Chapter 5

A Linear Logical
Framework

[ a lot of stuff omitted here for now which is easily accessible in
published papers |

5.1 Representation of Meta-Theory

The features which make the linear logical framework so suitable for the repre-
sentation of deductive systems with linear or imperative features, also make it
a good candidate to represent proofs of properties of such deductive systems. If
one follows the natural line of development, however, it turns out that proofs of
meta-theorems are representable, but that their validity cannot be guaranteed
by linear type-checking alone. Presently, there exist no good tools to verify the
necessary additional properties, but their development is the subject of ongoing
research.

In this section, we will examine two relatively simple examples of meta-
theoretic properties and their proofs in the context of LLF encodings. We
will pay particular attention to the additional checks required to verify the
proofs, since they must currently be carried out by the user. The examples are
soundness and completeness of sequent derivations (including cut) with respect
to natural deductions. The proofs we give here is somewhat different from the
ones in Chapter 2 since here we are not interested in the fine-grained analysis
which relates cut-free sequent derivations to normal deductions.

We present all the LLF encodings in the concrete syntax of linear Twelf
introduced in prior lectures and documented in [CP97] and Section 5.2. In
particular, we will take full advantage of term reconstruction to recover the types
of all free variables, which are implicitly II-quantified over each declaration.

We begin with the encoding of the intuitionistic, propositional fragment of
linear logic. Here we omit propositions |, = A, and ?A which require a second
judgment of “possible truth”.

Draft of April 21, 1998



120 A Linear Logical Framework

%%%h Propositions
o : type. %name o A

%%%h Multiplicatives

lolli : o -> o -> o. % A -0 B
tensor : o -> o —-> o. % A x B
one :o. % 1

%%% Additives

with : o -=> o -> o. % A & B
top : o. % T
plus : o -> o —> o. %A+ B
zZero : oO. % 0

%%% Exponentials
imp : o -> o -> o. % A ->B
bang : o -> o. % ' A

We encode the main judgment of linear logic, I'; A + A using the standard
encoding technique for hypothetical and linear hypothetical judgments. A nat-
ural deduction D of I'; A - A will therefore be represented as a canonical LLF

object M such that "T'7;TA™ K" M :nd™ A7 where
. = .
M uwA? = T und A"
Az A7 = TAT zmd™A™

With this idea it is almost possible to achieve a perfect bijection between
canonical LLF objects of type nd™ A7 and natural deductions of A.!

nd : o -> type. %name nd D
%% Multiplicatives

% A -0 B
1011iI : (nd A -o nd B) -o nd (lolli A B).
1011iE : nd (lolli A B) -o nd A -o nd B.

% A x B
tensorl : nd A -o nd B -0 nd (tensor A B).
tensorE : nd (tensor A B)

-0 (nd A -o nd B -o nd C)

-o nd C.

%1

LFor the exception consider the two derivations of A —o(T ® T) and their representation.
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5.1 Representation of Meta-Theory 121

onel : nd (one).
oneE : nd (one)
-o nd C
-o nd C.

%%% Additives

% A &B

withl : nd A & nd B -o nd (with A B).
withEl : nd (with A B) -o nd A.
withE2 : nd (with A B) -o nd B.

% T

topI : <T> -o nd (top).
% no topE

% A+ B

plusIl : nd A -o nd (plus A B).

plusI2 : nd B -o nd (plus A B).

pluskE : nd (plus A B)
-0 ((nd A -o nd C) & (nd B -0 nd C))
-o nd C.

% 0

% no zerol

zeroE : nd (zero)
-0 <T>
-o nd C.

%%% Exponentials

% A->B
impI : (nd A -> nd B) -o nd (imp A B).
impE : nd (imp A B) -o nd A -> nd B.

% VA
bangI : nd A -> nd (bang A).
bangE : nd (bang A)
-0 (nd A -> nd C)
-o nd C.

Representation of the sequent calculus is discussed in some detail in the
literature [CP97]. Briefly, it arises by considering two basic judgments, “A is a
hypothesis” and “A is the conclusion”. We represent this via two corresponding
type families, left " A7 for hypotheses and right " A™ for the conclusion. So a
sequent derivation of I'; A = A is represented by a canonical LLF object M

Draft of April 21, 1998



122 A Linear Logical Framework

such that "' TA™ NS right " A7, where
r.1 —

T uwA” = T uleft™ A7
A A7 = TA zleft™ A7

Unlike natural deduction, we now need to explicitly connect the left and
right judgments, which is done in two dual ways. Initial sequents allow us to
conclude right™ A7 from left"A7. The rules of Cut allow us to substitute a
derivation of right” A™ for a hypothesis left" A7. There are two forms of cut,
since we might replace a linear or unrestricted hypothesis.

left : o -> type. %name left L
right : o -> type. %name right R

%%’ Initial sequents
init : (left A -o right A).

%ht Cuts

cut : right A
-o (left A -o right C)
-o right C.

cut! : right A
-> (left A -> right C)
-o right C.

The renaming rules are the left and right rules for each connective, cast into
LLF.

%% Multiplicatives

% A -0 B
lolliR : (left A -o right B) -o right (lolli A B).
lolliLl : right A

-o (left B -o right C)

-o (left (lolli A B) -o right C).

% A *xB
tensorR : right A -o right B -o right (tensor A B).
tensorL : (left A -o left B -o right C)

-o (left (tensor A B) -o right C).

%1
oneR : right (one).
onelL : (right C)
-0 (left (one) -o right C).
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5.1 Representation of Meta-Theory 123

%%% Additives

% A&B
withR : right A & right B -o right (with A B).
withLl : (left A -o right C)

-0 (left (with A B) -o right C).
withL2 : (left B -o right C)

-0 (left (with A B) -o right C).

% T
topR : <T> -o right (top).
% no topL

% A+ B

plusRl : right A -o right (plus A B).

plusR2 : right B -o right (plus A B).

plusL : (left A -o right C) & (left B -o right C)
-0 (left (plus A B) -o right C).

% 0
% no zeroR
zeroL : <T> -o (left (zero) -o right C).

%%% Exponentials

% A->B
impR : (left A -> right C) -o right (imp A C).
impL : right A

-> (left B -> right C)

-o (left (imp A B) -o right C).

% VA
bangR : right A -> right (bang A).
banglL : (left A -> right C)

-0 (left (bang A) -o right C).

Note that LLF allows a one-by-one representation of the rules without any
auxiliary judgment forms. It is this directness of encoding which makes it feasi-
ble to write out the proof of soundness and completeness of the sequent calculus
with respect to natural deduction in a similar manner. We begin with the
slightly easier direction of soundness.

Theorem 5.1 (Soundness of Sequent Calculus with Cut)
IfTA = A thenT; A+ A.

Proof: By induction over the structure of the given sequent derivation. This
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constructive proof contains a method by which a natural deduction D can be
constructed from a sequent derivation R. Under the Curry-Howard isomor-
phism, one might expect this method to be represented as a dependently typed
function

sd : ITA:o. right A — nd A.

Unfortunately, such a function cannot be defined within LLF, since it lacks the
means to define functions recursively, or distinguish cases based on the possible
input derivations.?

Instead, we represent the proof as a higher-level judgment sd relating the
derivations D and R. We do not give the awkward informal presentation of this
relation, only its implementation in linear Twelf. Since hypotheses on the left of
the sequent are represented by a different judgment, we also need to explicitly
relate the hypotheses in the two judgments, using sd’.

sd : right A -> nd A -> type.
sd’ : left A -> nd A -> type.

Each case in the proof corresponds to an inference rule defining this higher-
level judgment.
. —1L
Case: R= 1...4— 4
Then
—
Iiz:AF A
is the corresponding derivation. In the formalization, the labels of the

hypothesis A are different, but related by sd’. Thus we declare:

initSD : sd (init -~ L) X
o- sd’ L X.

where L stands for label of the sequent hypothesis (of type left™ A7) and X
stands for the label of the natural deduction hypothesis (of type nd™A™7).

Rl RQ
Case: R = F, Al = A F, AQ — B R
T; (A1 x Ay) = A® B '
Then we reason:
Dy (DA A) By i.h. on R,
Dy :: (T; Az - B) By i.h. on Ro
D:(I5(A1 x Ay) F A® B) By ®I from D; and Dy

2The lack of definition by cases and recursion is essential to obtain adequate encodings
(see [SDP97])
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5.1 Representation of Meta-Theory 125

The appeals to the induction hypothesis are implemented by “recursive
calls” in the sd judgment.

tensorRSD : sd (tensorR ~ R1 ~ R2) (temsorI ~ D1 ~ D2)

o- sd R1 D1
o- sd R2 D2.
R
Case: R = T (Al, JIltA, .13233) = C -
I; (A, 2:A® B) = C '
In this case we reason:
D: (05 (A, 21:A,29:B) F C) By i.h. on R,
X:(T;2:A® B A® B) By hypothesis =
D: (T (A, z:A® B) - C) By ®E from X and D,

In the implementation, we have to take care to introduce the new hy-
potheses in the premisses, that is, the parameters x; and z5. Further, we
need to relate the hypotheses in the two different judgments (as indicated
already in the case for initial sequents above), by using the sd’ judgment.
We label the hypotheses in the sequent calculus with [, {1, and [5.

tensorLSD : sd (temsorL ~ R1 ~ L) (temsorE ~ X ~ D1)
o- ({11:1eft A} {12:1left B} {x1:nd A} {x2:nd B}

sd’ 11 x1

-o sd’ 12 x2

-osd (R1 ~ 11 -~ 12) (D1 ~ x1 ~ x2))

o- sd’ L X.
Rl RQ
Case: R= LiA=A4 I'N"A=— B
&R.
I'A = A&B

D;:: (T;AR A) By i.h. on R,
Dy :: (I;AF B) By i.h. on R»
D: (A A&B) By &I from D; and Dy

In the formalization of this case, we have to be careful to use the alternative
conjunction at the meta-level as well, since the assumptions about the
connection between hypotheses left™" A7 and nd ™A™ are linear and may be
needed in both branches.

withRSD : sd (withR ~ (R1, R2)) (withI ~ (D1, D2))
o- sd R1 D1 & sd R2 D2.
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Ri1
Case: R = Li(Anr1:4)=C

&Ls.
I; (A, 2:A&B) = C

This case is slightly more complicated than the previous ones, since we
need to appeal to the substitution lemma.

D (T;A1,21:AF C) By i.h. on Ry
Dy :: (T;2:AB + A) By &E; from hypothesis =
D :: (T;(Ay,2:A&B) F C) By the substitution lemma from D; and Do

The implementation exploits the compositionality of the representation to
model the appeal to the substitution lemma by application in the LLF.
We have (in the LLF representation):

VAN F (S\mltnd TA7.™D;7) :nd" A7 —ond™C”
x:nd (with™ A7 B™) e withE, "z :ndrA”
TA1, 2:A&B"™ Fr (S\mltnd TAM. I_Dl_‘)A(WithEl Am) :nd"C™
TAq1, 2:A&B"™ Fr [(WithElAm)/ml]'_Dl_‘ :nd"C™

In the concrete code, D1 will be bound to (S\mltnd TA™. "™D;7), so the
application in the second to the last line is written as D1 =~ (withE1 ~ X).

withL1SD : sd (withLl -~ R1 -~ L) (D1 -~ (withEl ~ X))
o- ({11:1left A} {x1:nd A}
sd’ 11 x1 -o sd (R1 ~ 11) (D1 -~ x1))

o- sd’ L X.
Rl RQ
Case: R = iA1= A 5 (Ag,2:A) = C s
ut.
F; (Al X AQ) = C

D; (DA A) By i.h. on Ry
Dy i (T (Ag,2:A) - C) By i.h. on Rs
D:(T;(A1 x Ay FCO) By the substitution lemma from D; and Do

The representation uses the same technique of meta-level application as
the case for &R above.

cutSD : sd (cut ~ R1 ~ R2) (D2 ~ D1)
o- sd R1 D1
o- ({1l:1left A} {x:nd A}
sd’> 1 x —osd (R2 -~ 1) (D2 ~ x)).
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5.1 Representation of Meta-Theory 127

Among the remaining cases, the exponentials and the cut of an unrestricted
hypothesis require some additional case to make sure the meta-level hypothesis
are also unrestricted. Similarly, in the case for TR, care must be taken so the
linearity of the meta-reasoning is not violated by allowing weakening with the
T of LLF. We leave it to the reader to write out these cases and relate them to
the complete code given below.

sd : right A -> nd A -> type.
sd’ : left A -> nd A -> type.

%%% Initial sequents
initSD : sd (init ~ L) X
o- sd’ L X.

%h% Cuts
cutSD : sd (cut ~ R1 ~ R2) (D2 ~ D1)
o- sd R1 D1
o- ({1:1eft A} {x:nd A}
sd’> 1 x -o sd (R2 ~ 1) (D2 ~ x)).

cut!SD : sd (cut! R1 ~ R2) (D2 D1)
<- sd R1 D1
o- ({l:1left A} {u:nd A}
sd’> 1 u -> sd (R2 1) (D2 u)).

%h% Multiplicatives

% A -oB
1011iRSD : sd (1lolliR ~ R1) (lolliI ~ D1)
o- ({l:1left A} {x:nd A}
sd’> 1 x —osd (R1 ~ 1) (D1 ~ x)).

1011iLSD : sd (lollil ~ R1 -~ R2 ~ L) (D2 = (lolliE ~ X ~ D1))
o- sd R1 D1
o- ({l:1left B} {x:nd B}
sd> 1 x -o sd (R2 ~ 1) (D2 ~ x))

o- sd’ L X.

% A x B

tensorRSD : sd (tensorR ~ R1 ~ R2) (temnsorI =~ D1 ~ D2)
o- sd R1 D1
o- sd R2 D2.

tensorLSD : sd (tensorL ~ R1 ~ L) (tensorE ~ X ~ D1)
o- ({11:1eft A} {12:1eft B} {x1:nd A} {x2:nd B}
sd’ 11 x1
-0 sd’ 12 x2
-o sd (R1 = 11 = 12) (D1 ~ x1 ~ x2))
o- sd’ L X.
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%1
oneRSD : sd (oneR) (oneI).

onelSD : sd (onel. ~ R1 ~ L) (oneE -~ X ~ D1)
o- sd R1 D1
o- sd’ L X.

%%% Additives

% A & B
withRSD : sd (withR ~ (R1, R2)) (withI ~ (D1, D2))
o- sd R1 D1 & sd R2 D2.

withL1SD : sd (withLl ~ R1 -~ L) (D1 ~ (withEl ~ X))
o- ({11:1left A} {x1:nd A}
sd’ 11 x1 -o sd (R1 ~ 11) (D1 ~ x1))
o- sd’ L X.

withL2SD : sd (withL2 =~ R2 ~ L) (D2 ~ (withE2 ~ X))
o- ({12:1eft B} {x2:nd B}
sd’ 12 x2 -o sd (R2 ~ 12) (D2 ~ x2))

o- sd’ L X.
hT
topRSD : sd (topR ~ ()) (topI =~ ())
o- <T>.
% no topL
%A+ B
plusR1SD : sd (plusRl ~ R1) (plusIl ~ D1)
o- sd R1 D1.

plusR2SD : sd (plusR2 ~ R2) (plusI2 ~ D2)
o- sd R2 D2.

plusLSD : sd (plusL ~ (R1, R2) ~ L) (pluskE ~ X ~ (D1, D2))
o- (({11:1left A} {x1:nd A}
sd’ 11 x1 -o sd (R1 ~ 11) (D1 ~ x1))
& ({12:1eft B} {x2:nd B}
sd’ 12 x2 -o sd (R2 ~ 12) (D2 ~ x2)))
o- sd’ L X.

% 0

% no zeroR

zeroLSD : sd (zeroL = () ~ L) (zeroE -~ X ~ ()
o- <T>
o- sd’ L X.

%%% Exponentials
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5.1 Representation of Meta-Theory 129

%A ->B
impRSD : sd (impR ~ R1) (impI ~ D1)
o- ({l:1left A} {u:nd A}
sd’> 1 u -> sd (R1 1) (D1 u)).

impLSD : sd (impL R1 ~ R2 ~ L) (D2 (impE "~ X D1))
<- sd R1 D1
o- ({l:1left B} {u:nd B}
sd’> 1 u -> sd (R2 1) (D2 u))

o- sd’ L X.

h! A

bangRSD : sd (bangR R1) (bangI D1)
<- sd R1 D1.

bangLSD : sd (banglL ~ R1 ~ L) (bangE ~ X ~ D2)
o- ({l:1left A} {u:nd A}
sd’> 1 u -> sd (R1 1) (D2 u))
o- sd’ L X.

The signature above is type-correct in linear Twelf. But what does this
establish? For example, assume that we had forgotten the last clause—the
signature would still have been correctly typed, but it would no longer represent
a proof, since not all possible cases have been covered. So we need to verify the
following properties in addition to the type correctness in order to be sure that
the signature represents a proof.

1. The signature is well-moded. This means that when we appeal to the
induction hypothesis we have actually constructed an of the appropriate
type, and in the end we have fully constructed the object whose existence
is postulated. In concrete terms, when we make a recursive call, we need to
make sure the input arguments to the type family are fully instantiated,
and before we return the output arguments to the type family are also
fully instantiated.

For example, the first argument of the type family sd is an input argument,
the second an output argument. We then reason as follows:

tensorRSD : sd (tensorR ~ R1 ~ R2) (temsorI ~ D1 ~ D2)
o- sd R1 D1
o- sd R2 D2.

we reason as follows:

When we use this clause, the first argument to sd is given,
so R1 and R2 are ground.
Therefore, the input arguments to both recursive calls are ground.
They yield ground outputs D1 and D2.
Therefore the output (tensorI ~ D1 ~ D2) will be ground.
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Failure of mode-correctness are often simple typographical mistakes which
leave the clause well-typed, such as in the following cases.

tensorRSD : sd (temnsorR ~ R1 ~ R2) (tensorI ~ D1 ~ D2)
o- sd R1 D1
o- sd R3 D2.

tensorRSD : sd (temnsorR ~ R1 ~ R2) (tensorI ~ D1 ~ D3)
o- sd R1 D1
o- sd R2 D2.

In the first, R3 is not ground, in the second D3 is not ground.

. The signatures is terminating. This means all recursive calls are carried

out on smaller terms. These will just be proper subterms if the informal
induction argument is over the structure of a derivation. There is one
slight complication in that we must allow instantiation of bound variables
by parameters so that, for example,

tensorLSD : sd (tensorL -~ R1 ~ L) (tensorE -~ X ~ D1)
o- ({11:1left A} {12:1left B}
{x1:nd A} {x2:nd B}
sd’ 11 x1
-0 sd’ 12 x2
-osd (R1 -~ 11 -~ 12) (D1 -~ x1 ~ x2))
o- sd’ L X.

is terminating since (R1 ~ 11 ~ 12) is considered a subterm of the input
argument (tensorL ~ R1 ~ L) because 11 and 12 are parameters.

. The signature covers all possible cases. This is the most error-prone prop-

erty which must be verified, and failures can be subtle. There are three
principles classes of failures: A case for a constructor has been omitted, a
case for a parameter is missing, or a case is given, but not general enough.
For example, a missing case for a parameter arises if we omit the assump-
tion sd’ 11 x1 from the declaration of tensorLSD above:

tensorLSD : sd (temnsorL ~ R1 ~ L) (temsorE ~ X ~ D1)
o- ({11:1left A} {12:1eft B}
{x1:nd A} {x2:nd B}

sd’ 12 x2
-osd (R1 -~ 11 -~ 12) (D1 -~ x1 ~ x2))
o- sd’ L X.

When 11 is encountered in an initial sequence or the principal proposition
of a left rule, it will be impossible to proceed with the translation, since
11 has not been related to the natural deduction hypothesis x2.
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The more subtle case of insufficient generality is exhibited by the follow-
ing two examples, both of which mean that perfectly valid translations
cannot be carried out. The first fails to allow weakening when translating
instances of the TR rule.

topRSD : sd (topR ~ () (topI ~ ())
o- <T>.

The second applies only to instances where the conclusion of the ®R rule
has the form A ® A.

tensorRSD : sd (tensorR ~ R1 ~ R2) (temsorI ~ D2 ~ D1)
o- sd R1 D1
o- sd R2 D2.

This fact is only apparent when we look at the reconstructed form of this
clause.

tensorRSD : {Al:0} {R2:right A1} {D2:nd A1} {Rl:right A1} {D1:nd A1}
sd R2 D2 -o sd R1 D1
-o sd (tensorR = R1 ~ R2) (tensorI ~ D2 ~ D1).

Both R1 and R2 are derivations of sequents with conclusion A1. The re-
construction of the correct clause is

tensorRSD : {Al:0} {R2:right A1} {D2:nd A1} {A2:0}
{R1:right A2} {D1:nd A2}
sd R2 D2 -o sd R1 D1
-o sd (temsorR = R1 ~ R2) (temsorI ~ D1 ~ D2).

From the above examples one can see that bugs in proof representations can
be subtle. Some may be caught by running examples, other by inspection, but
the need for a reliable verification procedure should be clear.

The second example is the completeness property: whenever A can be de-
rived by natural deduction, it can also be derived in the sequent calculus. The
proof is very direct, but makes rather heavy use of the cut rule (in contrast to
the proof in Chapter 2).

Theorem 5.2 (Completeness of Sequent Calculus with Cut)
IfT;AF A thenT; A = A.

Proof: By induction of the structure over the given natural deduction. The
main insight is that all introduction rules can be translated straightforwardly
to right rules, while all elimination rules require one or more uses of the cut rule
in the sequent calculus.? a

3[show a few cases]
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The representation of this proof is straightforward along the lines of the
soundness proof. This time, we need only one meta-level judgment since we can
relate hypotheses in natural deduction directly to initial sequent derivations.

cp : nd A -> right A -> type.
%h% Multiplicatives

%A -0oB
1011iICP : cp (1lollil ~ D1) (lolliR ~ R1)
o- ({x:nd A} {1l:left A}
cp x (init ~ 1) -o cp (D1 ~ x) (R1 ~ 1)).

1011iECP : cp (lolliE ~ D1 ~ D2)
(cut ~ R2
~ ([1"1left A] cut ~ R1
~ ([x~left (lolli A B)]
1lollil = (dnit ~ 1) ~ ([r~left B] init "~ r) ~ k)))

o- cp D1 R1
o- cp D2 R2.
% A *x B
tensorICP : cp (temsorI ~ D1 ~ D2) (temsorR ~ R1 ~ R2)
o- cp D1 R1
o- cp D2 R2.

tensorECP : cp (temsorE ~ D1 ~ D2)
(cut ~ R1
" [171left (tensor A B)] temsorL ~ R2 ~ 1)
o- cp D1 R1
o- ({x:nd A} {1:1left A} {y:nd B} {k:left B}
cp x (init ~ 1)
-o cp y (init ~ k)
—ocp D2~ x ~y) (R2 "1 "~ k)).
%1
oneICP : cp (oneI) (oneR).

oneECP : cp (oneE ~ D1 ~ D2) (cut ~ R1 = ([1"left (one)] onelL ~ R2 ~ 1))
o- cp D1 R1
o- cp D2 R2.

4% Additives

% A & B

withICP : cp (withI - (D1, D2)) (withR ~ (R1, R2))
o- cp D1 R1 & cp D2 R2.

withE1CP : cp (withE1 ~ D1)
(cut ~ R1
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~ ([1"left (with A B)] withL1l ~ ([k~left A] init ~ k) ~ 1))
o- cp D1 R1.

withE2CP : cp (withE2 ~ D1)

(cut ~ R1
" ([1"left (with A B)] withL2 "~ ([k"left B] init ~ k) ~ 1))

o- cp D1 R1.
hT
topICP : cp (topI = ()) (topR ~ ())

o- <T>.

% no topE
%A+ B
plusIiCP : cp (plusIl ~ D1) (plusRl ~ R1)

o- cp D1 R1.

plusI2CP : cp (plusI2 ~ D2) (plusR2 ~ R2)
o- cp D2 R2.

pluskCP : cp (pluskE ~ D1 =~ (D2 , D3))

(cut ~ R1
~ ([171left (plus A B)] plusL ~ (R2, R3) ~ 1))
o- cp D1 R1

o- ({x:nd A} {1l:left A}
cp x (init ~ 1)
-ocp (D2 ~ x) (R2 ~ 1))
& ({y:nd B} {k:left B}
cp y (init ~ k)
-o cp (D3 ~ y) (R3 ~ k)).

% 0

% no zerol

zeroECP : cp (zeroE ~ D1 =~ ())
(cut = R1 =~ ([1"left (zero)] zeroL ~ () ~ 1))
o- cp D1 R1
o- <T>.

%%% Exponentials

%A ->B
impICP : cp (impI ~ D1) (impR ~ R1)
o- ({u:nd A} {1l:left A}
cp u (init ~ 1) -> cp (D1 w) (R1 1)).

impECP : cp (impE ~ D1 D2)
(cut! R2
~ ([1l:1eft A] cut ~ R1
~ ([k~left (imp A B)]
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impL (init ~ 1) ~ ([r:left B] init ~ r) ~ k)))

o- cp D1 R1
<- cp D2 R2.

%! A

bangICP : cp (bangI D1) (bangR R1)
<- cp D1 Ri.

bangECP : cp (bangE ~ D1 ~ D2)
(cut =~ R1 =~ ([1"left (bang A)] bangL ~ R2 "~ 1))
o- cp D1 R1
o- ({u:nd A} {1l:left A}
cp u (init = 1) -o cp (D2 u) (R2 1)).

5.2 Concrete Syntax of Linear Twelf

In this section, we extend the concrete syntax of Elf [Pfe94] to express the linear
operators of LLF. In doing so, we want to fulfill two constraints: first of all,
existing Elf programs should not undergo any syntactic alteration (unless they
declare some of the reserved identifiers that we will introduce) if we were to
execute them in an implementation of LLF relying on the new syntax. In other
words, the extension we propose should be conservative with respect to the syn-
tax of Elf. Second, we want to avoid a proliferation of operators: keeping their
number as small as possible will make future extensions easier to accommodate
if their inclusion appears beneficial.

The set of special characters of Fif consists of % : . ) (1 [} {. We
extend these with two symbols: , and ~. LLF object and type family constants
are consequently represented as identifiers consisting of any non-empty string
that does not contain spaces or the characters % : . ) (1 [} {, ~. Asin
Elf, identifiers must be separated from each other by whitespace (i.e., blanks,
tabs, and new lines) or special characters. We augment the set of reserved
identifiers of Elf (type, -> and <-) with <T>, &, -o, o-, <fst> and <snd>.
Although not properly an identifier, the symbol () is also reserved; this string
is forbidden in FEIf.

The following table associates every A& T operator to its concrete rep-
resentation. Terms in the A\' sublanguage of LLF are mapped to the syntax
of Elf. This language offers the convenience of writing -> as <- with the argu-
ments reversed in order to give a more operational reading to a program, when
desired: under this perspective, we read the expression A <- B as “A if B”.
We extend this possibility to linear implication, -o. Clearly, when we use o-,
the arguments should be swapped: A o- B is syntactic sugar for B -o A.
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5.2 Concrete Syntax of Linear Twelf 135

H Abstract syntax Concrete syntax

. type type
Kinds IzA K |{2:AYK A ->K K < A
PM P M
T <T>
Types A&B A& B
A—oB A-oB Bo- A
IIz:A. B {z:AYB A ->B B <- A
() O
(M, N) M,N
fst M <fst> M
) snd M <snd> M
Objects \z:A. M [x~AIM
M N M~ N
Ar:A. M [x:AIM
MN M N

The next table gives the relative precedence and associativity of these oper-
ators. Parentheses are available to override these behaviors. Note that -o, —>,
o-, and <- all have the same precedence.

Precedence Operator Position

highest

<fst> _ <snd> _ left prefix

left associative

right associative

right associative
left associative

. right associative

il left associative

{: ) [ g

lowest

left prefix

As in FElf, a signature declaration ¢ : A is represented by the program clause:
c: A.

Type family constants are declared similarly. For practical purposes, it is con-
venient to provide a means of declaring linear assumptions. Indeed, whenever
the object formalism we want to represent requires numerous linear hypotheses,
it is simpler to write them as program clauses than to rely on some initialization
routine that assumes them in the context during its execution. To this end, we
permit declarations of the form

c™A.
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with the intent that this declaration should be inserted in the context as a linear

assumption.*
We retain from FElf the use of % for comments and interpreter directives.
Delimited comments have the form %{... }%, where embedded delimited com-

ments must be nested properly. We adopt the conventions available in that
language in order to enhance the readability of LLF programs [Pfe91]. In par-
ticular, we permit keeping the type of bound variables implicit whenever they
can be effectively reconstructed by means techniques akin to those currently
implemented in FElf.

We write {x}B, [z] B and [z~]B when maintaining implicit the type A of
the variable x in {x: A}B, [z:A]B and [z~ A] B, respectively. Similar conven-
tions apply to dependent kinds. As in Flf, the binders for variables quantified at
the head of a clause can be omitted altogether if we write these variables with
identifiers starting with a capital letter. Moreover, the arguments instantiating
them can be kept implicit when using these declarations.

Finally, we relax the requirement of writing LLF' declarations only in n-long
form. With sufficient typing information it is always possible to transform a
signature to that format.

4[currently, this is unimplemented)
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