
4.5 Pure Linear Functional Programming 99

4.5 Pure Linear Functional Programming

The linear λ-calculus developed in the preceding sections can serve as the basis
for a programming language. The step from λ-calculus to programming lan-
guage can be rather complex, depending on how realistic one wants to make
the resulting language. The first step is to decide on observable types and a
language of values and then define an evaluation judgment. This is the subject
of this section. Given the purely logical view we have taken, this language still
lacks datatypes and recursion. In order to remedy this, we introduce recursive
types and recursive terms in the next section.

Our operational semantics follows the intuition that we should not evaluate
expressions whose value may not be needed for the result. Expressions whose
value will definitely be used, can be evaluated eagerly. There is a slight mismatch
in that the linear λ-calculus can identifies expressions whose value will be needed
exactly once. However, we can derive other potential benefits from the stronger
restriction at the lower levels of an implementation such as improved garbage
collection or update-in-place. These benefits also have their price, and at this
time the trade-offs are not clear. For the strict λ-calculus which captures the
idea of definite use of the value of an expression, see Exercise 4.2.

We organize the functional language strictly along the types, discussing ob-
servability, values, and evaluation rules for each. We have two main judgments,
M Value (M is a value), and M ↪→ v (M evaluates to v). In general we use v
for terms which are legal values. For both of these we assume that M is closed
and well-typed, that is, ·; · `M : A.

Linear Implication. An important difference between a general λ-calculus
and a functional language is that the structure of functions in a programming
language is not observable. Instead, functions are compiled to code. Their be-
havior can be observed by applying functions to arguments, but their definition
cannot be seen. Thus, strictly speaking, it is incorrect to say that functions
are first-class. This holds equally for so-called lazy functional languages such as
Haskell [?] and eager functional languages such as ML [?]. Thus, any expression

of the form λ̂w:A. M is a possible value.

(val
λ̂w:A. M Value

Evaluation of a λ̂-abstraction returns itself immediately.

(Iv
λ̂w:A. M ↪→ λ̂w:A. M

Since a linear parameter to a function is definitely used (in fact, used exactly
once), we can evaluate the argument without doing unnecessary work and sub-
stitute it for the bound variable during the evaluation of an application.

M1 ↪→ λ̂w:A2. M
′
1 M2 ↪→ v2 [v2/w]M ′1 ↪→ v

(Ev
M1

ˆM2 ↪→ v

Draft of March 6, 1998

100 Linear λ-Calculus

Note that after we substitute the value of argument v2 for the formal parameter
w in the function, we have to evaluate the body of the function.

Simultaneous Pairs. The multiplicative conjunction A ⊗ B corresponds to
the type of pairs where both elements must be used exactly once. Thus we can
evaluate the components (they will be used!) and the pairs are observable. The
elimination form is evaluated by creating the pair and then deconstructing it.

M1 Value M2 Value
⊗val

M1 ⊗M2 Value

M1 ↪→ v1 M2 ↪→ v2 ⊗Iv
M1 ⊗M2 ↪→ v1 ⊗ v2

M ↪→ v1 ⊗ v2 [v1/w1, v2/w2]N ↪→ v
⊗Ev

let w1 ⊗ w2 = M in N ↪→ v

Multiplicative Unit. The multiplicative unit 1 is observable and contains
exactly one value ?. Its elimination rule explicitly evaluates a term and ignores
its result (which must be ?).

1val
? Value

1Iv
? ↪→ ?

M ↪→ ? N ↪→ v
1Ev

let ? = M in N ↪→ v

Alternative Pairs. Alternative pairs of type ANB are such that we can only
use one of the two components. Since we may not be able to predict which
one, we should not evaluate the components. Thus pairs 〈M1,M2〉 are lazy, not
observable and any pair of this form is a value. When we extract a component,
we then have to evaluate the corresponding term to obtain a value.

Nval
〈M1,M2〉 Value

NIv
〈M1,M2〉 ↪→ 〈M1,M2〉

M ↪→ 〈M1,M2〉 M1 ↪→ v1
NEv1

fstM ↪→ v1

M ↪→ 〈M1,M2〉 M2 ↪→ v2
NEv2

sndM ↪→ v2

Additive Unit. By analogy, the additive unit > is not observable. Since
there is no elimination rule, we can never do anything interesting with a value
of this type, except embed it in larger values.

>val
〈 〉 Value

>Iv
〈 〉 ↪→ 〈 〉

Draft of March 6, 1998

4.5 Pure Linear Functional Programming 101

This rule does not express the full operational intuition behind >which “garbage
collects” all linear resources. However, we can only fully appreciate this when
we define evaluation under environments (see Section ??).

Disjoint Sum. The values of a disjoint sum type are guaranteed to be used
(no matter whether it is of the form inlBM or inrAM). Thus we can require
values to be built up from injections of values, and the structure of sum values
is observable. There are two rules for evaluation, depending on whether the
subject of a case -expression is a left injection or right injection into the sum
type.

M Value ⊕val1
inlBM Value

M Value ⊕val2
inrAM Value

M ↪→ v ⊕Iv1

inlBM ↪→ inlB v

M ↪→ v ⊕Iv2

inrAM ↪→ inrA v

M ↪→ inlB v1 [v1/w1]N1 ↪→ v
⊕Ev1

case M of inlw1 ⇒ N1 | inrw2⇒ N2 ↪→ v

M ↪→ inrA v2 [v2/w2]N2 ↪→ v
⊕Ev2

case M of inlw1 ⇒ N1 | inrw2⇒ N2 ↪→ v

Void Type. The void type 0 contains no value. In analogy with the disjoint
sum type it is observable, although this is not helpful in practice. There are no
evaluation rules for this type: since there are no introduction rules there are no
constructor rules, and the elimination rule distinguishes between zero possible
cases (in other words, is impossible). We called this abortAM , since it may be
viewed as a global program abort.

Unrestricted Function Type. The unrestricted function type A ⊃ B (also
written as A → B in accordance with the usual practice in functional pro-
gramming) may or may not use its argument. Therefore, the argument is not
evaluated, but simply substituted for the bound variable. This is referred to as
a call-by-name semantics. It is usually implemented by lazy evaluation, which
means that first time the argument is evaluated, this value is memoized to avoid
re-evaluation. This is not represented at this level of semantic description. Val-
ues of functional type are not observable, as in the linear case.

(val
λu:A. M Value

Draft of March 6, 1998

102 Linear λ-Calculus

→ Iv
λu:A. M ↪→ λu:A. M

M1 ↪→ λu:A2. M
′
1 [M2/u]M

′
1 ↪→ v

→ Ev
M1 M2 ↪→ v

Modal Type. A linear variable of type !A must be used, but the embedded
expression of type A may not be used since it is unrestricted. Therefore, terms
!M are values and “!” is like a quotation of its argument M , protecting it from
evaluation.

!val
!M Value

!Iv
!M ↪→ !M

M ↪→ !M ′ [M ′/u]N ↪→ v
!Ev

let !u = M in N ↪→ v

We abbreviate the value judgment from above in the form of a grammar.

Values v ::= λ̂w:A. M A(B not observable
| v1 ⊗ v2 A1 ⊗A2 observable
| ? 1 observable
| 〈M1,M2〉 A1NA2 not observable
| 〈 〉 > not observable

| inlB v | inrA v A⊕ B observable
No values 0 observable

| λu:A. M A→ B not observable
| !M !A not observable

In the absence of datatypes, we cannot write many interesting programs. As
a first example we consider the representation of the Booleans with two values,
true and false, and a conditional as an elimination construct.

bool = 1⊕ 1
true = inl1 ?
false = inr1 ?

if M thenN1 elseN2 = case M

of inl1 w1 ⇒ let ? = w1 in N1

| inr1 w2 ⇒ let ? = w2 in N2

The elimination of ? in the definition of the conditional is necessary, because
a branch inl1 w1 ⇒ N1 would not be well-typed: w1 is a linear variable not
used in its scope. Destructuring a value in several stages is a common idiom
and it is helpful for the examples to introduce some syntactic sugar. We allow
patterns which nest the elimination forms which appear in a let or case . Not
all combination of these are legal, but it is not difficult to describe the legal
pattern and match expressions (see Exercise 4.7).

Patterns p ::= w | p1 ⊗ p2 | ? | inl p | inrp | u | !p
Matches m ::= p⇒M | (m1 | m2) | ·

Draft of March 6, 1998

4.5 Pure Linear Functional Programming 103

An extended case expression has the form case M of m.
In the example of Booleans above, we gave a uniform definition for condi-

tionals in terms of case . But can we define a function cond with arguments
M , N1 and N2 which behaves like if M thenN1 elseN2? The first difficulty
is that the type of branches is generic. In order to avoid the complications of
polymorphism, we uniformly define a whole family of functions condC types C.
We go through some candidate types for condC and discuss why they may or
may not be possible.

condC : 1⊕ 1(C(C(C. This type means that both branches of the con-
ditional (second and third argument) would be evaluated before being
substituted in the definition of condC . Moreover, both must be used dur-
ing the evaluation of the body, while intuitively only one branch should
be used.

condC : 1⊕ 1((!C)((!C)(C. This avoids evaluation of the branches, since
they now can have the form !N1 and !N2, which are values. However, N1

and N2 can now no longer use linear variables.

condC : 1⊕ 1(C → C → C. This is equivalent to the previous type and un-
desirable for the same reason.

condC : 1⊕ 1((CNC)(C. This type expresses that the second argument of
type CNC is a pair 〈N1, N2〉 such that exactly one component of this pair
will be used. This expresses precisely the expected behavior and we define

condC : 1⊕ 1((CNC)(C

= λ̂b:1⊕ 1. λ̂n:CNC.
case b

of inl ?⇒ fstn
| inr ?⇒ snd n

which is linearly well-typed: b is used as the subject of the case and n is
used in both branches of the case expression (which is additive).

As a first property of evaluation, we show that it is a strategy for β-reductions.
That is, if M ↪→ v then M reduces to v in some number of β-reduction
steps (possibly none), but not vice versa. For this we need a new judgment
M −→∗β M ′ is the congruent, reflexive, and transitive closure of the M −→β M

′

relation. In other words, we extend β-reduction so it can be applied to an ar-
bitrary subterm of M and then allow arbitrary sequences of reductions. The
subject reduction property holds for this judgment as well.

Theorem 4.7 (Generalized Subject Reduction) If Γ; ∆ `M : A and M −→∗β
M ′ then Γ; ∆ `M ′ : A.

Proof: See Exercise 4.8 2

Evaluation is related to β-reduction in that an expression reduces to its
value.

Draft of March 6, 1998

104 Linear λ-Calculus

Theorem 4.8 If M ↪→ v then M −→∗β v.

Proof: By induction on the structure of the derivation of M ↪→ v. In each case
we directly combine results obtained by appealing to the induction hypothesis
using transitivity and congruence. 2

The opposite is clearly false. For example,

〈(λ̂w:1. w)ˆ?, ?〉 −→∗β 〈?, ?〉,

but
〈(λ̂w:1. w)ˆ?, ?〉 ↪→ 〈(λ̂w:1. w)ˆ?, ?〉

and this is the only evaluation for the pair. However, if we limit the congruence
rules to the components of ⊗, inl, inr, and all elimination constructs, the corre-
spondence is exact (see Exercise 4.9). Type preservation is a simple consequence
of the previous two theorems. See Exercise 4.10 for a direct proof.

Theorem 4.9 (Type Preservation) If ·; · `M : A and M ↪→ v then ·; · ` v :
A.

Proof: By Theorem 4.8, M −→∗β v. Then the result follows by generalized
subject reduction (Theorem 4.7). 2

The final theorem of this section establishes the uniqueness of values.

Theorem 4.10 (Determinacy) If M ↪→ v and M ↪→ v′ then v = v′.

Proof: By straightforward simultaneous induction on the structure of the two
given derivations. For each for of M except case expressions there is exactly
one inference rule which could be applied. For case we use the uniqueness of
the value of the case subject to determine that the same rule must have been
used in both derivations. 2

We can also prove that evaluation of any closed, well-typed term M termi-
nates in this fragment. We postpone the proof of this (Theorem ??) until we
have seen further, more realistic, examples.

Draft of March 6, 1998

