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3.5 Applications of Cut Elimination

The cut elimination theorem is the final piece needed to complete our study
of natural deduction and normal natural deduction and at the same time the
springboard to the development of efficient theorem proving procedures. Our
proof in the previous section is constructive and therefore contains an algorithm
for cut elimination. Because the cases are not mutually exclusive, the algorithm
is non-deterministic. However, the resulting derivation should always be the
same. While this property does not quite hold, the different derivations can be
shown to be equivalent in a natural sense. This is called the confluence property
for intuitionistic cut elimination modulo commutative conversions. It it is not
implicit in our proof, but has to be established separately.? On the other hand,
our proof shows that any possible execution of the cut-elimination algorithm
terminates. This is called the strong normalization property for the sequent
calculus.

By putting the major results of this chapter together we can now prove the
normalization theorem for natural deduction.

Theorem 3.13 (Normalization for Natural Deduction)
IfT - A then TV - A A,

Proof: Direct from previous theorems.

I'HA Assumption
IV E Aq By completeness of annotated deductions (Theorem 3.3)
=24 By completeness of sequent calculus with cut (Theorem 3.10)
Ir=4A4 By cut elimination (Theorem 3.12)
IYEAq By soundness of sequent calculus (Theorem 3.6)

O

Among the other consequences of cut elimination are consistency and various
independence results.

Corollary 3.14 (Consistency) There is no deduction of + L.

Proof: Assume there is a deduction + L. By the results of this chapter then
- = 1. However, this sequent cannot be the conclusion of any inference rule
in the (cut-free) sequent calculus. Therefore F L cannot be derivable. O

In the same category are the following two properties. As in the proof above,
we analyze the inference rules which may have led to a given conclusion. This
proof technique is called inversion.

Corollary 3.15 (Disjunction and Existential Property)
1. If - AV B then either - A or + B.

2[reference?|
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50 Sequent Calculus

2. If £ 3x. A then F [t/x]A for some t.

Proof: Direct by inversion on possible sequent derivations in both cases.

1. Assume + AV B. Then - = AV B. By inversion, either - = A or
- = B. Therefore - A or + B.

2. Assume Jz. A. then - = Jz. A. By inversion, - = [t/z]A for some t.
Hence + [t/z]A.

O

Note that the disjunction and existential properties rely on a judgment with-
out hypotheses. For example, we have BV A = AV B, but neither BVA — A
for BV A= B hold.

The second class of properties are independence results which demonstrate
that certain judgments are not derivable. As a rule, these are parametric judg-
ments some instances of which may be derivable. For example, we will show
that the law of excluded middle is independent. Nonetheless, there are some
propositions A for which we can show + AV —A (for example, take A = 1).

Corollary 3.16 (Independence of Excluded Middle)
There is no deduction of & AV —A for arbitrary A.

Proof: Assume there is a deduction of - AV —A. By the result of this section
then - = A V —A. By inversion now either - = A or - = —A. The former
judgment (which is parametric in A) has no derivation. By inversion, the latter
can only be infered from A = p for a new parameter p. But there is no

inference rule with this conclusion, and hence there cannot be a deduction of
FAV-A ad

3.6 Proof Terms for Sequent Derivations

In this section we address the question of how to assign proof terms to sequent
calculus derivations. There are essentially two possibilities: we can either de-
velop a new proof term calculus specifically for sequent derivations, or we can
directly assign natural deduction proof terms. The former approach can be
found, for example, in [Pfe95]. The latter is more appropriate for our purposes
here, since we view natural deductions as defining truth and since we already
devised methods for compact representations in Section 3.2.

We define a new judgment, I' = I : A, maintaining that I' - I : A. For this
purpose we abandon the previous convention of omitting labels for hypotheses,
since proof terms need to refer to them. On the other hand, we still consider
assumptions modulo permutations in order to simplify notation. We use the
compact proof terms here only for simplicity.

The proof terms to be assigned to each inference rule can be determined by a
close examination of the soundness proof for the sequent calculus (Theorem 3.6).
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3.6 Proof Terms for Sequent Derivations 51

Since that proof is constructive, it contains an algorithm for translating a se-
quent derivation to a normal natural deduction. We just have to write down
the corresponding proof terms.

Initial Sequents. These are straightforward.
———— init
NuwA=—u:A

Note that there may be several hypotheses A with different labels. In the
shorthand notation without labels before, it is ambiguous which one was used.

Conjunction. The right rule is straightforward, since it is isomorphic to the
introduction rule for natural deduction. The left rules require a substitution to
be carried out, just as in the proof of Theorem 3.6.

I'=1:A FﬁJ:B/\R
I — (I,J): A\AB
IwAABwA—1:C wAAB,w:B=—1:C
AL ALg
I'u:AANB = [fstu/w]l:C I'u:AANB = [sndu/w]l:C

There are two potential efficiency problems in the proof term assignment for the
left rule. The first is that if w is used many times in I, then fst u or snd u may
be replicated many times, leading to a large proof. The second is that when a
number of successive left rules are encountered, the term I we substitute into
will be traversed many times. These problems can be avoided in several ways
(see Exercise 77).

Implication. The pattern of the previous right and left rules continues here.

NwA=—1:B
DR
I'= M.1:ADB

NwA>DB=—J: A NwADB,wB=—1:C
IuwA>B= [uJ/wll:C

DL

Disjunction. This introduces no new considerations.

I'=1:A I'=J:B
VR, VR
I'=inll: AVB I'=inrJ: AVB
INuwAvVBvA=—1:C IuwAvV B,w:B—J:C

I'u:AV B = (case u of inlv = I |intw = J): C
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52 Sequent Calculus

Negation. This is similar to implication.?

TuwA=—1:p Nu-A=1T:A
—-RP =L
I' = pPu.1:-A Nu-A=u-1:C

Truth. This is trivial, since there is no left rule.
— TR
I'=(:T

Falsehood. Again, this is immediate.

1L

I',u:1 = abortu : C

To treat the quantifiers we extend our proof term calculus to handle the
quantifier rules.* We overload the notation by reusing M-abstraction and pairing.
There is no ambiguity, because the proof term for universal quantification binds
a term variable x (rather than a proof variable u), and the first component of
the pair for existential quantification is a first-order term, rather than a proof
term as for conjunction.

First, we show the assignment of these terms to natural deductions, then to
the sequent calculus.

Universal Quantification. The proof term for a universal quantifier Vz. A
is a function from a term ¢ to a proof of [t/z]A. The elimination term applies
this function.

'k la/z]M : [a/z]A

I'Xe. M :Vz. A

I'EM:Vz. A
I'EMt¢:[t/z]A
The local reductions and expansions just mirror the corresponding operations
on natural deductions.

M. M)t —pg [t/z]M
M:Vz. A —pg Ax. Mz (znot free in M)

Existential Quantification. The proof term for an existential 3z. A is a pair
consisting of a witness term ¢ and the proof of [t/z]A.

'-M:[t/z]A
PH{@M):3z. A

I

EM:3z. A T, u:la/z]AF [a/x]N : C
I'Flet (z,uy=Min N:C

JEe-

3ladd to compact proof term section]
4[move earlier]
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The local reduction for the existential quantifier has to perform two substitu-
tions, just as on natural deductions.

let (z,u) =, M)in N —pr [M/u]lt/z]N
M:32z. A —pg let (z,u) =M in (z,u)

It is once again easy to see how to divide the proof terms into introduction
and elimination forms. We only show the resulting definition of compact proof
terms.

Intro Terms [ ::=

| Ax. T Universal Quantification
| (¢, 1) Existential Quantification
|let (z,u)=Fin I

Elim Terms E == ...|Et Universal Quantification

On sequent calculus derivations, we follow the same strategy as in the pre-
ceding propositional rules.

Universal Quantification.

I' = [a/z]]: [a/z]A T uVe. Ajw:t/zg]A=1:C
VR*
= Xz.1:V2. A I uVe A= [ut/w]l:C

VL

Existential Quantification.
I'=1:[t/z]A w3z, A wia/z]A = [a/z]I: C

JdR dLe
= (t,I):3z. A Nudze. A= (let (z,w)=uinI):C

3.7 Exercises

Exercise 3.1 Consider a system of normal deduction where the elimination
rules for disjunction and existential are allowed to end in an extraction judg-
ment.

IHFAVB] MwAl FC| wB| FCJ
VE®w

EC |

ME3z. A Y ufa/z]A L FC |
IEeu

MHC |

Discuss the relative merits of allowing or disallowing these rules and show how
they impact the subsequent development in this Chapter (in particular, bi-
directional type-checking and the relationship to the sequent calculus).

Exercise 3.2
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54 Sequent Calculus

1. Give an example of a natural deduction which is not normal (in the sense
defined in Section 3.1), yet contains no subderivation which can be locally
reduced.

2. Generalizing from the example, devise additional rules of reduction so that
any natural deduction which is not normal can be reduced. You should
introduce no more and no fewer rules than you need for this purpose.

3. Prove that your rules satisfy the specification in part (2).

Exercise 3.3 Write out the rules defining the judgments T F I : A 1+ and
IV F" E : A | and prove Theorem 3.4. Make sure to carefully state the induction
hypothesis (if it is different from the statement of the theorem) and consider all
the cases.

Exercise 3.4 Fill in the missing subcases in the proof of the admissibility of
cut (Theorem 3.11) where A is the principal formula in both D and £.

Exercise 3.5 Consider an extension of intuitionistic logic by a universal quan-
tifier over propositions, written as V2p. A, where p is variable ranging over
propositions.

1. Show introduction and elimination rules for V2.
2. Extend the calculus of normal and extraction derivations.
3. Show left and right rules of the sequent calulus for V2.

4. Extend the proofs of soundness and completeness for the sequent calculus
and sequent calculus with cut to accomodate the new rules.

5. Point out why the proof for admissibility of cut does not extend to this
logic.

Exercise 3.6 Gentzen'’s original formulation of the sequent calculus for intu-
itionistic logic permitted the right-hand side to be empty. The introduction rule
for negation then has the form

INA—

— R.
I'— -4

Write down the corresponding left rule and detail the changes in the proof for
admissibility of cut. Can you explain sequents with empty right-hand sides as
judgments?

Exercise 3.7 The algorithm for cut elimination implicit in the proof for admis-
sibility of cut can be described as a set of reduction rules on sequent derivations
containing cut.

1. Write out all reduction rules on the fragment containing only implication.
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2. Show the extracted proof term before and after each reduction.

3. If possible, formulate a strategy of reduction on proof terms for natural
deduction which directly models cut elimination under our translation.

4. Either formulate and prove a theorem about the connection of the strate-
gies for cut elimination and reduction, or show by example why such a
connection is difficult or impossible.

Exercise 3.8

1. Prove that we can restrict initial sequents in the sequent calculus to have
the form I'; P = P where P is an atomic proposition without losing
completeness.

2. Determine the corresponding restriction in normal and extraction deriva-
tions and prove that they preserve completeness.

3. If you see a relationship between these properties and local reductions or
expansions, explain. If you can cast it in the form of a theorem, do so and
prove it.

Exercise 3.9 For each of the following propositions, prove that they are deriv-
able in classical logic using the law of excluded middle. Furthermore, prove that
they are not true in intuitionistic logic for arbitrary A, B, and C.

1. (ADB)D>A)DA.

2. Any entailment in Exercise 2.8 which is only classically, but not intuition-
istically true.
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