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3.3 Sequent Calculus

In Section 3.1 we introduced normal deductions which embody the strategy
that proof search should proceed only bottom-up via introduction rules and
top-down via elimination rules. The bi-directional nature of this calculus makes
it somewhat unwieldy when it comes to the study of meta-theoretic properties
and, in particular, complicates its completeness proof. In this section we develop
a closely related calculus in which all proof search steps proceed bottom-up.
Pictorially, we would like to flip the elimination rules upside-down.

Hypotheses

?

Eliminations

↓⇑
66

Introductions

; Initial Sequents
66

Right Rules

6

Left Rules

This transformation turns introduction rules into so-called right rules, and
upside-down elimination rules into so-called left rules. We have two judgments,
A left (A is a proposition on the left) and A right (A is a proposition on the
right). They are assembled into the form of a hypothetical judgment

u1:A1 left, . . . , un:An left ` A right .

We call such a hypothetical judgment a sequent.
Note that the proposition A on the right directly corresponds to the propo-

sition whose truth is established by a natural deduction. On the other hand,
propositions on the left do not directly correspond to hypotheses in natural de-
duction, since in general they include hypotheses and propositions derived from
them by elimination rules.

Keeping this intuition in mind, the inference rules for sequents can now be
constructed mechanically from the rules for normal and extracting derivations.
To simplify the notation, we denote the sequent above by

A1, . . . , An =⇒ A

where the judgments left and right are implied by the position of the propo-
sitions. Moreover, labels ui are suppressed until we introduce proof terms.
Finally, left rules may be applied to any left proposition. Since the order of
the left propositions is irrelevant, we write Γ, A instead of the more pedantic
Γ, A,Γ′.

Initial Sequents. These correspond to the coercion from extraction to normal
derivations, and not to the use of hypotheses in natural deductions.

init
Γ, A =⇒ A
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38 Sequent Calculus

Conjunction. The right and left rules are straightforward and provide a sim-
ple illustration of the translation, in particular in the way the elimination rules
are turned upside-down.

Γ =⇒ A Γ =⇒ B
∧R

Γ =⇒ A ∧B

Γ, A ∧B,A =⇒ C
∧L1

Γ, A ∧B =⇒ C

Γ, A∧B,B =⇒ C
∧L2

Γ, A∧B =⇒ C

In the introduction rule (read bottom-up), we propagate Γ to both premises.
This reflects that in natural deduction we can use any available assumption
freely in both subdeductions. Furthermore, in the elimination rule the hypoth-
esis A ∧ B left persists. This reflects that assumptions in natural deduction
may be used more than once. Later we analyze which of these hypotheses are
actually needed and eliminate some redundant ones. For now, however, they
are useful because they allow us to give a very direct translation to and from
normal natural deductions.

Implication. The right rule for implication is straightforward. The left rule
requires some thought. Using an extracted implication A⊃ B gives rise to two
subgoals: we have to find a normal proof of A, but we also still have to prove
our overall goal, now with the additional extracted proposition B.

Γ, A =⇒ B
⊃R

Γ =⇒ A⊃B
Γ, A⊃B =⇒ A Γ, A⊃ B,B =⇒ C

⊃L
Γ, A⊃ B =⇒ C

Disjunction. This introduces no new considerations.

Γ =⇒ A ∨R1
Γ =⇒ A ∨B

Γ =⇒ B ∨R2
Γ =⇒ A ∨B

Γ, A ∨B,A =⇒ C Γ, A ∨B,B =⇒ C
∨L

Γ, A ∨B =⇒ C

Negation. Negation requires a judgment parametric in a proposition. Some-
times, this is encoded as an empty right-hand side (see Exercise ??).

Γ, A =⇒ p
¬Rp

Γ =⇒ ¬A
Γ,¬A =⇒ A

¬L
Γ,¬A =⇒ C

Truth. By our general method, there is no left rule, only a right rule which
models the introduction rule.

>R
Γ =⇒ >
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3.3 Sequent Calculus 39

Falsehood. Again by our general method, there is no right rule, only a left
rule which models the (upside-down) elimination rule.

⊥L
Γ,⊥ =⇒ C

Universal Quantification. These require only a straightforward transcrip-
tion, with the appropriate translation of the side condition.

Γ =⇒ [a/x]A
∀Ra

Γ =⇒ ∀x. A

Γ, ∀x. A, [t/x]A =⇒ C
∀L

Γ, ∀x. A =⇒ C

Existential Quantification. Again, the rules can be directly constructed
from the introduction and elimination rule of natural deduction.

Γ =⇒ [t/x]A
∃R

Γ =⇒ ∃x. A

Γ, ∃x. A, [a/x]A =⇒ C
∃La

Γ, ∃x. A =⇒ C

The intended theorem describing the relationship between sequent calculus
and natural deduction states that Γ↓ ` A ⇑ if and only if Γ =⇒ A. Prima
facie is unlikely that we can prove either of these directions without further
generalization, since the judgments Γ↓ ` A ⇑ and Γ↓ ` A ↓ are mutually
recursive, and the statement above does not even mention the latter.

In preparation for the upcoming proof, we recall the general property of
hypothetical judgments, namely that we can substitute a derivation of the ap-
propriate judgment for a hypothesis. When applied to normal and extracting
derivations, this yields the following property.

Lemma 3.5 (Substitution Property for Extractions)

1. If Γ↓1, u:A ↓,Γ
↓
2 ` C ⇑ and Γ↓1 ` A ↓ then Γ↓1,Γ

↓
2 ` C ⇑.

2. If Γ↓1, u:A ↓,Γ
↓
2 ` C ↓ and Γ↓1 ` A ↓ then Γ↓1,Γ

↓
2 ` C ↓.

Proof: By induction on the structure of the given derivations of C ⇑ and C ↓.
In the case where the hypothesis is used we employ weakening, that is, we adjoin
the additional hypotheses Γ↓2 to every judgment in the derivation of Γ↓1 ` A ↓.
2

Using this lemma, a direct proof goes through (somewhat surprisingly).

Theorem 3.6 (Soundness of Sequent Calculus)
If Γ =⇒ C then Γ↓ ` C ⇑.

Proof: By induction on the structure of the given derivation S. We show a few
representative cases.
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40 Sequent Calculus

Case: Initial sequents.

init
Γ, C =⇒ C

Γ↓, u:C ↓ ` C ↓ By hypothesis u
Γ↓, u:C ↓ ` C ⇑ By rule ↓⇑

This case confirms that initial sequents correspond to the coercion from
extractions to normal deductions.

Case: Implication right rule.

S2

Γ, C1 =⇒ C2

⊃R
Γ =⇒ C1 ⊃ C2

Γ↓, u:C1 ↓ ` C2 ⇑ By i.h. on S2

Γ↓ ` C1 ⊃ C2 ⇑ By rule ⊃Iu

This case exemplifies how right rules correspond directly to introduction
rules.

Case: Implication left rule.

S1

Γ, A1 ⊃ A2 =⇒ A1

S2

Γ, A1 ⊃ A2, A2 =⇒ C
⊃L

Γ, A1 ⊃ A2 =⇒ C

Γ↓, u:A1 ⊃ A2 ↓ ` A1 ⇑ By i.h. on S1

Γ↓, u:A1 ⊃ A2 ↓ ` A1 ⊃A2 ↓ By hypothesis u
Γ↓, u:A1 ⊃ A2 ↓ ` A2 ↓ By rule ⊃E
Γ↓, u:A1 ⊃ A2 ↓, w:A2 ↓ ` C ⇑ By i.h. on S2

Γ↓, u:A1 ⊃ A2 ↓ ` C ⇑ By substitution property (Lemma 3.5)

This case illustrates how left rules correspond to elimination rules. The
general pattern is that the result of applying the appropriate elimination
rule is substituted for a hypothesis.

2

The proof of completeness is somewhat trickier—we first need to generalize
the induction hypothesis. Generalizing a desired theorem so that a direct in-
ductive proof is possible often requires considerable ingenuity and insight into
the problem. In this particular case, the generalization is of medium difficulty.
The reader who has not seen the proof is invited to test his understanding by
carrying out the generalization and proof himself before reading on.

The nature of a sequent as a hypothetical judgment gives rise to several
general properties we will take advantage of. We make two of them, weakening
and contraction, explicit in the following lemma.
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3.3 Sequent Calculus 41

Lemma 3.7 (Structural Properties of Sequents)

1. (Weakening) If Γ =⇒ C then Γ, A =⇒ C.

2. (Contraction) If Γ, A, A =⇒ C then Γ, A =⇒ C.

Proof: First, recall our general convention that we consider the hypotheses of
a sequent modulo permutation. We prove each property by a straightforward
induction over the structure of the derivation. In the case of weakening we
adjoin an unused hypothesis A left to each sequent in the derivation. In the
case of contraction we replace any use of either of the two hypotheses by a
common hypothesis. 2

The theorem below only establishes the completeness of sequent derivations
with respect to normal deductions. That is, at this point we have not established
the completeness of sequents with respect to arbitrary natural deductions which
is more difficult.

Theorem 3.8 (Completeness of Sequent Derivations)

1. If Γ↓ ` C ⇑ then Γ =⇒ C.

2. If Γ↓ ` A ↓ and Γ, A =⇒ C then Γ =⇒ C.

Proof: By induction on the structure of the given derivations I and E . We
show some representative cases.

Case: Use of hypotheses.

E = u
Γ↓1, u:A ↓,Γ

↓
2 ` A ↓

Γ1, A,Γ2, A =⇒ C Assumption
Γ1, A,Γ2 =⇒ C By contraction (Lemma 3.7)

Case: Coercion.

I =

E
Γ↓ ` C ↓

↓⇑
Γ↓ ` C ⇑

Γ, C =⇒ C By rule init
Γ =⇒ C By i.h. on E

Case: Implication introduction.

I =

I2

Γ↓, u:C1 ↓ ` C2 ⇑
⊃Iu

Γ↓ ` C1 ⊃ C2 ⇑
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42 Sequent Calculus

Γ, C1 =⇒ C2 By i.h. on I2

Γ =⇒ C1 ⊃C2 By rule ⊃R

Case: Implication elimination.

E =

E2
Γ↓ ` A1 ⊃ A2 ↓

I1

Γ↓ ` A1 ⇑
⊃E

Γ↓ ` A2 ↓

Γ, A2 =⇒ C Assumption
Γ, A1 ⊃A2, A2 =⇒ C By weakening (Lemma 3.7)
Γ =⇒ A1 By i.h. on I1

Γ, A1 ⊃A2 =⇒ A1 By weakening (Lemma 3.7)
Γ, A1 ⊃A2 =⇒ C By rule ⊃L
Γ =⇒ C By i.h. on E2

2

In order to establish soundness and completeness with respect to arbitrary
natural deductions we establish a connection to annotated natural deductions.
Recall that this is an extension of normal deductions which we showed sound
and complete with respect to arbitrary natural deduction in Theorems 3.2 and
3.3. We related annotated natural deductions to the sequent calculus by adding
a rule called cut.

We write the extended judgment of sequent derivations with cut as Γ
+

=⇒ C.
It is defined by copies of all the rules for Γ =⇒ C, plus the rule of cut:

Γ
+

=⇒ A Γ, A
+

=⇒ C
cut

Γ
+

=⇒ C

Thought of from the perspective of bottom-up proof construction, this rule
corresponds to proving and then assuming a lemma A during a derivation.

Theorem 3.9 (Soundness of Sequent Calculus with Cut)

If Γ
+

=⇒ C then Γ↓ `+ C ⇑.

Proof: As in Theorem 3.6 by induction on the structure of the given derivation
S, with one additional case.

Case: Cut.

S =

S1

Γ =⇒ A
S2

Γ, A =⇒ C
cut

Γ =⇒ C
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3.3 Sequent Calculus 43

Γ↓ `+ A ⇑ By i.h. on S1

Γ↓ `+ A ↓ By rule ⇑↓
Γ↓, u:A ↓ `+ C ⇑ By i.h. on S2

Γ↓ `+ C ⇑ By substitution (Lemma 3.5, generalized)

We see that, indeed, cut corresponds to the coercion from normal to ex-
traction derivations.

2

Theorem 3.10 (Completeness of Sequent Calculus with Cut)

1. If Γ↓ `+ C ⇑ then Γ
+

=⇒ C.

2. If Γ↓ `+ A ↓ and Γ, A
+

=⇒ C then Γ
+

=⇒ C.

Proof: As in the proof of Theorem 3.10 with one additional case.

Case: Coercion from normal to extraction derivations.

E =

I
Γ↓ `+ A ⇑

⇑↓
Γ↓ `+ A ↓

Γ =⇒ A By i.h. on I
Γ, A =⇒ C By assumption
Γ =⇒ C By rule cut

2

The central property of the sequent calculus is that the cut rule is redundant.

That is, if Γ
+

=⇒ C then Γ =⇒ C. This so-called cut elimination theorem
(Gentzen’s Hauptsatz [Gen35]) is one of the central theorems of logic. As an
immediately consequence we can see that not every proposition has a proof, since
no rule is applicable to derive · =⇒ ⊥. In the system with cut, a derivation of
this sequent might end in the cut rule and consistency is not at all obvious. The
proof of cut elimination and some of its many consequences are the subject of
the next section.
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44 Sequent Calculus

3.4 Exercises

Exercise 3.1 Consider a system of normal deduction where the elimination
rules for disjunction and existential are allowed to end in an extraction judg-
ment.

Γ↓ ` A ∨B ↓ Γ↓, u:A ↓ ` C ↓ Γ↓, w:B ↓ ` C ↓
∨Eu,w

Γ↓ ` C ↓

Γ↓ ` ∃x. A ↓ Γ↓, u:[a/x]A ↓ ` C ↓
∃Ea,u

Γ↓ ` C ↓

Discuss the relative merits of allowing or disallowing these rules and show how
they impact the subsequent development in this Chapter (in particular, bi-
directional type-checking and the relationship to the sequent calculus).

Exercise 3.2

1. Give an example of a natural deduction which is not normal (in the sense
defined in Section 3.1), yet contains no subderivation which can be locally
reduced.

2. Generalizing from the example, devise additional rules of reduction so that
any natural deduction which is not normal can be reduced. You should
introduce no more and no fewer rules than you need for this purpose.

3. Prove that your rules satisfy the specification in part (2).

Exercise 3.3 Write out the rules defining the judgments Γ↓ `+ I : A ⇑ and
Γ↓ `+ E : A ↓ and prove Theorem 3.4. Make sure to carefully state the induction
hypothesis (if it is different from the statement of the theorem) and consider all
the cases.
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