
3.4 Inversion for Unrestricted Resources 75

3.4 Inversion for Unrestricted Resources

Inversion principles as presented in Section 3.1 reduce don’t-know non-deterministic
choices by giving us license to always apply strongly invertible rules in the
bottom-up search for a derivation. But there is a gap in the analysis in that the
dereliction rule is always applicable when we have any unrestricted hypotheses,
but is not invertible. However, there are a number of cases where we can write
out derived or admissible rules that operate directly on unrestricted hypothe-
ses, and which are invertible. We can then limit the use of dereliction to the
remaining cases.

The following rules are all admissible and strongly invertible.

(Γ, A1, A2); ∆
−

=⇒ B
NL!

(Γ, A1NA2); ∆
−

=⇒ B

Γ; ∆
−

=⇒ B
>L!

(Γ,>); ∆
−

=⇒ B

Γ; ∆
−

=⇒ B
1L!

(Γ, 1); ∆
−

=⇒ B
0L!

(Γ, 0); ∆
−

=⇒ B

(Γ, A); ∆
−

=⇒ B
!L!

(Γ, !A); ∆
−

=⇒ B

Theorem 3.13 (Invertibility of Admissible Left! Rules) The rules NL!,
>L!, 0L! and !L! are admissible and invertible. A system with these rules
and dereliction restricted to a principal propositions which is of the form P ,
A1(A2, ∀x. A, A1 ⊃A2, A1 ⊗ A2, A1 ⊕ A2, or ∃x. A is sound and complete.

Proof: Admissibility and invertibility follows direct calculation in each direc-
tion, using the admissibility of Cut! (Theorem ??) in some cases. Soundness
follows easily from admissibility, completeness from invertibility. 2

There is also one derivable, weakly invertible rule.

I!
(Γ, P); · −=⇒ P

None of the remaining connectives admit invertible rules of the kind above
(see Exercise ??). If we want a complete system of rules to replace dereliction
DL altogether, we would have to add some non-invertible ones. Here is a possible
set of rules.

Draft of February 21, 1998

76 Proof Search

(Γ, A1(A2); ∆1
−

=⇒ A1 (Γ, A1(A2); (∆2, A2)
−

=⇒ B
(L!

(Γ, A1(A2); ∆1 ×∆2
−

=⇒ B

(Γ, A1 ⊃ A2); · −=⇒ A1 (Γ, A2); ∆
−

=⇒ B
(L!

(Γ, A1(A2); ∆
−

=⇒ B

(Γ, ∀x. A); (∆, [t/x]A)
−

=⇒ B
∀L!

(Γ, ∀x. A); ∆
−

=⇒ B

(Γ, ∃x. A); (∆, [a/x]A)
−

=⇒ B
∃L!

(Γ, ∃x. A); ∆
−

=⇒ B

(Γ, A1 ⊗A2); (∆, A1, A2)
−

=⇒ B
⊗L!

(Γ, A1 ⊗ A2); ∆
−

=⇒ B

(Γ, A1 ⊕ A2); (∆, A1)
−

=⇒ B (Γ, A1 ⊕A2); (∆, A2)
−

=⇒ B
⊕L!

(Γ, A1 ⊕A2); ∆
−

=⇒ B

In some cases there are other admissible rules, but they are rarely useful.
For example, the rule

(Γ, ∀x. A, [t/x]A); ∆
−

=⇒ B
∀L!′

(Γ, ∀x. A); ∆
−

=⇒ B

is certainly admissible and even invertible, but it cannot be applied eagerly,
since it would lead to non-termination. Instead, we can simply reuse ∀x. A if
we need another copy of [t/x]A.

3.5 Another Example: Arithmetic

Because linear hypotheses must be used exactly once, we can encode arithmetic
problems as propositions in linear logic. We map a set of linear equations over
the natural numbers into a proposition of linear logic, such that any proof of
the proposition corresponds to a solution to the set of equations. When the
proposition has not proof, the linear equations have no solutions.

We first represent natural numbers using a new (uninterpreted) atomic
proposition p.

p0q = 1
pn+ 1q = p⊗ pnq

Since p ⊗ 1 a` p we omit the trailing 1 in the examples, and also sometimes
abbreviate pnq as pn.

Draft of February 21, 1998

3.5 Another Example: Arithmetic 77

Addition is then easily represented by the multiplicative conjunction, and
equality by linear implication. We use e to range over arithmetic expressions
(which are not yet completely defined).

pe1 + e2q = pe1q⊗ pe2q
pe1 = e2q = pe1q(pe2q

For example, the equation 3 + 2 = 1 + 4 would be represented as

(p ⊗ p⊗ p⊗ 1) ⊗ (p⊗ p⊗ 1)((p⊗ 1) ⊗ (p⊗ p⊗ p⊗ p⊗ 1)

which is clearly true. It is also easy to see that an equation between different
numbers will be an unprovable linear implication.

For every variable x in the left-hand side of an equation we have a hypothesis
!p. If the variable x is instantiated by a number n, the corresponding derivation
will use this hypothesis n times, creating a linear copy of p each time. For
example (omitting 1s):

px+ y + 1 = 3q = !p ⊗ !p⊗ p(p⊗ p⊗ p

If a variable x occurs more than once, or multiplied by a constant, we collect
common terms and think of kx = x+ x + · · ·+ x. So the representation of 3x
is !(p ⊗ p⊗ p). For example,

p3x+ 2y = 7q = !(p3) ⊗ !(p2)(p7

Representing several simultaneous equations is a bit more difficult, because
we must make sure that a variable is instantiated to the same number in all
equations. We achieve this by using a different representation of the natural
numbers in each equation (say pi for equation number i), and let each variable
generate the appropriate number of pi’s for equation i. The right-hand sides of
the equations are then combined with ⊗. For example,

px+ y + 1 = 4 ∧ 2x+ 3y = 6q =
!(p1 ⊗ p2

2) x and 2x
⊗!(p1 ⊗ p3

2) y and 3y
(
(p1(p4

1) (x+ y) + 1 = 4
⊗p6

2 and (2x+ 3y) = 6

The multiplicative conjunction in the conclusion forces all hypotheses re-
garding p1 to the first conjunct, and all hypothesis regarding p2 to the second
conjunct. Since the exponential ! operator is outside the tensor for the variables
in the different equations, the number of uses of this unrestricted assumption
determines the instantiation for the variable.

Note that this example requires only a very small fragment, the so-called
multiplicative exponential linear logic.

Multiplicative Exponential M ::= P |M1 ⊗M2 | 1 |M1(M2 | !M

Draft of February 21, 1998

78 Proof Search

Actually, in the propositions above a linear implication never appears on the
left-hand side of a linear implication, and an exponential never appears on the
right-hand side of a linear implication, which is a significant further restriction.3

One can add negative numbers and stay within the multiplicative exponential
fragment although it seems one left-nested implication is now necessary. For
each equation i we add a new propositional constant qi representing −1, and
the hypothesis

!((pi ⊗ qi)(1)

expressing that 1 + (−1) = 0. An occurrence of a variable on the right-hand
side of an equation is implemented as a negative occurrence on the left. For
example,

px+ 1 = 2y ∧ 2x+ y − 2 = 3q =
!(p1 ⊗ q1(1) 1+(-1)=0
⊗!(p2 ⊗ q2(1) 1+(-1)=0
⊗!(p1 ⊗ p2

2) x and 2x
⊗!(q2

1 ⊗ p2) −2y and y
(
(p1(1) (x− 2y) + 1 = 0
⊗(q2

2(p3
2) and (2x+ y) − 2 = 3

3[add a note on what is known about the complexity of these two fragments]

Draft of February 21, 1998

