
4.2 Example: A Small Imperative Language 89

The substitution principles on natural deductions can be expressed on proof
terms. This is because the translations from natural deductions to proof terms
and vice versa are compositional : uses of a hypothesis labelled w in natural
deduction corresponds to an occurrence of a variable w in the proof term.

Lemma 4.2 (Substitution on Proof Terms)

1. If Γ; (∆, w:A) ` N :C and Γ; ∆′ `M : A, then Γ; (∆×∆′) ` [M/w]N : C.

2. If (Γ, u:A); ∆ ` N :C and Γ; · `M : A, then Γ; ∆ ` [M/u]N : C.

Proof: By induction on the structure of the first given derivation, using the
property of exchange. 2

We also have the property of weakening for unrestricted hypotheses. The
substitution properties are the critical ingredient for the important subject re-
duction properties, which guarantee that the result of β-reducing a well-typed
term will again be well-typed. The expansion rules also preserve types when
invoked properly.

Theorem 4.3 (Subject Reduction and Expansion)

1. If Γ; ∆ `M : A and M −→β M
′ then Γ; ∆ `M ′ : A.

2. If Γ; ∆ `M : A and M : A −→η M
′ then Γ; ∆ `M ′ : A.

Proof: For subject reduction we examine each possible reduction rule, applying
inversion to obtain the shape of the typing derivation. From this we either
directly construct the typing derivation of M ′ or we appeal to the substitution
lemma.

For subject expansion we directly construct the typing derivation for M ′

from the typing derivation of M . 2

Note that the opposite of subject reduction does not hold: there are well-
typed terms M ′ such that M −→β M ′ and M is not well-typed (see Exer-
cise 4.4).

4.2 Example: A Small Imperative Language

[to be filled in]

4.3 Term Assignment for the Sequent Calculus

Writing an efficient theorem prover is an arduous and error-prone task, since one
must carefully optimize at low and high levels of abstraction. This means that
it is difficult to trust the correctness of a theorem prover. In order to alleviate
this problem, we can follow two strategies. The first goes back to the design

Draft of March 3, 1998

90 Linear λ-Calculus

ML [GMW79] where we use the strong typing and the data abstraction mech-
anisms of the implementation language to reduce the correctness of a larger
implementation to the correctness of a small core. Unfortunately, having to
always go through primitive rules of inference during search is a severe practi-
cal restriction and prohibits many efficient implementation techniques (see, for
example, a discussion in [?]). Another is to require the prover to be able to
generate proof terms. If the proof is written in a simple and concise language,
we can write an external (and hopefully much simpler) checker, which we may
trust much more readily than a complicated prover manipulating constraints,
unification, using indexing schemes for fast retrieval of logical assumptions, etc.
Unless we can find a way to include admissible and derived rules of inference, we
still have to go through primitive inference rules, but we now have an external
manifestation of the deduction.

For linear logic, the proof term calculus developed in Section 4.1 is an ideal
candidate. Its definition is relatively simple, directly translating the rules of nat-
ural deduction. Compare this to the complexity of unification with parameters
and manipulating occurrence constraints. In the next section we will also see
that type-checking proof terms is certainly decidable and actually not a difficult
task.

What remains is to bridge the gap between the rules of the sequent calculus
and proof terms for natural deduction. Actually, we have already established the
connection between sequent calculus and natural deduction in both directions.
Of interest here is soundness, since the constructive soundness proof gives an
explicit method for translating a sequent derivation into a natural deduction
(see Theorem 2.9). We now need to make this construction explicit. This can
be done by defining a judgment which relates a sequent derivation to a proof
term, or perhaps to a natural deduction which includes a proof term. Such
higher-level judgments which relate derivations quickly become unmanageable,
so we write out one judgment which may be thought of as a sequent derivation
annotated by a proof term, written as Γ; ∆ =⇒ M : A. We are writing it in
such a way that, if Γ; ∆ =⇒ A then there is an annotation Γ; ∆ =⇒ M : A and
Γ; ∆ `M : A.

Since variable occurrences in proof terms are critical, we now make the
hypothesis labels explicit. However, we will still allow implicit exchange, so
that ∆, w:A matches any hypotheses of the form ∆1, w:A,∆2.

Hypotheses. The use of a hypothesis is just translated into the corresponding
variable. The dereliction rule requires a substitution.

I
Γ;w:A =⇒ w : A

(Γ, u:A); (∆, w:A) =⇒M : C
DL

(Γ, u:A); ∆ =⇒ [u/w]M : C

Why is the substitution in the dereliction rule valid? In the correctness proof
of the proof term assignment we need to show that (Γ, u:A); ∆ ` [u/w]M : C,
given that (Γ, u:A); (∆, w:A) ` M : C. But this follows from the substitution

Draft of March 3, 1998

4.3 Term Assignment for the Sequent Calculus 91

property for proof terms (Lemma 4.2), since (Γ, u:A); · ` u : A. Many other
cases follow a similar pattern.

Multiplicative Connectives. In general, the right rules of the sequent cal-
culus match the introduction rules of natural deduction. Therefore, the proof
term assignment for the left rules is quite straightforward. On the other side,
the left rules decompose a proposition in bottom-up search, while the elimina-
tion rules work top-down. We therefore substitute a small piece of a derivation
which applies the corresponding elimination for the hypothesis in the premiss.

Γ; ∆, w:A =⇒ M : B
(R

Γ; ∆ =⇒ λ̂w:A. M : A(B

Γ; ∆1 =⇒ M : A Γ; ∆2, w2:B =⇒ N : C
(L

Γ; ∆2×∆1, w:A(B =⇒ [(wˆM)/w2]N : C

Γ; ∆1 =⇒ M1 : A Γ; ∆2 =⇒ M2 : B
⊗R

Γ; ∆1 ×∆2 =⇒M1 ⊗M2 : A⊗B

Γ; ∆, w1:A,w2:B =⇒ N : C
⊗L

Γ; ∆, w:A⊗ B =⇒ let w1 ⊗ w2 = w in N : C

1R
Γ; · =⇒ ? : 1

Γ; ∆ =⇒ N : C
1L

Γ; ∆, w:1 =⇒ let ? = w in N : C

Additive Connectives. The additive connectives do not introduce any com-
plications.

Γ; ∆ =⇒ M : A Γ; ∆ =⇒ N : B
NR

Γ; ∆ =⇒ 〈M,N〉ANB

Γ; ∆, w1:A =⇒ N : C
NL1

Γ; ∆, w:ANB =⇒ [(fstw)/w1]N : C

Γ; ∆, w2:B =⇒ N : C
NL2

Γ; ∆, w:ANB =⇒ [(sndw)/w1]N : C

>R
Γ; ∆ =⇒ 〈 〉> No > left rule

Γ; ∆ =⇒ M : A
⊕R1

Γ; ∆ =⇒ inlBM : A⊕B

Γ; ∆ =⇒M : B
⊕R2

Γ; ∆ =⇒ inrAM : A ⊕B

Γ; ∆, w1:A =⇒ N1 : C Γ; ∆, w2:B =⇒ N1 : C
⊕L

Γ; ∆, w:A⊕ B =⇒ case w of inlw1 ⇒ N1 | inrw2 ⇒ N2 : C

No 0 right rule
0L

Γ; ∆, w:0 =⇒ abortC w : C

Draft of March 3, 1998

92 Linear λ-Calculus

Exponentials. Surprisingly, we do not need any explicit substitution for un-
restricted variables, since the !L rule introduces a let -expression.

(Γ, u:A); ∆ =⇒M : B
⊃R

Γ; ∆ =⇒ λu:A. M : A⊃ B

Γ; · =⇒M : A Γ; ∆, w2:B =⇒ N : C
⊃L

Γ; ∆, w:A⊃ B =⇒ [(wM)/w2]N : C

Γ; · =⇒M : A
!R

Γ; · =⇒ !M : !A

(Γ, u:A); ∆ =⇒ N : C
!L

Γ; ∆, w:!A =⇒ let !u = w in N : C

Cut. It is easy to check that the proof terms assigned with this system have the
right type. Moreover, the resulting natural deduction terms are always normal.
As can be expected from Theorem 2.14, this term assignment can be extended
to derivations with cut, except that the result may no longer be normal. The

assignment for the judgment Γ; ∆
+

=⇒ M : A is as above, with the following two
additional rules.

Γ; ∆
+

=⇒M : A Γ; (∆′, w:A)
+

=⇒ N : C
Cut

Γ; ∆′ ×∆
+

=⇒ [M/w]N : C

Γ; · +
=⇒M : A (Γ, u:A); ∆′

+
=⇒ N : C

Cut!
Γ; ∆′

+
=⇒ [M/u]N : C

The following theorem summarizes the main properties of the term assignment
system.

Theorem 4.4 (Term Assignment for Sequent Calculus)

1. If Γ; ∆ =⇒ A then Γ; ∆ =⇒M : A for a unique M .

2. If Γ; ∆ =⇒ M : A then Γ; ∆ `M : A ↑.

3. If Γ; ∆
+

=⇒ A then Γ; ∆
+

=⇒M : A for a unique M .

4. If Γ; ∆
+

=⇒ M : A then Γ; ∆ `M : A.

Proof: All by straightforward inductions over the structure of the given deriva-
tions, appealing to the substitution lemma 4.2 when necessary. 2

Draft of March 3, 1998

4.4 Linear Type Checking 93

Our proof term assignment was purposely designed to generate proof terms
for the natural deduction system. This means the proof terms do not faithfully
record the structure of the derivation and we cannot uniquely reconstruct a
sequent derivation from a proof term. It is also possible to write out a proof
term assignment which is faithful and then relate them to natural deduction
proof terms (see Exercise 4.5).

4.4 Linear Type Checking

The typing rules for the linear λ-calculus are syntax-directed in that the principal
term constructor determines the typing rule which must be used. Nonetheless,
the typing rules are not immediately suitable for an efficient type-checking al-
gorithm since we would have to guess how the linear hypotheses are to be split
between the hypothesis in a number of rules.

The occurrence constraints introduced in Section 3.3 would be sufficient to
avoid this choice, but they are rather complex, jeopardizing our goal of designing
a simple procedure which is easy to trust. Fortunately, we have significantly
more information here, since the proof term is given to us. This determines the
amount of work we have to do in each branch of a derivation, and we can resolve
the don’t-care non-determinism directly.

Instead of guessing a split of the linear hypotheses between two premisses of a
rule, we pass all linear variables to the first premiss. Checking the corresponding
subterm will consume some of these variables, and we pass the remaining ones
one to check the second subterms. This idea requires a judgment

Γ; ∆I \ ∆O `M : A

where ∆I represents the available linear hypotheses and ∆O ⊆ ∆I the linear hy-
potheses not used inM . For example, the rules for the simultaneous conjunction
and unit would be

Γ; ∆I \ ∆′ `M : A Γ; ∆′ \ ∆O ` N : B
⊗I

Γ; ∆I \ ∆O `M ⊗N : A⊗B

1I.
Γ; ∆I \ ∆I ` ? : A

Unfortunately, this idea breaks down when we encounter the additive unit (and
only then!). Since we do not know which of the linear hypotheses might be used
in a different branch of the derivation, it would have to read

∆I ⊇ ∆O
>I

Γ; ∆I \ ∆O ` 〈 〉 : >

which introduces undesirable non-determinism if we were to guess which subset
of ∆I to return. In order to cirumvent this problem we return all of ∆I , but flag

Draft of March 3, 1998

94 Linear λ-Calculus

it to indicate that it may not be exact, but that some of these linear hypotheses
may be absorbed if necessary. In other words, in the judgment

Γ; ∆I \ ∆O `1 M : A

any of the remaining hypotheses in ∆O need not be consumed in the other
branches of the typing derivation. On the other hand, the judgment

Γ; ∆I \ ∆O `0 M : A

indicates the M uses exactly the variables in ∆I −∆O.

When we think of the judgment Γ; ∆I \ ∆O `i M : A as describing an
algorithm, we think of Γ, ∆I and M as given, and ∆O and the slack indicator
i as part of the result of the computation. The type A may or may not be
given—in one case it is synthesized, in the other case checked. This refines
our view as computation being described as the bottom-up construction of a
derivation to include parts of the judgment in different roles (as input, output,
or bidirectional components). In logic programming, which is based on the
notion of computation-as-proof-search, these roles of the syntactic constituents
of a judgment are called modes. When writing a deductive system to describe an
algorithm, we have to be careful to respect the modes. We discuss this further
when we come to the individual rules.

Hypotheses. The two variable rules leave no slack, since besides the hypoth-
esis itself, no assumptions are consumed.

w
Γ; (∆I, w:A) \ ∆I `0 w : A

u
(Γ, u:A); ∆I \ ∆I `0 u : A

Multiplicative Connectives. For linear implication, we must make sure that
the hypothesis introduced by (I actually was used and is not part of the
residual hypothesis ∆O. If there is slack, we can simply erase it.

Γ; (∆I, w:A) \ ∆O `i M : B where i = 1 or w not in ∆O
(Iw

Γ; ∆I \ (∆O − w:A) `i λ̂w:A. M : A(B

Γ; ∆I \ ∆′ `i M : A(B Γ; ∆′ \ ∆O `k N : A
(E

Γ; (∆I \ ∆O) `i∨k MˆN : B

Draft of March 3, 1998

4.4 Linear Type Checking 95

Here i ∨ k = 1 if i = 1 or k = 1, and i ∨ k = 0 otherwise. This means we have
slack in the result, if either of the two premisses permits slack.

Γ; ∆I \ ∆′ `i M : A Γ; ∆′ \ ∆O `k N : B
⊗I

Γ; ∆I \ ∆O `i∨k M ⊗N : A⊗ B

Γ; ∆I \ ∆′ `i M : A⊗ B
Γ; (∆′, w1:A,w2:B) \ ∆O `k N : C

where k = 1 or w1 and w2 not in ∆O

⊗Ew1,w2

Γ; ∆I \ (∆O − w1:A−w2:B) `i∨k let w1 ⊗ w2 = M in N : C

In the ⊗E rule we stack the premisses on top of each other since they are too
long to fit on one line. The unit type permits no slack.

1I
Γ; ∆I \ ∆I `0 ? : 1

Γ; ∆I \ ∆′ `i M : 1 Γ; ∆′ \ ∆O `k N : C
1E

Γ; ∆I \ ∆O `i∨k let ? = M in N : C

Additive Connectives. The mechanism of passing and consuming resources
was designed to eliminate unwanted non-determinism in the multiplicative con-
nectives. This introduces complications in the additives, since we have to force
premisses to consume exactly the same resources. We write out four version of
the NI rule.

Γ; ∆I \ ∆′O `0 M : A Γ; ∆I \ ∆′′O `0 N : B ∆′O = ∆′′O
NI00

Γ; ∆I \ (∆′O ∩∆′′O) `0 〈M,N〉 : ANB

Γ; ∆I \ ∆′O `0 M : A Γ; ∆I \ ∆′′O `1 N : B ∆′O ⊆ ∆′′O
NI10

Γ; ∆I \ (∆′O ∩∆′′O) `0 〈M,N〉 : ANB

Γ; ∆I \ ∆′O `1 M : A Γ; ∆I \ ∆′′O `0 N : B ∆′O ⊇ ∆′′O
NI01

Γ; ∆I \ (∆′O ∩∆′′O) `0 〈M,N〉 : ANB

Γ; ∆I \ ∆′O `1 M : A Γ; ∆I \ ∆′′O `1 N : B
NI11

Γ; ∆I \ (∆′O ∩∆′′O) `1 〈M,N〉 : ANB

Note that in NI00, ∆′O ∩ ∆′′O = ∆′O = ∆′′O by the condition in the premiss.
Similarly for the other rules. We chose to present the rules in a uniform way
despite this redundancy to highlight the similarities. Only if both premisses
permit slack do we have slack overall.

Draft of March 3, 1998

96 Linear λ-Calculus

Γ; ∆ \ ∆O `i M : ANB
NEL

Γ; ∆I \ ∆O `i fstM : A

Γ; ∆I \ ∆O `i M : ANB
NER

Γ; ∆I \ ∆O `i sndM : B

Finally, we come to the reason for the slack indicator.

>I
Γ; ∆I \ ∆I `1 〈 〉 : > No > elimination

The introduction rules for disjunction are direct.

Γ; ∆I \ ∆O `i M : A
⊕IL

Γ; ∆I \ ∆O `i inlB : A⊕ B

Γ; ∆I \ ∆O `i M : B
⊕IR

Γ; ∆I \ ∆O `i inrA : A⊕ B

The elimination rule for disjunction combines resource propagation (as for mul-
tiplicatives) introduction of hypothesis, and resource coordination (as for addi-
tives) and is therefore somewhat tedious. It is left to Exercise 4.6. The 0E rule
permits slack, no matter whether the derivation of the premiss permits slack.

No 0 introduction

Γ; ∆I \ ∆O `i M : 0
0E

Γ; ∆I \ ∆O `1 abortCM : C

Exponentials. Here we can enforce the emptiness of the linear context di-
rectly.

(Γ, u:A); ∆I \ ∆O `i M : B
⊃Iu

Γ; ∆I \ ∆O `i λu:A. M : A⊃B

Γ; ∆I \ ∆O `i M : A⊃ B Γ; · \ ∆∗ `k N : A
⊃E

Γ; ∆I \ ∆O `i M N : B

Here ∆∗ will always have to be · (since it must be a subset of ·) and k is
irrelevant. The same is true in the next rule.

Γ; · \ ∆∗ `i M : A
!I

Γ; ∆I \ ∆I `0 !M : !A

Γ; ∆I \ ∆′ `i M : !A (Γ, u:A); ∆′ \ ∆O `k N : C
!Eu

Γ; ∆I \ ∆O `i∨j let !u = M in N : C

The desired soundness and completeness theorem for the algorithmic typing
judgment must first be generalized before it can be proved by induction. For this
generalization, the mode (input and output) of the constituents of the judgment
is a useful guide. For example, in the completness direction (3), we can expect
to distinguish cases based on the slack indicator which might be returned when
we ask the question if there are ∆O and i such that Γ; ∆ \ ∆O `i M : A for the
given Γ, ∆, M and A.

Draft of March 3, 1998

4.5 Exercises 97

Lemma 4.5 (Properties of Algorithmic Type Checking)

1. If Γ; ∆I \ ∆O `0 M : A then ∆I ⊇ ∆O and Γ; ∆I −∆O `M : A.

2. If Γ; ∆I \ ∆O `1 M : A then ∆I ⊇ ∆O and for any ∆ such that ∆I ⊇
∆ ⊇ ∆I −∆O we have Γ; ∆ `M : A.

3. If Γ; ∆ `M : A then either

(a) Γ; (∆′ ×∆) \ ∆′ `0 M : A for any ∆′, or

(b) Γ; (∆′ ×∆) \ (∆′ ×∆O) `1 M : A for all ∆′ and some ∆O ⊆ ∆.

Proof: By inductions on the structure of the given derivations.1 Items (1) and
(2) must be proven simultaneously. 2

From this lemma, the soundness and completeness of algorithmic type check-
ing follow directly.

Theorem 4.6 (Algorithmic Type Checking)
Γ; ∆ `M : A if and only if either

1. Γ; ∆ \ · `0 M : A, or

2. Γ; ∆ \ ∆′ `1 M : A for some ∆′.

Proof: Directly from Lemma 4.5 2

4.5 Exercises

Exercise 4.1 Prove that if Γ; ∆ `M : A and Γ; ∆ `M : A′ then A = A′.

Exercise 4.2 A function in a functional programming language is called strict
if it is guaranteed to use its argument. Strictness is an important concept in the
implementation of lazy functional languages, since a strict function can evaluate
its argument eagerly, avoiding the overhead of postponing its evaluation and
later memoizing its result.

In this exercise we design a λ-calculus suitable as the core of a functional
language which makes strictness explicit at the level of types. Your calculus
should contain an unrestricted function type A → B, a strict function type
A � B, a vacuous function type A 99K B, a full complement of operators
refining product and disjoint sum types as for the linear λ-calculus, and a modal
operator to internalize the notion of closed term as in the linear λ-calculus. Your
calculus should not contain quantifiers.

1. Show the introduction and elimination rules for all types, including their
proof terms.

1[check]

Draft of March 3, 1998

98 Linear λ-Calculus

2. Given the reduction and expansions on the proof terms.

3. State (without proof) the valid substitution principles.

4. If possible, give a translation from types and terms in the strict λ-calculus
to types and terms in the linear λ-calculus such that a strict term is well-
typed if and only if its linear translation is well-typed (in an appropriately
translated context).

5. Either sketch the correctness proof for your translation in each direction
by giving the generalization (if necessary) and a few representative cases,
or give an informal argument why such a translation is not possible.

Exercise 4.3 Give an example which shows that the substitution [M/w]N
must be capture-avoiding in order to be meaningful. Variable capture is a sit-
uation where a bound variable w′ in N occurs free in M , and w occurs in the
scope of w′. A similar definition applies to unrestricted variables.

Exercise 4.4 Give a counterexample to the conjecture that if M −→β M
′ and

Γ; ∆ ` M ′ : A then Γ; ∆ ` M : A. Also, either prove or find a counterexample
to the claim that if M −→η M

′ and Γ; ∆ `M ′ : A then Γ; ∆ `M : A.

Exercise 4.5 The proof term assignment for sequent calculus identifies many
distinct derivations, mapping them to the same natural deduction proof terms.
Design an alternative system of proof terms from which the sequent derivation
can be reconstructed uniquely (up to weakening of unrestricted hypotheses and
absorption of linear hypotheses in the >R rule).

1. Write out the term assignment rules for all propositional connectives.

2. Give a calculus of reductions which corresponds to the initial and principal
reductions in the proof of admissibility of cut.

3. Show the reduction rule for the dereliction cut.

4. Show the reduction rules for the left and right commutative cuts.

5. Sketch the proof of the subject reduction properties for your reduction
rules, giving a few critical cases.

6. Write a translation judgment S =⇒ M from faithful sequent calculus
terms to natural deduction terms.

7. Sketch the proof of type preservation for your translation, showing a few
critical cases.

Exercise 4.6 Supply the missing rules for ⊕E in the definition of the judg-
ment Γ; ∆I \ ∆O `i M : A and show the corresponding cases in the proof of
Lemma 4.5.

Draft of March 3, 1998

