-(exists x (P(x)&D(x)-> (all y (P(y)->D(y)))))-> -(exists x P(x)). For sics: ( (Ax (p(x) | ~p(x))) & (Ay (d(y) | ~d(y))) ) -> (~(Ex ((p(x) & d(x)) -> (Ay (p(y)->d(y))))) -> ~(Ex p(x))). For gandalf: (define bezem '( (frm (-> (& (all x (v (p x) (- (p x)))) (all y (v (d y) (- (d y)))) ) (-> (- (exist x (-> (& (p x) (d x)) (all y (-> (p y) (d y))) ))) (- (exist x (p x))) ))))) relies on the decidability of atomic formulas, I forgot to mention that. I am thinking of a slight variation wh