
Chapter 6

Non-Commutative Linear
Logic

[warning: this chapter is even more tentative some most of the other
material in these lecture notes.]

The goal of this chapter is to develop a system of pure natural deduction
which encompasses the (ordinary) intuitionistic simply-typed λ-calculus, the in-
tuitionistic linear λ-calculus, and new constructs for a non-commutative linear
λ-calculus. It is important that this calculus be conservative over the intuition-
istic and linear fragments, so that we do not lose any expressive power and the
new features can be introduced gently into the intended application domains.

The system has applications in functional languages, logic programming lan-
guages, and logical frameworks. In functional languages, the non-commutative
type system allows us to capture strong stackability properties, thereby, for ex-
ample, giving a logical and general foundation for observations made about
terms in continuation-passing style and monadic style [DP95, ?]. In logic
programming languages, it allows us to remove some uses of cut which arise
from don’t-care non-determinism in languages based on linear logic such as
Lolli [HM94, CHP97]. In logical frameworks, non-commutative connectives al-
low us drastically simplify the representations of problems involving stacks or
languages such as the ones above.

We start with the simplest fragment which fixes the basic concepts and aux-
iliary definitions and then add other connectives and modalities incrementally.

Various formulations of non-commutative linear logic have been considered,
both in their classical [?, Roo92, Abr95] and intuitionistic [BG91, Abr90a,
Abr90b] variants, including various modal operators, analyzed in particular
depth in [?]. Except for a brief mention in [Abr90a], we are not aware of any
systematic study of natural deduction, the Curry-Howard isomorphism, and the
computational consequences of non-commutativity in the λ-calculus. The ma-
terial in this chapter may grow to eventually fill this gap in the literature and

Draft of April 23, 1998

138 Non-Commutative Linear Logic

sketch some applications of non-commutativity in the area of logic program-
ming, logical frameworks, and functional programming, complementing Ruet’s
investigation of concurrent constraint programming from the point of view of
mixed classical non-commutative linear logic [?].

6.1 The Implicational Fragment

In this first section we present the pure implicational fragment, containing only
the intuitionistic implication (→), the linear implication (−◦), ordered right
implication (�) and ordered left implication (�).

We use a formulation of the main judgment using multiple zones: one for
intuitionistic assumptions, one for linear assumptions, and one for ordered as-
sumptions. While this may not be the best formulation for all purposes, it is
the one we found most easy to understand. We will also freely go back and
forth between propositions and types, using the well-known Curry-Howard cor-
respondence.

Types A ::= P atomic types
| A1→A2 intuitionistic implication
| A1 −◦ A2 linear implication
| A1�A2 ordered right implication
| A1� A2 ordered left implication

Objects of the λ-calculus (or proof terms for the underlying logic) are defined
in a straightforward fashion. We do not formally distinguish different kinds of
variables, although we later use the convention that x stands for intuitionistic
assumptions, y for linear assumptions, and z for ordered assumptions.

Objects M ::= x variables
| λx:A. M |M1 M2 intuitionistic functions

| λ̂x:A. M |M1
ˆM2 linear functions

| λ
>

x:A. M |M1
>

M2 right ordered functions

| λ
<

x:A. M |M1
<

M2 left ordered functions

Contexts are simply lists of assumptions x:A with distinct variables x. In a
triple of contexts Γ; ∆; Ω needed for the typing judgment, we also assume that
no variable occurs more than once.

Contexts Γ ::= · | Γ, x:A

We use the convention that Γ stands for an intuitionistic context, ∆ for a
linear context, and Ω for an ordered context. We abbreviate ·, x:A as x:A.

In order to describe the inference rules, we need some auxiliary operations
on contexts, context join Ω,Ω′ and context merge ∆ × ∆′. Context join pre-
serves the order of the assumption, while the non-deterministic merge allows
any interleaving of assumption.

Draft of April 23, 1998

6.1 The Implicational Fragment 139

Context Join Ω, · = Ω
Ω, (Ω′, x:A) = (Ω,Ω′), x:A

Context Merge · × · = ·
(∆, x:A) ×∆′ = (∆×∆′), x:A
∆× (∆′, x:A) = (∆×∆′), x:A

The typing rules below are perhaps most easily understood when reading
them from the conclusion to the premises, as rules for the construction of a
typing derivation for a term. We have designed the language of objects so that
the rules are completely syntax directed, and that every well-typed object has
a unique type (but not necessarily a unique typing derivation).

When viewing a derivation bottom-up, we think of context join Ω1,Ω2 as
ordered context split and context merge ∆1×∆2 as context split . Both of these
are non-deterministic when read in this way, that is, there may be many way to
split a context Ω = Ω1,Ω2 or ∆ = ∆1 ×∆2.

The typing judgment has the form

Γ; ∆; Ω `M : A

where Γ is the context of intuitistic assumptions, ∆ is the context of linear
assumptions, and Ω is the context of ordered assumptions.

Intuitionistic FunctionsA→B.

ivar
(Γ1, x:A,Γ2); ·; · ` x : A

(Γ, x:A); ∆; Ω `M : B
→I

Γ; ∆; Ω ` λx:A. M : A→B

Γ; ∆; Ω `M : A→B Γ; ·; · ` N : A
→E

Γ; ∆; Ω `M N : B

Linear Functions A−◦B.

lvar
Γ; y:A; · ` y : A

Γ; (∆, y:A); Ω `M : B
−◦I

Γ; ∆; Ω ` λ̂y:A. M : A−◦ B
Γ; ∆1; Ω `M : A −◦B Γ; ∆2; · ` N : A

−◦E
Γ; (∆1 ×∆2); Ω `MˆN : B

Draft of April 23, 1998

140 Non-Commutative Linear Logic

Ordered Variables.

ovar
Γ; ·; z:A ` z : A

Right Ordered FunctionsA�B.

Γ; ∆; (Ω, z:A) `M : B
�I

Γ; ∆; Ω ` λ
>

z:A. M : A�B

Γ; ∆1; Ω1 `M : A�B Γ; ∆2; Ω2 ` N : A
�E

Γ; (∆1 ×∆2); (Ω1,Ω2) `M
>

N : B

Left Ordered FunctionsA�B.

Γ; ∆; (z:A,Ω) `M : B
�I

Γ; ∆; Ω ` λ<z:A. M : A� B

Γ; ∆2; Ω2 `M : A�B Γ; ∆1; Ω1 ` N : A
�E

Γ; (∆1 ×∆2); (Ω1,Ω2) `M
<

N : B

These rules enforce linearity and ordering constraints on assumptions through
the restrictions placed upon contexts.

In the three variable rules ivar, lvar, and ovar, the linear and ordered
contexts must either be empty or contain only the subject variable, while the
intuitionistic context is unrestricted. This forces linear and ordered assumptions
made in the −◦I and �I rules to be appear at least once in a term.

In the −◦E and �E rules, the linear context is split into two disjoint parts
(when reading from the bottom up), which means that each assumption can be
used at most once. In the→E rules, all linear assumption propagate to the left
premise. These observations together show that each linear variable is used at
most once. Since it is also used at least once by the observation made about
the variable rules, linear assumptions occur exactly once.

In the �E rules, the ordered context is split in an order-preserving way,
with the leftmost assumptions Ω1 going to the left premise and the rightmost
assumptions Ω2 going to the right premise. In the −◦E and →E rules the
whole ordered context Ω goes to the left premise. These observations, together
with the observation on the variable rules, show that ordered assumptions occur
exactly once and in the order they were made.

As we will see, the emptiness restrictions on the linear and ordered contexts
in the −◦E and →E rules are necessary to guarantee subject reduction. The
reduction rules, of course, are simply β-reduction for all three kinds of functions.
We will later also consider a form of η-expansion.

Draft of April 23, 1998

6.1 The Implicational Fragment 141

Reduction Rules.

(λx. M)N =⇒ [N/x]M

(λ̂x. M)̂ N =⇒ [N/x]M

(λ
>

x. M)
>

N =⇒ [N/x]M

(λ
<

x. M)
<

N =⇒ [N/x]M

In order to prove subject reduction we proceed to establish the expected
structural properties for contexts and then verify the expected substitution lem-
mas.

Lemma 6.1 The following structural properties hold for derivations in the im-
plicational fragment of INCLL.

1. (Intuitionistic Exchange)
If (Γ1, x:A, x

′:A′,Γ2); ∆; Ω ` M : B then (Γ1, x
′:A′, x:A,Γ2); ∆; Ω ` M :

B.

2. (Intuitionistic Weakening)
If (Γ1,Γ2); ∆; Ω `M : B then (Γ1, x:A,Γ2); ∆; Ω `M : B.

3. (Intuitionistic Contraction)
If (Γ1, x:A,Γ2, x

′:A,Γ3); ∆; Ω `M : B then (Γ1, x:A,Γ2,Γ3); ∆; Ω ` [x/x′]M :
B.

4. (Linear Exchange)
If Γ; (∆1, y:A, y

′:A′,∆2); ΩM : B then Γ; (∆1, y
′:A′, y:A,∆2); Ω `M : B.

Proof: By straightforward induction on the structure of the given derivations.
2

It is easy to construct counterexamples to the missing properties such as
“linear contraction” or “ordered exchange”. With these properties we can now
establish the critical substitution lemmas.

Lemma 6.2 The following substitution properties hold for the implicational
fragment of INCLL.

1. (Intuitionistic Substitution)
If (Γ1, x:A,Γ2); ∆; Ω ` M : B and Γ1; ·; · ` N : A then (Γ1,Γ2); ∆; Ω `
[N/x]M : B.

2. (Linear Substitution)
If Γ; (∆1, y:A,∆2); Ω `M : B and Γ; ∆′; · ` N : A then Γ; (∆1,∆

′,∆2); Ω `
[N/x]M : B.

3. (Ordered Substitution)
If Γ; ∆; (Ω1, x:A,Ω2) ` M : B and Γ; ∆′; Ω′ ` N : A then Γ; (∆ ×
∆′); (Ω1,Ω

′,Ω2) ` [N/x]M : B.

Draft of April 23, 1998

142 Non-Commutative Linear Logic

Proof: By induction over the structure of the given typing derivation for M in
each case, using Lemma 6.1. 2

Subject reduction now follows immediately.

Theorem 6.3 (Subject Reduction) If M =⇒M ′ and Γ; ∆; Ω `M : A then
Γ; ∆; Ω `M ′ : A.

Proof: For each reduction, we apply inversion to the giving typing derivation
and then use the substitution lemma 6.2 to obtain the typing derivation for the
conclusion. 2

We also have three forms of η-expansion.

Theorem 6.4 (Subject Expansion) The following η-expansion properties hold
for the implication fragment of INCLL.

1. (Intuitionistic Expansion) If Γ; ∆; Ω `M : A→B then Γ; ∆; Ω ` λx:A. M x :
A→B.

2. (Linear Expansion) If Γ; ∆; Ω ` M : A −◦ B then Γ; ∆; Ω ` λ̂y:A. Mˆy :
A −◦B.

3. (Right Ordered Expansion) If Γ; ∆; Ω ` M : A � B then Γ; ∆; Ω `
λ
>

z:A. M
>

z : A�B.

4. (Left Ordered Expansion) If Γ; ∆; Ω `M : A�B then Γ; ∆; Ω ` λ<z:A. M<

z : A� B.

Proof: By a straightforward derivation in each case, using intuitionistic weak-
ening for intuitionistic expansion. 2

We also believe that our calculus satisfies the normalization and Church-
Rosser properties, and that canonical form (that is, long βη-normal forms) exist
for well-typed objects. We have not checked all details for the above formulation,
but it appears that these properties can be established by straightforward logical
relations arguments.

6.2 Other Logical Connectives

Putting off the ordered left implication for the moment, there are other multi-
plicative and additive connectives. However, there is no explosion in the number
of connectives, since the link between linear and ordered hypotheses rules out
certain possibilities. The coupling between the linear and ordered hypotheses
arises from a desire to look at linear hypotheses as a form of intuitionistic hy-
potheses whose use is restricted, and at ordered hypotheses as a form of linear
hypotheses whose use is even further restricted. Extension of our core so far
should therefore preserve the following property of demotion.

Draft of April 23, 1998

6.2 Other Logical Connectives 143

Lemma 6.5 The following structural properties hold for derivations in the right
implicational fragment of INCLL.

1. (Linear Demotion)
If (Γ1,Γ2); (∆1, y:A,∆2); Ω ` M : B then (Γ1, x:A,Γ2); (∆1,∆2); Ω `
[x/y]M : B.

2. (Ordered Demotion)
If Γ; (∆1,∆2); (Ω1, z:A,Ω2) ` M : B then Γ; (∆1, y:A,∆2); (Ω1,Ω2) `
[y/z]M : B.

Proof: In both cases by induction on the structure of the given derivation. 2

Preserving this property means that we cannot have a connective which,
for example, behaves multiplicatively on the linear context and additively on
the ordered context. Some other connectives which we do not show below are
definable through use of the modal operators in a way which even preserves the
structure of proofs.

Tensor A⊗B. This is adjoint to the right ordered implication, that is, (A⊗
B)�C iff A� (B�C). Its rules introduce commutative conversions into the
proof term calculus, and canonical forms no longer exist.

Γ; ∆1; Ω1 `M :A Γ; ∆2; Ω2 ` N :B
⊗I

Γ; (∆1 ×∆2); (Ω1,Ω2) `M ⊗N : A⊗ B

Γ; ∆2; Ω2 `M : A⊗ B Γ; ∆1; (Ω1, z:A, z
′:B,Ω3) ` N : C

⊗E
Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` let z ⊗ z′ = M in N : C

Besides destroying the existence of canonical forms, this connective also compli-
cates the simple functional interpretation of the ordered context Ω as describing
a stack. The problem is foreshadowed in the substitution lemma, where we also
have to allow ordered variables to the left and right of the variable to be sub-
stituted. The new reduction rule is rather straightforward.1

let z ⊗ z′ = M ⊗M ′ in N =⇒ [M/z,M ′/z′]N

Multiplicative Unit 1. The is the right and left unit element for the tensor
connective. We have 1� C iff C off 1� C, and A ⊗ 1 iff A iff 1 ⊗ A. The

1It seems plausible that the restriction of this rule to Ω3 = · is also sound and complete,
and that the general form is admissible in the system with the restricted rule. This would form
a much better basis for functional language applications of this calculus, since the stack-like
nature of accesses to the ordered context is preserved. Similar remarks may hold for the other
elimination rules of a similar shape.

Draft of April 23, 1998

144 Non-Commutative Linear Logic

introduction rule shows why there is only one multiplicative unit.

1I
Γ; ·; · ` ? : 1

Γ; ∆2; Ω2 `M : 1 Γ; ∆1; (Ω1,Ω3) ` N : C
1E

Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` let ? = M in N : C

The reduction rule is straightforward.

let ? = ? in N =⇒ N

Additive Conjunction ANB. This is additive on both the linear an ordered
contexts, in order to preserve demotion.

Γ; ∆; Ω `M : A Γ; ∆; Ω ` N : B
NI

Γ; ∆; Ω ` 〈M,N〉 : ANB

Γ; ∆; Ω `M : ANB
NE1

Γ; ∆; Ω ` fstM : A

Γ; ∆; Ω `M : ANB
NE2

Γ; ∆; Ω ` sndM : B

fst 〈M,N〉 =⇒ M
snd 〈M,N〉 =⇒ N

Additive Unit >. Because it is additive, the left and right units for N coin-
cide.

>I
Γ; ∆; Ω ` 〈 〉 : >

(no >E rule)

Since there is no elimination rule, there are no reduction for the additive unit.

Disjunction ⊕. The disjunction in intuitionistic linear logic and its non-
commutative refinement is additive. Therefore the connective does not split
into left and right disjunction.

Γ; ∆; Ω `M : A
⊕I1

Γ; ∆; Ω ` inlBM : A⊕ B

Γ; ∆; Ω `M : A
⊕I2

Γ; ∆; Ω ` inrAM : A ⊕B

Γ; ∆2; Ω2 `M : A ⊕B Γ; ∆1; (Ω1, z:A,Ω3) ` N : C Γ; ∆1; (Ω1, z
′:B,Ω3) ` N ′ : C

⊕E
Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` caseM of inl z ⇒ N | inr z′ ⇒ N ′ : C

Draft of April 23, 1998

6.2 Other Logical Connectives 145

case inlBM of inl z ⇒ N | inr z′ ⇒ N ′ =⇒ [M/z]N

case inrAM ′ of inl z ⇒ N | inr z′ ⇒ N ′ =⇒ [M ′/z]N ′

Additive Falsehood 0. This is the unit for disjunction. Since it is additive,
it does not split into left and right versions.

(no 0 introduction rule)

Γ; ∆2; Ω2 `M : 0
0E

Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` abortCM : C

Since there is no introduction rule for 0, there are no new reductions.
In analogy with linear logic, we have two modal operators: one allows an

ordered assumption to become mobile (while it must remain linear), another
one allows a linear assumption to become intuitionistic.

Mobility Modal ¡A.

Γ; ∆; · `M : A
¡I

Γ; ∆; · ` ¡M : ¡A

Γ; ∆2; Ω2 `M : ¡A Γ; (∆1, y:A); (Ω1,Ω3) ` N : C
¡E

Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` let ¡y = M in N : C

let ¡y = ¡M in N =⇒ [M/y]N

Linear Exponential !A.

Γ; ·; · `M : A
!I

Γ; ·; · ` !M : !A

Γ; ∆2; Ω2 `M : !A (Γ, x:A); ∆1; (Ω1,Ω3) ` N : C
!E

Γ; (∆1 ×∆2); (Ω1,Ω2,Ω3) ` let !x = M in N : C

let !x = !M in N =⇒ [M/x]N

Draft of April 23, 1998

146 Non-Commutative Linear Logic

Draft of April 23, 1998

