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2.3 Two Examples

In this section we practice exploiting the connectives of linear logic to express
situations involving resources and state. The first example is a menu consisting
of various courses which can be obtained for 200 french francs.

Menu A: FF 200 FF(200) —
Onigon Soup or Clear Broth ((0S&CB)
Honey-Glazed Duck ® HGD
Peas or Red Cabbage ® (P®RC)
(according to season)
New Potatoes ® NP
Chocolate Mousse ® ((FF(30) o CM)&1)
(FF 30 extra)
Coffee ®C
(unlimited refills) ® (1C))

Note the two different informal uses of “or”, one modelled by an alter-
native conjunction and one by a disjunction. The option of ordering choco-
late mousse is also represented by an alternative conjunction: we can choose
(FF(30) — CM)&1 to obtain nothing (1) or pay another 30 francs to obtain the
mousse.

The second is perhaps more typical of uses of linear logic in computer science
applications. We use it to model a planning problem in the so-called blocks world
in which a robot arm can manipulate blocks, trying to achieve some goal.

—

% m table

We use the following primitive propositions.

on(z,y) block z is on block y
tb(z) block z is on the table

holds(z) robot arm holds block z
empty robot arm is empty

clear(z) the top of block z is clear

Draft of January 22, 1998



34 Intuitionistic Linear Logic

A planning problem is represented as judgment
To; Ao = A

where Iy represent the rules which describe the legal operations, Ay is the initial
state represented as a context of the propositions which are true, and A is the
goal to be achieved. For example, the situation in the picture above would be
represented by

Ag = -, empty, tb(a), on(b, a), clear(b), tb(c), clear(c)

where we have omitted labels for the sake of brevity. The rules are represented
by unrestricted hypotheses, since they may be used arbitrarily often in the
course of solving a problem. We use the following for rules for picking up or
putting down and object. We use the convention that simultaneous conjunction
® binds more tightly than linear implication —o.

FO = 5
geton : Vaz.Vy. empty ® clear(x) ® on(x,y) —o holds(z) ® clear(y),
gettb  : Vz.empty ® clear(z) ® tb(z) —o holds(z),
puton : Vz.Vy. holds(z) ® clear(y) —o empty ® on(zx,y) ® clear(x),
puttb : Vaz. holds(z) — empty ® tb(x) ® clear(z).

Each of these represents a particular possible action, assuming that it can be
carried out successfully. Matching the left-hand side of one these rules will
consume the corresponding resources so that, for example, the proposition empty
with no longer be available after the geton action has been applied.
The goal that we would like to achieve on(a, b), for example, is represented
with the aid of using T.
Ag =on(a,b)® T

Any derivation of the judgment
To; Ao = A

represents a plan for achieving the goal Ag from the initial situation state Ag.

We now go through a derivation of the particular example above, omitting
the unrestricted resources I'g which do not change throughout the derivation.
Our first goal is to derive

-, empty, tb(a), on(b, a), clear(b), tb(c), clear(c), empty + on(a,b) ® T
By using ®I twice we can prove
-, empty, on(b, a), clear(b) - empty ® clear(b) ® on(b, a)

Using the intuitionistic hypothesis rule for geton followed by VE twice and — E
we obtain
-, empty, clear(b), on(b, a) - holds(b) ® clear(a)
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2.4 Embedding Intuitionistic Logic 35

Now we use ®E with the derivation above as our left premiss, to prove our
overall goal, leaving us with the goal to derive

-, tb(a), tb(c), clear(c), holds(b), clear(a) + on(a,b) ® T

as our right premiss. Observe how the original resources Ag have been split
between the two premisses, and the results from the left premiss derivation,
holds(b) and clear(a) have been added to the description of the situation. The
new subgoal has exactly the same form as the original goal (in fact, the con-
clusion has not changed), but applying the unrestricted assumption geton has
changed our state.

Proceeding in the same manner, using the rule puttb next leaves us with the
subgoal

-, tb(a), tb(c), clear(c), clear(a), empty, clear(b), tb(b) F on(a,b) ® T

We now apply gettb using a for x and proceeding as above which gives us a
derivation of F holds(a). Instead of ®E, we use the substitution principle
yielding the subgoal

-, tb(c), clear(c), clear(b), tb(b), holds(a) + on(a,b) ® T
With same technique, this time using puton, we obtain the subgoal
-, tb(c), clear(c), tb(b), empty, on(a, b), clear(a) F on(a, b) ® T

Now we can conclude the derivation with the ®I rule, distributing resource
on(a,b) to the left premiss, which follows immediately as hypothesis, and dis-
tributing the remaining resources to the right premiss, where T follows by TI,
ignoring all resources.

Note that different derivations of the original judgment represent different
sequences of actions (see Exercise 2.4).

2.4 Embedding Intuitionistic Logic

Our goal in this section is to show that intuitionistic linear logic (ILL) is a
refinement of intuitionistic logic (IL) in the sense that we can translate each
formula of IL into ILL in a way that preserves derivability. Actually, we will
try to achieve more: not only should it be possible to preserve derivability,
but the translation should also preserve the structure of derivations as much as
possible. This will allow us to make stronger statements regarding the connec-
tion between proof search and reduction in the two calculi when we investigate
specific applications.

The guiding principle in the definition of the translation () of IL formulas
into ILL is the idea that the judgment I' - A of IL is interpreted as the judgment
I't;.+ AT of ILL. In other words, all intuitionistic assumptions become unre-
stricted hypotheses. We design the translation so that a derivation D :: (I' - A)
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36 Intuitionistic Linear Logic

can be translated directly to a derivation D :: (I'"; - = AT). We omit negation
here, which is left to Exercise 2.10.

The only real question arises in the cases for conjunction and truth, since
they split into two possible connectives each. We model them here with additive
linear connectives. Another translation is explored in Exercise 2.9. For most
connectives, however, we have little choice. Contexts are translated by simply
translating the formulas occurring in them.

Pt = P
(ANB)T = At&BT
(ADB)t = (l1AT)—B*
(A \/(B;i = (IA") e (!BT)
1 =0
(Mt =T
(Vz. A)T = Vz. At
(Fz. A)T = Fz. AT
(.)+ = .
(T,uw:A)t = THwA"

To illustrate Girard’s original decomposition of A D B into (14) — B we do
not use intuitionistic implication in linear logic, even though it would certainly
be reasonable to translate (A D B)t = AT D BY.

Lemma 2.1 (Embedding) IfI'+ A in IL then T'";- = AT in ILL.

Proof: By induction over the structore of D :: (I' - A). The computational
contents of this proof is a compositional translation of derivations D to deriva-
tions DT (I'F; -+ A1), O

An attempt to prove the other direction in a similar manner will fail, since a
natural deduction of I'"';- - A" may have many subdeductions with a conclu-
sion which is not of this form. For example, if the deduction ends in — E the
premises contain the new formula A which may not necessarily be the transla-
tion of an intuitionistic formula. In the next section we show a way to prove
the opposite direction based on normal derivations. A simpler way is to trans-
late each linear connective into its intuitionistic counterpart and show that the
resulting judgment is derivable. This reverse translation ()~ should have the
property that (AT)” = A
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P = P
(A&B)" =(A®B)” = A AB~
(A—-B)"=(AD>DB)” = A DB~
(A®B)” = A VB~
0)- = 1L
(M=)~ =T
(Ve. A)- = Vax. A~
(Fz. A)- = Fx. A-
(14)- = A~
(.)— = .
T,wA)- = I wA~

The last two rules are also used to map a linear context A to the correspond-
ing intuitionistic context A~.

Property 2.2 (AT)" = A

Proof: By induction on the structure of A. a
Lemma 2.3 (Conservativity) IfI; A+ A in ILL thenT—, A~ + A~ in IL.
Proof: By induction on the structure of D :: (I'; A - A). |

Theorem 2.4 (Conservative Embedding) The translation ()t is a conser-
vative embedding from IL into ILL.

Proof: From Lemmas 2.1 and 2.3 and Property 2.2. a

2.5 Exercises

Exercise 2.1 Give a counterexample which shows that the elimination DE
would be locally unsound if its second premiss were allowed to depend on linear
hypotheses.

Exercise 2.2 If we define intuitionistic implication A D B in linear logic as an
abbreviation for (1A) —o B, then the given introduction and elimination rules
become derived rules of inference. Prove this by giving a derivation for the con-
clusion of the DE rule from its premisses under the interpretation, and similarly
for the DI rule.

For the other direction, show how !A could be defined from intuitionistic
implication or speculate why this might not be possible.

Exercise 2.3 [ To be filled in: an exercise exploring the “missing
connectives” of multiplicative disjunction and additive implication.

]
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38 Intuitionistic Linear Logic

Exercise 2.4 In the blocks world example from Section 2.3, sketch the deriva-
tion for the same goal Ay and initial situation Ay in which block b is put on
block ¢, rather than the table.

Exercise 2.5 Model the Towers of Hanoi in linear logic in analogy with our
modelling of the blocks world.

1. Define the necessary atomic propositions and their meaning.

2. Describe the legal moves in Towers of Hanoi as unrestricted hypotheses
T’y independently from the number of towers or disks.

3. Represent the initial situation of three towers, where two are empty and
one contains two disks in a legal configuration.

4. Represent the goal of legally stacking the two disks on some arbitrary
other tower.

5. Sketch the proof for the obvious 3-move solution as in Section 2.3.

Exercise 2.6 Consider if ® and & can be distributed over @& or vice versa.
There are four different possible equivalences based on eight possible entail-
ments. Give natural deductions for the entailments which hold.

Exercise 2.7 In this exercise we explore distributive and related interaction
laws for linear implication. In intuitionistic logic, for example, we have the
following (AAB)DC 4 AD(BD>C)and AD(BAC)4- (ADB)A(ADC),
where —F is mutual entailment as in Exercise 1.2.

In linear logic, we now write A 4+ A’ for linear mutual entailment, that
is, A’ follows from linear hypothesis A and wice versa. Write out appropriate
interaction laws or indicate none exists, for each of the following propositions.

1. A—~(B®C)
2. (A® B) = C)
3. A1
414

5. A—o(B&C)
6. (A&B)—C
7. A—T

8. T—A

9. A—-(B&C)
10. (A® B)—C
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11. A—0
12. 0 A
13. A—(B—C)
14. (A—B)—C

Note that an interaction law exists only if there is a mutual linear entailment—
we are not interested if one direction holds, but not the other.

Give the derivations in both directions for one of the interaction laws of a
binary connective ®, &, @, or —o, and for one of the interaction laws of a logical
constant 1, T, or 0.

Exercise 2.8 Extend the interaction laws from Exercise 2.7 by laws showing
how linear implication interacts with existential and universal quantification.

Exercise 2.9 Design an alternative translation ()* from formulas and natural
deductions in intuitionistic logic to intuitionistic linear logic in which conjunc-
tion (A) and truth (T) are mapped to simultaneous conjunction (®) and its
unit (1) instead of the additive connectives as in (). Prove the correctness of
the embedding and discuss the relative merits of the two translations.

Exercise 2.10 Extend the embedding from from Section 2.4 to encompass in-
tuitionistic propositions = A without adding any connectives to the linear logic.
Modify the statements and proofs of embedding and conservativity (if necessary)
and show the proof cases concerned with negation.
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