(x)).
% 14810

prop 75 Ax{(q(x)<->~p(x))->~~(Exq(x) |Axp(x)).
% 9870

prop 5 ~~Ax(p(x)|~p(x)).
% 720. This is a difficult one for larger values of the parameters, made
% easier by factoring out ~p(x):

prop 8 Ax(q(x)<->~p(x))->~~Ax(p(x)Iqg(x)).
% 1780

prop 25 ~Ax~(p(x)->Axp(x)).
$ 2650

prop 10 Ax(g(x)<->~p(x)) -> ~~Ax(p(x)|g(x)).
% 9740

prop 10 Ax(~p(x)->g(x)) -> ~~Ax(p(x)|g(x)).
% 6910

prop 4 ~~(Ex(p(x)&Ay(q(y)->x(x,y))) & ~Ex(qg(x)&Ay(ply)=->r(x,y))) ->
Ex(p(x)&~g(x))).
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% 13640

prop 25 AxEy(p(x) &q(y))<->EyAx(p(x)&q(y)).
% 33570

prop 3 ~~(~ExAyp(x,y)<->AxEy~p(x,y)).

% 6900. with prop 4: very hard

prop 2 ~~(~ExAyEzp(x,y,z)<~->AxEyAz~p(x,y,z)).
% 550. with prop 3: very hard

prop 6 AxAyAz(p(x,y)&p(y,z)->p(x,2z)) & AxEyp(x,y) -> Exp(x,x).

% 4780. This one is improved by orgathering.



simplefruit Tue Mar 28 10:33:44 1989 1
[ This illustrates the delays created by the multitude of choice points.

The times are reduced considerably if the backtracking is replaced by
explicit questions for each possible value of X. ]

Ax (apple(x)->fruit(x))

;x (pear (x) ->fruit (x))

:x (food (x) <->fruit (x) |bread (x) |cheese (x))

fEx(apple(x)&pear(x))

;ear(moltke) & apple(grannysmith) & apple(reddelicious) & cheese(stilton)
& (apple(juicyfruit) |pear (juicyfruit)) & (~cheese(brie)->fruit (brie))

->

food (X) .

111

X=moltke
7180 % direct: 6500

More? (y/n) y
28 solutions skipped

X=juicyfruit % direct: 3840
73770

More? (y/n) y
29 solutions skipped

X=reddelicious
79780 % direct 6570

More? (y/n) y
28 solutions skipped

X=grannysmith
81340 % direct 9330

More? (y/n) y
28 solutions skipped

X=gtilton
88070 % direct 88070

More? (y/n) y
32 solutions skipped

no
142460 % ..->food(brie) fails in 72560.
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% These problems illustrate an exponential series, due to the occur check
% and parameter check.

AxOEX1ExX2Ex3Ex4EXS5 (

p(x1l,x2, x3, x4, x5) <-> p (£ (x0,x0), £ (x1,x1), f(x2,x2), £ (x3,x3), f(x4,x4))
).

% 10

AXOEX1Ex2Ex3Ex4ExXSEx6Ex7Ex8EX9IEX10 (
p(xl,x2,x3,x4,x5,x6,x7,x8,x9,x10) <->
p(f(x0,x0), £(x1,x1),f(x2,x2),f(x3,x3),f(x4,x4), f(x5,x5),
f(x6,x6),£f(x7,x7),£(x8,x8), £(x9,x9))
).

% 250

AXOEx1EX2Ex3EX4Ex5EX6EX7EX8Ex9Ex10Ex11Ex12Ex13Ex14Ex15 (
p{x1,x2, x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15) <->
p(f (x0,x0), f(x1,x1), f(x2,x2), f(x3,x3), f (x4, x4),
£(x5,x5),£(x6,x6), £ (x7,x7),£f(x8,x8), f(x9,x9),
£(x10,x10), £ (x11,x11), £(x12,x12),£f(x13,x13),£f(x14,x14))
).

% 7080
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[ This file contains some simple unsolvable problems - i.e. they take

too long to solve. ]

glal,a2,a3,a4,a5,al,a2,a3,aq,a5) -> Ex1Ex2Ex3Ex4ExS5EylEy2Ey3Ey4EyS5 (
(p(xl)ap(x2) &p (x3) &p (x4) &p (x5) <-> p(yl)&p(y2)&p(y3) &p(y4) &p(y3)) &
q(xl,x2,x3,x4,x5,y1,vy2,y3,v4,¥5)).

This is hopeless as long as we do the left premiss first in ->&.
A3xEyA3z(p(a)&r(b))=->r(u).

This takes a very long time to fail, for the same reason that
(Ayp&Ayp&Ayp) & (Ayp&Ayp&Ayp) & (Ayp&Ayp&AYpP) =-> k.

takes a very long time to fail (without pcheck). What is needed is a
way of pruning the n! tree of uses of n universal premisses. These two
last are easy with allinv true, which shows where the trouble lies.

AXEyAzEw (p (x) &q(y) &xr(z) &3 (w)) <->EwAzZEyAx(p(X)&g(y)&r(z)&s(w)).

This one is hopeless even with allinv true. It is not clear what can be
done about it.
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{Another exponential series: the pigeon hole principle (in the formulation
given below for the case 5). The times given by the propositional
algorithm (essentially helped by oruse) are for 2 to 6:

10

140
1720
26020
426620

U WN

]

~{
(p111p12|pl3ipl4|pl5)
&

(P21 1p22|p23|p24|p25)
&
(p31Ip32i1p331p34|p35)
&

(p4lip42|p43Ip44ip45s)
&

(pS1|p52ip531|p54|p55)
&
(p61|p621p63|p64|p6S)
&

~(

(pll&p21) | (pllep31) | (p11&p4l) | (p1lls&p51) | (pllap6l) |
(p21&p31) | (p21&p4l) | (p21&p51) | (p21&p61l) |
(p31&p41l) | (p31&p51) | (p31&p61l) |
(P41&p51) | (p41&p6l) |

(p51&p61)

|

(P12&p22) | (p124&p32) | (p12&p42) | (P1l2&p52) | (P1l2&p62) |
(P22&p32) | (p22&p42) | (p22&p52) | (p22&p62) |
(p32&p42) | (p32&p52) | (P32&p62) |
(p42&p52) | (p42&p62) |

(p52&p62)

|

(p13&p23) | (p13&p33) | (p13&p43) | (p13&p53) | (p13&p63) |
(P23&p33) | (p23&p43) | (P23&p53) | (p23&p63) |
(p33&p43) | (p33&p53) | (p33&p63) |
(p43&p53) | (p436p63) |

(p53&p63)

I

(P14&p24) | (pl4&p34) | (p14&p4d4) | (pl4&p54) | (pl4&p64) |
(p24&p34) | (p24&p44) | (p24&p54) | (p24&p64) |
(p34&p44) | (p34&p54) | (p34&p64) |
(p44&p54) | (p44&p64) |

(p54&p64)

|

(P15&p25) | (p15&p35) | (p15&p45) | (p15&p55) | (p15&p65) |
{(P25&p35) | (P25&p45) | (P25&p55) | (p25&p65) |
(p35&p45) | (p35&p5S5) | (p35&p65S) |
(p45&p55) | (P45&p65) |

(p55&p65)

)

).
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