
2.5 Normal Deductions 39

2.5 Normal Deductions

An intuitive strategy in constructing natural deductions is to apply introduction
rules backwards to break the conclusion into subgoals and to apply elimination
rules to hypotheses until the two meet. This strategy is in fact complete which
has numerous consequences. One of the most important is consistency of the
logic, that is, not every proposition is true. This is closely related to the local
soundness property we have investigated for each of the connectives.

We call natural deductions which have been constructed with the strategy
sketched above normal. Normalcy is a judgment about derivations, just as truth
is a judgment about propositions. It is awkward to write out and reason about
judgments on derivations, but there are standard techniques to avoid them.
The most commonly used is to reformulate the judgment on derivations as a
judgment on objects, in this case propositions. Instead of judging a derivation
to be normal, the judgment expresses that “A has a normal derivation”.

In our situation one judgment will not be sufficient, since we need to describe
bottom-up reasoning (introduce the main connective of the conclusion) and top-
down reasoning (eliminate the main connective of the hypothesis). Thus we have
two mutually dependent judgments

Γ; ∆ ` A ↑ A has a normal derivation, and
Γ; ∆ ` A ↓ A has an atomic derivation,

where the latter formalizes the top-down reasoning from hypotheses (intu-
itionistic or linear). These judgments are defined by the following inference
rules.

Hypotheses.

w
Γ; (·, w:A) ` A ↓

u
(Γ1, u:A,Γ2); · ` A ↓

Multiplicative Connectives.

Γ; ∆1 ` A ↑ Γ; ∆2 ` B ↑
⊗I

Γ; (∆1 ×∆2) ` A ⊗B ↑

Γ; ∆ ` A⊗ B ↓ Γ; (∆′, w1:A,w2:B) ` C ↑
⊗Ew1,w2

Γ; (∆′ ×∆) ` C ↑

Γ; (∆, w:A) ` B ↑
(Iw

Γ; ∆ ` A(B ↑

Γ; ∆ ` A(B ↓ Γ; ∆′ ` A ↑
(E

Γ; ∆×∆′ ` B ↓

1I
Γ; · ` 1 ↑

Γ; ∆ ` 1 ↓ Γ; ∆′ ` C ↑
1E

Γ; (∆′ ×∆) ` C ↑

Draft of January 27, 1998

40 Intuitionistic Linear Logic

Additive Connectives.

Γ; ∆ ` A ↑ Γ; ∆ ` B ↑
NI

Γ; ∆ ` ANB ↑

Γ; ∆ ` ANB ↓
NEL

Γ; ∆ ` A ↓

Γ; ∆ ` ANB ↓
NER

Γ; ∆ ` B ↓

>I
Γ; ∆ ` > ↑ No > elimination rule

Γ; ∆ ` A ↑
⊕IL

Γ; ∆ ` A⊕ B ↑

Γ; ∆ ` B ↑
⊕IR

Γ; ∆ ` A⊕ B ↑

Γ; ∆ ` A⊕ B ↓ Γ; (∆′, w1:A) ` C ↑ Γ; (∆′, w2:B) ` C ↑
⊕Ew1,w2

Γ; (∆′ ×∆) ` C ↑

No 0 introduction rule

Γ; ∆ ` 0 ↓
0E

Γ; (∆′ ×∆) ` C ↑

Quantifiers.

Γ; ∆ ` [a/x]A ↑
∀Ia

Γ; ∆ ` ∀x. A ↑
Γ; ∆ ` ∀x. A ↓

∀E
Γ; ∆ ` [t/x]A ↓

Γ; ∆ ` [t/x]A ↑
∃I

Γ; ∆ ` ∃x. A ↑

Γ; ∆ ` ∃x. A ↓ Γ; (∆′, w:[a/x]A) ` C ↑
∃Ea,w

Γ; (∆′ ×∆) ` C ↑

Exponentials.

(Γ, u:A); ∆ ` B ↑
⊃Iu

Γ; ∆ ` A⊃ B ↑
Γ; ∆ ` A⊃ B ↓ Γ; · ` A ↑

⊃E
Γ; ∆ ` B ↓

Γ; · ` A ↑
!I

Γ; · ` !A ↑

Γ; ∆ ` !A ↓ (Γ, u:A); ∆′ ` C ↑
!Eu

Γ; (∆′ ×∆) ` C ↑

Draft of January 27, 1998

2.5 Normal Deductions 41

Coercion.

Γ; ∆ ` A ↓
↓↑

Γ; ∆ ` A ↑

The coercion ↓↑ states that all atomic derivations should be considered nor-
mal. From the point of view of proof search this means that we can complete the
derivation when forward and backward reasoning arrive at the same proposition.
It easy to see that these judgments just restrict the set of derivations.

Property 2.5 (Soundness of Normal Derivations)

1. If Γ; ∆ ` A ↑ then Γ; ∆ ` A.

2. If Γ; ∆ ` A ↓ then Γ; ∆ ` A.

Proof: By simultaneous induction on the given derivations. The computational
contents of this proof are the obvious structural translation from N :: (Γ; ∆ `
A ↑) to N− :: (Γ; ∆ ` A) and from A :: (Γ; ∆ ` A ↓) to A− :: (Γ; ∆ ` A).
Note that the coercion ↓↑ disappears, since the translation of the premiss and
conclusion are identical. 2

The corresponding completeness theorem, namely that Γ; ∆ ` A implies
Γ; ∆ ` A ↑, also holds, but is quite difficult to prove. This is the subject
of the Normalization Theorem ??. Together with the two judgments about
atomic and normal derivations, we have refined substitution principles. Since
hypotheses are atomic, they permit only the substitution of atomic derivations
for hypotheses.

Lemma 2.6 (Substitution Principles for Normal Derivations)

1. If Γ; (∆1, w:A,∆2) ` C ↑ and Γ; ∆ ` C ↓ then Γ; (∆1,∆,∆2) ` C ↑

2. If Γ; (∆1, w:A,∆2) ` C ↓ and Γ; ∆ ` C ↓ then Γ; (∆1,∆,∆2) ` C ↓

3. If (Γ1, u:A,Γ2); ∆ ` C ↑ and Γ1; · ` C ↓ then (Γ1,Γ2); ∆ ` C ↑

4. If (Γ1, u:A,Γ2); ∆ ` C ↓ and Γ1; · ` C ↓ then (Γ1,Γ2); ∆ ` C ↓

Proof: By straightforward inductions over the structure of the first of the given
derivations. 2

A first immediate connection to local reductions is the following.

Property 2.7

1. If N :: (Γ; ∆ ` A ↑) then N− :: (Γ; ∆ ` A) contains no local redex.

2. If A :: (Γ; ∆ ` A ↓) then A− :: (Γ; ∆ ` A) contains no local redex.

Draft of January 27, 1998

42 Intuitionistic Linear Logic

Proof: By induction on the structure ofN and A, inspecting the possible forms
of local redices in each case. 2

We can now also give an alternative way to describe the connection be-
tween IL and ILL by showing the normal deductions can be translated in
the opposite directions quite easily. We write !∆ for a context of the form
·, u1:!A1, . . . , un:!An.

Lemma 2.8

1. If Γ+; !∆+ ` A+ ↑ in ILL then Γ,∆ ` A in IL.

2. If Γ+; !∆+ ` !A+ ↑ in ILL then Γ,∆ ` A in IL.

3. If Γ+; !∆+ ` C ↓ in ILL then either C = B+ or C = !B+ for some B
and Γ,∆ ` B in IL.

Proof: By simultaneous induction on the structures of N :: (Γ+; !∆+ ` A+ ↑)
and A :: (Γ+; !∆+ ` C ↓). 2

2.6 Cut-Free Sequent Calculus

The sequent calculus can be seen as a calculus of proof search for natural deduc-
tions. In this section we try to transcribe the process of searching for a normal
natural deduction into an inference system. In the context of sequent calculus,
proof search is seen entirely as the bottom-up construction of a derivation. This
means that elimination rules must be turned “upside-down” so they can also be
applied bottom-up rather than top-down. A sequent has the form Γ; ∆ =⇒ C,
where Γ corresponds to unrestricted hypotheses ∆ to linear hypotheses, and C
to the conclusion.

In terms of judgments we interpret a sequent via a splitting of the judgment
“A is true” into two judgments: “A is a resource” and “A is a true conclusion”.
Ignoring unrestricted hypothesis for the moment, the main judgment

(·, w1:A1, . . . , wn:An) =⇒ C

expresses

Under the linear hypothesis that we have resources A1, . . . , An we
judge C to be a true conclusion.

Adding unrestricted hypotheses, the judgment

(·, u1:B1, . . . , um:Bm); (·, w1:A1, . . . , wn:An) =⇒ C

expresses

Under the unrestricted hypotheses that we have resources B1, . . . , Bm
and linear hyptheses that we have resources A1, . . . , An, we judge C
to be a true conclusion.

Draft of January 27, 1998

2.6 Cut-Free Sequent Calculus 43

This interpretation means that we now have an explicit inference rule which
relates the judgment “A is a resource” to the judgment “A is a true conclusion”.
We call the resulting sequent an initial sequent and write I.

I(w)
Γ; (·, w:A) =⇒ A

The remaining rules are divided into right and left rules, which correspond
to the introduction and elimination rules of natural deduction, respectively. The
right rules apply to the conclusion, while the left rules apply to resources. Since
resources may be either linear or unrestricted, our notation would require two
versions of each left rule. Instead we add one more hypothesis rule which allows
us to copy an unrestricted to a linear hypothesis. This rule is labelled DL for
dereliction.

(Γ1, u:A,Γ2); (∆, w:A) =⇒ C
DLw(u)

(Γ1, u:A,Γ2); ∆ =⇒ C

In the following, we adhere to common practice and omit labels on hypothe-
ses and consequently also on the justifications of the inference rules. The reader
should keep in mind, however, that this is just a short-hand, and that there are,
for example, two different derivations of (·, A, A); · =⇒ A, one using the first
copy of A and one using the second.

Finally, we permit implicit uses of exchange in the conclusion in order to
move the principal proposition of a rule to the right-most position. In other
words, we write ∆, A instead of ∆1, w:A,∆2. We repeat the rules from above
in their abbreviated form and the give the remaining left and right rules.

Hypotheses.

I
Γ;A =⇒ A

(Γ, A); (∆, A) =⇒ C
DL

(Γ, A); ∆ =⇒ C

Multiplicative Connectives.

Γ; ∆, A =⇒ B
(R

Γ; ∆ =⇒ A(B

Γ; ∆1 =⇒ A Γ; ∆2, B =⇒ C
(L

Γ; ∆1 ×∆2, A(B =⇒ C

Γ; ∆1 =⇒ A Γ; ∆2 =⇒ B
⊗R

Γ; ∆1 ×∆2 =⇒ A⊗ B

Γ; ∆, A, B =⇒ C
⊗L

Γ; ∆, A⊗ B =⇒ C

1R
Γ; · =⇒ 1

Γ; ∆ =⇒ C
1L

Γ; ∆, 1 =⇒ C

Draft of January 27, 1998

44 Intuitionistic Linear Logic

Additive Connectives.

Γ; ∆ =⇒ A Γ; ∆ =⇒ B
NR

Γ; ∆ =⇒ ANB

Γ; ∆, A =⇒ C
NL1

Γ; ∆, ANB =⇒ C

Γ; ∆, B =⇒ C
NL2

Γ; ∆, ANB =⇒ C

>R
Γ; ∆ =⇒ > No > left rule

Γ; ∆ =⇒ A
⊕R1

Γ; ∆ =⇒ A⊕ B

Γ; ∆ =⇒ B
⊕R2

Γ; ∆ =⇒ A⊕ B

Γ; ∆, A =⇒ C Γ; ∆, B =⇒ C
⊕L

Γ; ∆, A⊕ B =⇒ C

No 0 right rule
0L

Γ; ∆, 0 =⇒ C

Quantifiers.

Γ; ∆ =⇒ [a/x]A
∀Ra

Γ; ∆ =⇒ ∀x. A

Γ; ∆, [t/x]A=⇒ C
∀L

Γ; ∆, ∀x. A =⇒ C

Γ; ∆ =⇒ [t/x]A
∃R

Γ; ∆ =⇒ ∃x. A

Γ; ∆, [a/x]A=⇒ C
∃La

Γ; ∆, ∃x. A =⇒ C

Exponentials.

(Γ, A); ∆ =⇒ B
⊃R

Γ; ∆ =⇒ A ⊃B
Γ; · =⇒ A Γ; ∆, B =⇒ C

⊃L
Γ; ∆, A⊃B =⇒ C

Γ; · =⇒ A
!R

Γ; · =⇒ !A

(Γ, A); ∆ =⇒ C
!L

Γ; ∆, !A =⇒ C

We have the following theorems relating normal natural deductions and se-
quent derivations.

Theorem 2.9 (Soundness of Sequent Derivations)

Draft of January 27, 1998

2.7 Another Example: Concurrent Systems 45

If Γ; ∆ =⇒ A then Γ; ∆ ` A ↑.

Proof: By induction on the structure of the derivation of Γ; ∆ =⇒ A. Initial
sequents are translated to the ↓↑ coercion, and use of an unrestricted hypothesis
follows by a substitution principle (Lemma 2.6). For right rules we apply the
corresponding introduction rules. For left rules we either directly construct a
derivation of the conclusion after an appeal to the induction hypothesis (⊗L,
1L, ⊗L, 0L, ∃L, !L) or we appeal to a substitution principle of atomic natural
deductions for hypotheses ((L, NL1, NL2, ∀L, ⊃L). 2

Theorem 2.10 (Completeness of Sequent Derivations)

1. If Γ; ∆ ` A ↑ then there is a sequent derivation of Γ; ∆ =⇒ A, and

2. if Γ; ∆ ` A ↓ then for any formula C and derivation of Γ; ∆′, A =⇒ C
there is a derivation of Γ; (∆′ ×∆) =⇒ C.

Proof: By simultaneous induction on the structure of the derivations of Γ; ∆ `
A ↑ and Γ; ∆ ` A ↓. 2

2.7 Another Example: Concurrent Systems

Another class of examples for linear logic is the description of concurrent sys-
tems. Linear logic can be used to represent whole classes of concurrent systems,
such as Petri Nets [MOM91] or Milner’s π-calculus [MPP92]. At present we are
concerned only with the basic principles. We also now employ sequent deriva-
tions instead of natural deductions to model computations.

Unlike the planning example, in concurrent computation there is no overall
goal, just an evolution of state. Thus the right-hand side of the judgment
should be “empty”, which we model by 0, the impossible goal. Thus the basic
representation of a concurrent system is

Γ0; ∆ =⇒ 0

where Γ0 are the rules of computation and ∆ is the state (including the pro-
cesses, messages, etc.). A partial derivation

Γ0; ∆1 =⇒ 0
...

Γ0; ∆0 =⇒ 0

represents a computation from ∆0 to ∆1.
We consider a simple example with the following atomic propositions.

send(x, y,m) x is sending the message m to y
message(x, y,m) message m from x to y is in transit
listen(y) y is listening for messages addressed to y
received(y, x,m) y has received message m from x

Draft of January 27, 1998

46 Intuitionistic Linear Logic

The computation rules are linear implications, available as unrestricted hypothe-
ses.

sendMsg : ∀x. ∀y. ∀m. send(x, y,m)(message(x, y,m)
receiveMsg : ∀x. ∀y. ∀m. message(x, y,m)⊗ listen(y)

(listen(y) ⊗ received(y, x,m)

Here, y continues to listen after it has received and stored a message. However,
the receiver cannot distinguish the order in which messages were sent or received.
This can be modelled by explicitly adding time stamps to the predicates above,
or by using non-commutative linear logic (see Chapter ??). Protocols for com-
munication which require acknowledgments and other complex exchanges can
be modelled based on the simple ideas above. For example, to express that a
message may be lost, we can add the following rule.

loseMsg : message(x, y,m)(1

Here and below we omit universal quantifiers for the sake of brevity: all free
variables in a rule are implicitly universally quantified on the outside.

Other connectives also have interesting computational interpretations. For
example, a global abort message from x can be implemented using 0.

abortSys : abort(x)⊗ authorized(x)(0

If x is authorized and aborts, we obtain 0 as part of the state from which we can
prove anything and terminate the computation. However, there is nothing in the
reading of derivations as deductions which would force this to be “immediate”:
other computations could still proceed.

Alternative conjunction represents non-deterministic choice. Since we intend
that any derivation represents a legal computation, this means a resource ANB
could evolve to either A or B. For example, if storing a message might fail in
the sense that it simply disappears, we can specify:

receiveMsg′ : message(x, y,m)⊗ listen(y)(listen(y) ⊗ (received(y, x,m)N1)

Quantifiers can also be used to advantage. For example, we can send a
message to anyone.

sendMsgAny : sendany(x,m)⊗ (∀y. message(x, y,m))

However, this message can only ever be seen by one recipient. If we want to
publish a message so everyone can see it, and see it as often as they like without
storing it locally, we can specify:

publishMsg : publish(x,m)⊗ !(∀y. message(x, y,m))

Some protocols establish “new connections”, and some security protocols
require the sender to generate a “fresh” message which has never been seen

Draft of January 27, 1998

2.7 Another Example: Concurrent Systems 47

before. We can model both of these with an existential quantifier, since its left
rule will introduce a new parameter, which may not occur in the present state.

sendFresh : fresh(x, y)(∃m. message(x, y,m)

The reader is invited to verify how sequent derivations, constructed in a
bottom-up fashion, model computations. In each case we match the left-hand
side of a linear implication in Γ0 against components of the state, and then add
the components of the right-hand side.

Draft of January 27, 1998

48 Intuitionistic Linear Logic

Draft of January 27, 1998

