Chapter 4

Linear \-Calculus

In intuitionistic logic, proofs are related to functional programs via the Curry-
Howard isomorphism [CF58, How69]. Howard observed that there is a bijective
correspondence between proofs in intuitionistic propositional natural deduction
and simply-typed A-terms. A related observation on proof in combinatory logic
had been made previously by Curry.

A generalization of this observation to include quantifiers later gives rise to
the rich field of type theory, which we will analyze in Chapter ?7?7. Here we
study the basic correspondence, extended to the case of linear logic.

A linear A-calculus of proof terms will be useful for us in various circum-
stances. First of all, it gives a compact and faithful representation of proofs as
terms. Proof checking is reduced to type-checking in a A-calculus. For example,
if we do not trust the implementation of our theorem prover, we can instru-
ment it to generate proof terms which can be verified independently. Secondly,
the terms in the A-calculus provide the core of a functional language with an
expressive type system, in which statements such as “this function will use its
argument exactly once” can be formally expressed and checked. Thirdly, lin-
ear \-terms can serve as an expressive representation language within a logical
framework, a general meta-language for the formalization of deductive systems.

4.1 Proof Terms

We now assign proof terms to the system of linear natural deduction. Our main
criterion for the design of the proof term language is that the proof terms should
reflect the structure of the deduction as closely as possible. Moreover, we would
like every valid proof term to uniquely determine a natural deduction. Because
of the presence of T, this strong property will fail, but a slightly weaker and,
from the practical point of view, sufficient property holds. Under the Curry-
Howard isomorphism, a proposition corresponds to a type in the proof term
calculus. We will there call a proof term well-typed if it represents a deduction.

The proof term assignment is defined via the judgment I'; A+ M : A, where
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84 Linear A-Calculus

each formula in I" and A is labelled. We also use M —3 M’ for the local
reduction and M : A —,, M’ for the local expansion, both expressed on proof
terms. The type on the left-hand side of the expansion reminds is a reminder
that this rule only applies to term of the given type (contexts are elided here).

Hypotheses. We use the label of the hypotheses as the name for a variable
in the proof terms. There are no reductions or expansions specific to variables,
although variables of non-atomic type may be expanded by the later rules.

w u
I;(,wA)Fw: A Ty, u:A,Ty);-Fu: A

Multiplicative Connectives. Linear implication corresponds to a linear func-
tion types with corresponding linear abstraction and application. We distinguish

them from unrestricted abstraction and application by a “hat”. In certain cir-

cumstances, this may be unnecessary, but here we want to reflect the proof

structure as directly as possible.

I; (A, w:A) M : B

—o ¥

;AR A M:A—B

INAFM:A—oB IA'FN:A
— K

I;(AxAY-M N:B

(Qw:A. M) N —5 [N/w]M
M:A—B —, Aw:A. M w
In the rules for the simultaneous conjunction, the proof term for the elimination
inference is a let form which deconstructs a pair, naming the components. The
linearity of the two new hypotheses means that the variables must both be used
in M.
ATEM:A I"AsHN:B

®I

AFM:A®B T (A wi:A,we:B)-N:C
[(A'"x A)Flet wy @we =M in N : C

®Ew17w2

The reduction and expansion mirror the local reduction and expansion for de-
duction as the level of proof terms. We do not reiterate them here, but simply
give the proof term reduction.

let wi @ wo = M; Q M in N —3 [Ml/wl,Mg/wg]N
M:A®B —, letw ®ws=M in w; @ wy
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4.1 Proof Terms 85

The unit type allows us to consume linear hypotheses without introducing new
linear ones.

ARM:1 AFN:C

1I 1E
D;oF%:1 [(A'"xA)Flet x=Min N : C

letx=Min N —3g N
M:x —, letx=Minx

Additive Connectives. As we have seen from the embedding of intuition-
istic in linear logic, the simultaneous conjunction represents products from the
simply-typed A-calculus.

IAREM:A INAFN:B I
&
IAE(M,N): A&B
I'A+-M: A&B AR M: AB
&Er, &ERr
ARfstM: A I'N"AFsndM : B

The local reduction are also the familiar ones.

fSt <M1,M2> —>B Ml
snd <M1,M2> —>B M2

M:A&B —», (fstM,snd M)

The additive unit corresponds to a unit type with no operations on it.

— I
LiAE():T No T elimination

The additive unit has no elimination and therefore no reduction. However, it
still admits an expansion, which witnesses the local completeness of the rules.

M:T —, ()

The disjunction (or disjoint sum when viewed as a type) uses injection and case
as constructor and destructor forms, respectively. We annotated the injections
with a type to preserve the property that any well-typed term has a unique

type.
AFM:A INARM: B

- @l @lIr
I'"Arinl” : A® B [;A+Finr: A@ B

AFM:A®B T (A wi:A) Ny :C T;(A" we:B) - Ny : C
[ (A" x A) b case M of inlw; = Ny | inrwy = N : C

@Ewl ;W2
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86 Linear A-Calculus

The reductions are just like the ones for disjoint sums in the simply-typed -
caclulus.

case inl® M of inlw, = N, |inrwy = Ny —5  [M/wi]N;
case inr® M of inlw; = Ny |inrws = No —g  [M/ws] N2
M:A®B —, case M ofinlw; = inl? w; | inr we = inr wsy

For the additive falsehood, there is no introduction rule. It corresponds to a
void type without any values. Consequently, there is no reduction. Once again
we annotate the abort constructor in order to guarantee uniqueness of types.

IAFEM:0

OE
No 0 introduction T; (A’ x A)F abort® M : C

M:0 —, abort® M

Exponentials. Unrestricted implication corresponds to the usual function
type from the simply-typed A-calculus. For consistency, we will still write AD> B
instead of A — B, which is more common in A-calculus. Note that the argument
of an unrestricted application may not mention any linear variables.

(T,w:A);AFM:B
D
AR M:A. M : ADB

Iu

INAFM:ADB I'FN:A
INAFMN : B

DE

The reduction and expansion are the origin of the 8 and 7 rules names due to
Church [?].
(M:A. M)N —3 [N/ulM
M:A>B —, MA Mu

The rules for the of course operator allow us to name term of type !4 and use
it freely in further computation.

I;-FM:A ;ARM:A (T,uw:A); A" N : C
!

I IE®
I;-FIM: 1A I (A’xA)Flet lu=Min N:C

let lu=!Min N —g [M/u]lN
M:'A —, let!lu=Minlu

Draft of February 26, 1998



4.1 Proof Terms 87

Below is a summary of the linear A-calculus with the (g-reduction and 7-
expansion rules.

M == w Linear Variables
| Aw:A. M | My M, A—B
|M1®M2|letw1®w2=MinM’ A@B
| % |let x =M in M’ 1
| <M1, M2> | fst Ml | snd M2 A&B
| () T
| inl® M | inr® M A® B

| (case M of inlw; = M | inrwy = M>)
| abort® M 0
| u Unrestricted Variables
|!M | let u= M in M’ 14

Below is a summary of the (-reduction rules, which correspond to local
reductions of natural deductions.

Qw:A. M) N —5 [N/w]M A—B
let w1 @ wo = My ® My in N —3 [Ml/wl,Mg/wg]N A®B
letx=Min N —3 N 1
fst <M1,M2> —>5 Ml A&B
snd <M1,M2> —3 M2
No T reduction
case inl® M of inlw; = N, |inrwy = Ny —5  [M/wi]N; A® B
case inr* M of inlw, = N, |inrws = No —g [M/wi]N2
No 0 reduction
(M:A. M)N —3 [N/ulM ADB
let lu=!Min N —g [M/u]lN 1A

Next is a summary of the n-expansion rules, which correspond to local ex-
pansions of natural deductions.

M:A—-B —, Mw:A. M w
M:A®B —, letwiQ@wy=M inw; @ ws
M:x —, letx=DM inx
M :A&B —, (fst M,snd M)
M:T —, ()
M:A®B —, case M ofinlw; = inl? w; | inr wg = inr wo
M:0 —, abort® M
M:ADB —, MA Mu
M:'A —, letlu=Minlu

We have the following fundamental properties. Uniqueness, where claimed,
holds only up to renaming of bound variables.

Theorem 4.1 (Properties of Proof Terms)
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88 Linear A-Calculus

1. IfT;AF A thenT; AF M : A for a unique M.
2. IfT5 A M : A thenT; A A.

Proof: By straightforward inductions over the given derivations. i

Types are also unique for well-typed terms (see Exercise 4.1). Uniqueness of
derivations fails, that is, a proof term does not uniquely determine its derivation,
even under identical contexts. A simple counterexample is provided by the
following two derivations (with the empty unrestricted context elided).

TI TI TI TI
w:TEO:T EOT EOT w:THEO:T
®I QI
wThkFEOR():TRT wTkEOR():TQT

It can be shown that linear hypotheses which are absorbed by TI are the
only source of only ambiguity in the derivation. A similar ambiguity already
exists in the sense that any proof term remains valid under weakening in the
intuitionistic context: whenever I'; A = M : A then (I''TV); A+ M : A. So
this phenomenon is not new to the linear A-calculus, and is in fact a useful

identification of derivations which differ in “irrelevant” details, that is, unused
or absorbed hypotheses.

4.2 Exercises

Exercise 4.1 Prove that if ;A M :Aand ;A M : A’ then A= A'.
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