Chapter 3

Proof Search

Linear logic as introduced by Girard and presented in the previous chapter is a
rich system for the formalization of reasoning involving state. It conservatively
extends intuitionistic logic and can therefore also serve as the logical basis for
general constructive mathematics. Searching for proofs in such an expressive
logic is difficult, and one should not expect silver bullets.

Depending on the problem, proof search in linear logic can have a variety
of applications. In the domain of planning problems (see Section 2.3) searching
for a proof means searching for a plan. In the domain of concurrent com-
putation (see Section 2.7) searching for a proof means searching for possible
computations. In the domain of logic programming (which we investigate in
detail in Chapter ?7?), searching for a proof according to a fixed strategy is the
basic paradigm of computation. In the domain of functional programming and
type theory (which we investigate in Chapter ?7?), searching for a proof means
searching for a program satisfying a given specification.

Each application imposes different requirements on proof search, but there
are underlying basic techniques which recur frequently. In this chapter we take
a look at some basic techniques, to be exploited in subsequent chapters.

3.1 Bottom-Up Proof Search and Inversion

The literature is not in agreement on the terminology, but we refer to the process
of creating a derivation from the desired judgment on upward as bottom-up proof
search. A snap-shot of a bottom-up search is a partial derivation, with undecided
judgments at the top. Our goal is to derive all remaining judgments, thereby
completing a proof.

We proceed by selecting a judgment which remains to be derived and an
inference rule with which it might be inferred. We also may need to determine
exactly how the conclusion of the rule matches the judgment. For example,
in the ®R rule we need to decide how to split the linear hypotheses between
the two premisses. After these choices have been made, we reduce the goal of

Draft of February 10, 1998



54 Proof Search

deriving the judgment to a number of subgoals, one for each premiss of the
selected rule. If there are no premisses, the subgoal is solved. If there are no
subgoals left, we have derived the original judgment.

Using this simple intuition, the cut elimination theorem (Theorem 2.17)
directly implies decidability of pure propositional linear logic as defined in Sec-
tion 2.1, that is, linear logic without unrestricted resources and without the
exponential connectives of course “!A” and intuitionistic implication “A D B”.

Theorem 3.1 (Decidability of Propositional Pure Linear Logic)
Pure linear logic with connectives —, ®, 1, &, T, @, and 0 is decidable.

Proof: We know by cut elimination and other results from Chapter 2.2 that
s AF Aiff; A = A. Every premiss of every sequent rule in the pure fragment
of linear logic without cut contains fewer connectives and quantifiers than the
conclusion. Every branch must therefore be finite. Furthermore, there are only
finitely many different inference rules which can be used to infer any given
conclusion, and every rule has at most two premisses. Therefore, the space of
possible cut-free sequent derivations of a purely linear judgment is finite and
derivability is decidable. |

After Section 7?7 we see that this theorem still holds even if we admit quan-
tifiers, but that it fails if we allow unrestricted hypotheses (even without quan-
tifiers).

The second observation about bottom-up proof search is that some rules
are invertible, that is, the premisses are derivable whenever the conclusion is
derivable. The usual direction states that the conclusion is evident whenver the
premisses are. Invertible rules can safely be applied whenever possible without
losing completeness, although some care must be taken to retain a terminating
procedure in the presence of unrestricted hypotheses. We also separate weakly
invertible rules, which only apply when there are no linear hypotheses (besides
possibly the principal proposition of the inference rule). For example, we cannot
apply the 1R whenever the judgment is I'; A 1, although it is safe to do
so when there are no linear hypotheses. Similarly, we cannot use the initial
sequent rule to infer I'; A, A = A unless A = -. Strongly invertible rules apply
regardless of any other hypotheses.

Theorem 3.2 (Inversion Lemmas) The following table lists invertible, weakly
invertible, and non-invertible rule in intuitionistic linear logic.

Strongly Invertible Weakly Invertible Not Invertible

—R —o L,
®L, 1L 1R ®R
&R, TR &L1, &Lo
@®L, OL ®R1, BRe
VR, dL VL, R
DR, 'L 'R DL

I DL

Draft of February 10, 1998



3.1 Bottom-Up Proof Search and Inversion 55

Proof: For invertible rule we prove that each premiss follows from the conclu-
sion. For non-invertible rules we give a counterexample. The two sample case
below are representative: for invertible rules we apply admissibility of cut, for
non-invertible rules we consider a sequent with the same proposition on the left
and right.

Case: — R is invertible. We have to show that I'; (A, A) = B is derivable
whenver I'; A = A —o B is derivable, so we assume I'; A =— A — B. We
also have I'; (-, A, A— B) = B, which follows by one —o L rule from two
initial sequents. From the admissibility of cut (Theorem 2.16) we then
obtain directly T'; (A, A) = B.

Case: —o L is not invertible. Consider -; (-, A — B) = A — B for parameters
A and B. There is only one way to use —o L to infer this, which leads to
5+ = A and -; (-, B) = A —o B, neither of which is derivable. Therefore
—o LL is not invertible in general.

O

As a final, general property for bottom-up proof search we show that we can
restrict ourselved to initial sequents of the form T'; (-, P) = P, where P is an
atomic proposition. We write I'; A = A for the restricted judgment whose
rules are as for I'; A = A, except that initial sequents are restricted to atomic
propositions. Obviously, if I'; A = A then I'; A = A.

Theorem 3.3 (Completeness of Atomic Initial Sequents) If ;A — A
then T'; A = A.

Proof: By induction on the the structure of D :: (I'; A = A). In each case
except initial sequents, we appeal directly to the induction hypothesis and infer
I'; A = A from the results. For initial sequents, we use an auxiliary induction
on the structure of the formula A. We show only one case—the others are similar
in that they follow the local expansions, translated from natural deduction to
the setting of the sequent calculus. If local completeness did not hold for a
connective, then atomic initial sequents would be incomplete as well.

Case: D = I, where A = A; ® As. Then we con-
F; (',Al ® AQ) — A1 ® A2
struct
Dy D,
r7 ('7A1) :_>A1 r7 ('7A2) :_> A2

®R

T; (-, A1, Ag) = A1 ® Ay
®L

F; (',Al ® AQ) :_> A1 ® A2
where D] and Dj exist by induction hypothesis on A; and A,.

Draft of February 10, 1998



56

Proof Search

The theorems in this section lead to a search procedure with the following
general outline:

1.
2.

Pick a subgoal to solve.

Decide to apply a right rule to the consequent or a left rule to a hypothesis.

. Determine the remaining parameters (either how to split the hypotheses,

or on the terms which may be required).

. Apply the rule in the backward direction, reducing the goal to possibly

several subgoals.

A lot of choices remain in this procedure. They can be classified according to
the type of choice which must be made. This classification will guide us in
the remainder of this chapter, as we discuss how to reduce the inherent non-
determinism in the procedure above.

e Conjunctive choices. We know all subgoals have to be solved, but the order

in which we attempt to solve them is not determined. In the simplest case,
this is a form of don’t-care non-determinism, since all subgoals have to be
solved. In practice, it is not that simple since subgoals may interact once
other choices have been made more deterministic. Success is a special case
of conjunctive choice with no conjuncts.

Disjunctive choices. We don’t know which left or right rule to apply.
Invertible rules are always safe, but once they all have been applied, many
possibilities may remain. This is a form of don’t-know non-determinism,
since a sequence of correct guesses will lead to a derivation if there is one.
In practice, this may be solved via backtracking, for example. Failure is a
special case of a disjunctive choice with zero alternatives.

Universal choices. In the VR and JL rules we have to choose a new pa-
rameter. Fortunately, this is a trivial choice, since any new parameter will
work, and its name is not important. Hence this is a form of don’t-care
non-determinism.

Existential choices. In the JR and VL rules we have to choose a term ¢
to substitute for the bound variable. Since there are potentially infinitely
many terms (depending on the domain of quantification), this is a form
of don’t-know non-determinism. In practice, this is solved by unification,
discussed in the next section.

Draft of February 10, 1998



