Chapter 3

Sequent Calculus

In this chapter we develop the sequent calculus as a formal system for proof
search in natural deduction. The sequent calculus was originally introduced
by Gentzen [Gen35], primarily as a technical device for proving consistency of
predicate logic. Our goal of describing a proof search procedure for natural
deduction predisposes us to a formulation due to Kleene [Kle52] called Gs.

We introduce the sequent calculus in two steps. The first step is based
on the simple strategy of building a natural deduction by using introduction
rules bottom-up and elimination rules top-down. The result is an intercalation
calculus [?]. The second step consists of reformulating the rules for intercalation
so that both forms of rules work bottom-up, resulting in the sequent calculus.

We also show how intercalation derivations lead to more compact proof
terms, and how to extract proof terms from sequent calculus derivations.

3.1 Intercalation

A simple strategy in the search for a natural deduction is to use introduction
rules reasoning bottom-up (from the proposed theorem towards the hypotheses)
and the elimination rules top-down (from the assumptions towards the proposed
theorem). When they meet in the middle we have found a normal deduction.
Towards the end of this chapter we show that this strategy is in fact complete: if
a proposition A has a natural deduction then it has a normal deduction. First,
however, we need to make this strategy precise.

A general technique for representing proof search strategies is to introduce
new judgments which permit only those derivations which can be found by
the intended strategy. We then prove the correctness of the new, restricted
judgments by appropriate soundness and completeness theorems.

In this case, we introduce two judgments:

A 1ft  Proposition A has a normal deduction, and
A | Proposition A is extracted from a hypothesis.
They are defined by restricting the rules of natural deduction according to
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30 Sequent Calculus

their status as introduction or elimination rules. Hypotheses can be trivially
extracted. Therefore the necessary hypothetical judgments (in localized form,
see Section 2.3) are
up:Ay |, .. uniAp L F A and
up:Ay |, . untAp L AL
We write I'* for a context of the form shown above.

Hypotheses. The general rule for hypotheses simply reflects the nature of
hypothetical judgments.

(3
If,wA|,T5-A]

Coercion. The bottom-up and top-down derivations must be able to meet in

the middle.
IMHAL

IME A4

Looked at another way, this rule allows us to coerce any extraction derivation
to a normal deduction. Of course, the opposite coercion would contradict the
intended strategy.

Conjunction. The rules for conjunction exhibit no unexpected features: the
introduction rule is classified as a bottom-up rule, the elimination rule is classi-
fied as a top-down rule.

IE A4 IME B
Al
IYHFAABY
YFAABY IYHFAAB
— AEp, ————AFEg
IMHA B

Truth. For truth, there is only an introduction rule which is classified as
normal.

—TI
TV ET A

Implication. The introduction rule for implication is straightforward. In the
elimination rule we require that the the second premise is normal. It is only the
first premise (whose primary connective is eliminated in this rule) which must
be extracted from a hypothesis.

MwAl F B I“FADB IE A4
—oI* -
IYFADBY B

E
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3.1 Intercalation 31

Disjunction. The introduction rules for disjunction are straightforward. For
the elimination rule, again the premise with the connective which is eliminated
must have a top-down derivation. The new assumptions in each branch also are
top-down derivations. Overall, for the derivation to be normal we must require
the derivations of both premises to be normal.
IYE A4 IMF B
— VI, —VIg
IYFAVBY IYFAVBY

IMHFAVB] MwAl FCq wB| FCH

VEw
VO

It would also consistent to allow the derivations of C' to be extractions, but
it is not necessary to obtain a complete search procedure and complicates the
relation to the sequent calculus (see Exercise 3.1).

Falsehood. Falsehood corresponds to a disjunction with no alternatives. There-
fore there is no introduction rule, and the elimination rule has no cases. This
consideration yields

e

—— 1E.

HEC 1
For this rule, it does not appear to make sense to allow the conclusion as hav-
ing been constructed top-down, since the proposition C' would be completely
unrestricted.

Negation. Negation combines elements from implication and falsehood, since
we may think of ~Aas AD L.!
MwAl Fpd -4 IMEAq
_— [P -E
I E—Af EC

Universal Quantification. Universal quantification does not introduce any
new considerations.

I [a/z] A MEVz. A
— VI N

—VE

Y Ve, Af Y F[t/z]A ]

Existential Quantification. Existential quantification is similar to disjunc-
tion and a more lenient view of extraction is possible here, too (see Exercise 3.1).

I+ F [t/x]AﬂH THE3z. A I wla/z]AL FC A

I JEu
M3z Aq MO

Lreconsider]

Draft of August 30, 1999



32 Sequent Calculus

It is quite easy to see that normal and extraction derivations are sound with
respect to natural deduction. In order to state and prove this theorem, we
introduce some conventions. Given a context

= A ), unAn

we denote
up:Ay, . upiAy

by I' and vice versa.

Theorem 3.1 (Soundness of Normal Deductions)
1. IfTY - A1) then T - A, and
2. if TV A then T F A.

Proof: By induction on the structure of the given derivations. We show only
three cases, since the proof is absolutely straightforward.

Case:
&= U
MY wA |, TiFAL
The we construct directly I'y, u:A, Ty - A.
Case:
£
VA
TR Ag
Then I' - A by induction hypothesis on &.
Case:
Na
Fi,u:Al \L F A2 ﬂ
N = oI
VA DA
T, u:A; - Ay By i.h. on N3
I'A; DA, By rule DI

O

When trying to give a translation in the other direction we encounter a diffi-
culty: certain patterns of inference cannot be annotated directly. For example,
consider

D &
A I'HB

Al
'HAAB

A

AEg,.
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3.1 Intercalation 33

If we try to classify each judgment, we obtain a conflict:

D’ &'
THAYD T+ B1

Al
I'FAAB?

THAJ

AEg,.

In this particular case, we can avoid the conflict: in order to obtain the deriva-
tion of A f} we can just translate the derivation D and avoid the final two
inferences! In general, we can try to apply local reductions to the given original
derivation until no situations of the form above remain. This approach is called
normalization. It is not easy to prove that normalization terminates, and the
situation is complicated by the fact that the local reductions alone do not suffice
to transform an arbitrary natural deduction into normal form (see Exercise 3.2).

Here, we follow an alternative approach to prove completeness of normal
deductions. First, we temporarily augment the system with another rule which
makes the translation from natural deductions immediate. Then we relate the
resulting system to a sequent calculus and show that the additional rule was
redundant.

A candidate for the additional rule is easy to spot: we just add the missing
coercion from normal to extraction deductions. Since all rules are present, we
can just coerce back and forth as necessary in order to obtain a counterpart
for any natural deduction in this extended system. Of course, the resulting
derivations are no longer normal, which we indicate by decorating the turnstile
with a “+”. The judgments TV H A 4 and T+ H A | are defined by all
counterparts of all rules which define normal and extracting derivations, plus

the rule
Y E A4

IYE A
Now the annotation in the example above can be completed.

D’ g
L' Aq '+ B4

Al
' AAB1{

' AAB|
— AEL
' Al

Both soundness and completeness of the extended calculus with respect to nat-
ural deduction is easy to see.

Theorem 3.2 (Soundness of Annotated Deductions)

1. IfTYH A f then T+ A, and
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34 Sequent Calculus

2. if TV A | then T F A.

Proof: By simultaneous induction over the structure of the given derivations.
O

The constructive proof of the completeness theorem below will contain an
algorithm for annotating a given natural deduction.

Theorem 3.3 (Completeness of Annotated Deductions)
1. IfT'F A then TYF A4, and
2. ifTF A thenTVHH A .

Proof: By induction over the structure of the given derivation. We show only
two cases.

Case:
D E
I'EBDA I'kB
D= DE
T'HA
H BoAl By i.h. (2) on D
M B By ih. (1) on &
IVE A By rule DE, proving (2)
IV HE A4 By rule |f}, proving (1)
Case:
Do
F, U,IAl - A2
D=————0>DI"
'+ A1 D A2

Fi,u:Al \L |_+ A2 ﬂ
THE A; D Ay
v |—+ A1 D A2 \L

By i.h. (1) on Do
By rule DI, proving (1)
By rule 11}, proving (2)

O

Even though natural deductions and annotated deductions are very similar,
they are not in bijective correspondence. For example, in an annotated deduc-
tion we can simply alternate the two coercions an arbitrary number of times.
Under the translation to natural deduction, all of these are identified.

Before we introduce the sequent calculus, we make a brief excursion to study
the impact of annotations on proof terms.
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3.2 Compact Proof Terms 35

3.2 Compact Proof Terms

The proof terms introduced in Section 2.4 sometimes contain significant amounts
of redundant information. The reason are the propositions which label -
abstractions and also occur in the inlA, inr4, pPu:A, - 4, and abort” constructs.
For example, assume we are given a proof term Au:A. M and we are supposed to
check if it represents a proof of A’ > B. We then have to check that A = A’ and,
moreover, the information is duplicated. The reason for this duplication was
the intended invariant that every term proves a unique proposition. Under the
interpretations of propositions as types, this means we can always synthesize a
unique type for every valid term. However, we can improve this if we alternate
between synthesizing a type and checking a term against a given type.

Therefore we introduce two classes of terms: those whose type can be syn-
thesized, and those which can be checked against a type. Interestingly, this
corresponds precisely with the annotations as introduction or elimination rules
given above. We ignore negation again, thinking of A4 as A D L. We already
discussed why the eliminations for disjunction and falsehood appear among the
intro terms.

Intro Terms I == ([,I) Conjunction
| Au. I Implication
|inl[ | inr T Disjunction
| (case E of inluy = I | inrup = I)
| O) Truth
| abort B Falsehood
| E Coercion

Elim Terms FE = u Hypotheses
| ET Implication
|fst E | snd E Conjunction
| (I:A) Coercion

The presence of E as an intro term corresponds to the coercion |{ which
is present in normal deductions. The presence of (I : A) as an elim term
corresponds to the coercion )] which is present only in the extended system.
Therefore, a normal deduction can be represented without any internal type in-
formation, while a general deduction requires information at the point where an
introduction rule is directly followed by an elimination rule. It is easy to endow
the annotated natural deduction judgments with the modified proof terms from
above. We leave the details to Exercise 3.3. The two judgments are TV H T: A
and TV HF F: A,

Now we can prove the correctness of bi-directional type-checking.

Theorem 3.4 (Bi-Directional Type-Checking)
1. Given TV, I, and A. Then either TV " T : A1 or not.
2. Given TV and E. Then either there is a unique A such that Tv F E : A

or there is no such A.
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36 Sequent Calculus

Proof: See Exercise 3.3. O

3.3 Exercises

Exercise 3.1 Consider a system of normal deduction where the elimination
rules for disjunction and existential are allowed to end in an extraction judg-
ment.

IMHFAVB] MwAl FC| wB| FC|
VE®w

rCl

ME3z A I wla/z]AL FC |
HEaﬂJ

EC |

Discuss the relative merits of allowing or disallowing these rules and show how
they impact the subsequent development in this Chapter (in particular, bi-
directional type-checking and the relationship to the sequent calculus).

Exercise 3.2

1. Give an example of a natural deduction which is not normal (in the sense
defined in Section 3.1), yet contains no subderivation which can be locally
reduced.

2. Generalizing from the example, devise additional rules of reduction so that
any natural deduction which is not normal can be reduced. You should
introduce no more and no fewer rules than you need for this purpose.

3. Prove that your rules satisfy the specification in part (2).

Exercise 3.3 Write out the rules defining the judgments TV H I : A {} and
' E : A | and prove Theorem 3.4. Make sure to carefully state the induction
hypothesis (if it is different from the statement of the theorem) and consider all
the cases.
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