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1.2 Classical Logic

The inference rules so far only model intuitionistic logic, and some classically
true propositions such as AV —A (for an arbitrary A) are not derivable, as we
will see in Section ?7?. There are three commonly used ways one can construct a
system of classical natural deduction by adding one additional rule of inference.
1 ¢ is called Proof by Contradiction or Rule of Indirect Proof, ——¢ is the Double
Negation Rule, and XM is referred to as Fxcluded Middle.

—Uu
—-A
L - -
—JJC", —A—\—\C A\/—‘AXM
A A

The rule for classical logic (whichever one chooses to adopt) breaks the pattern
of introduction and elimination rules. One can still formulate some reductions
for classical inferences, but natural deduction is at heart an intuitionistic cal-
culus. The symmetries of classical logic are much better exhibited in sequent
formulations of the logic. In Exercise 1.3 we explore the three ways of extending
the intuitionistic proof system and show that they are equivalent.

Another way to obtain a natural deduction system for classical logic is to
allow multiple conclusions (see, for example, Parigot [Par92]).

1.3 Localizing Hypotheses

In the formulation of natural from Section 1.1 correct use of hypotheses and
parameters is a global property of a derivation. We can localize it by annotat-
ing each judgment in a derivation by the available parameters and hypotheses.
Since hypotheses and their restrictions are critical for linear logic, we give here a
formulation of natural deduction for intuitionistic logic with localized hypothe-
ses, but not parameters. For this we need a notation for hypotheses which we
call a context.
Contexts T == .| uwA

Here, “-” represents the empty context, and I', u: A adds hypothesis - A labelled
u to I'. We assume that each label © occurs at most once in a context in order

to avoid ambiguities. The main judgment can then be written as I' - A, where
SupAg, o upAy B A

stands for

(V51 Unp,

FA  ...FA,
FA
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16 Natural Deduction

in the notation of Section 1.1.

We use a few important abbreviations in order to make this notation less
cumbersome. First of all, we may omit the leading “.” and write, for example,
uy1:Az, ug: Ao instead of -, uq:A7,us:As. Secondly, we denote concatenation of
contexts by overloading the comma operator as follows.

r,- =T

)

I, [Iuwd) = (I,IV),uA

With these additional definitions, the localized version of our rules are as
follows.

Introduction Rules Elimination Rules
T'HA I'+B I'FAAB I'FAAB
Al —— NE — ANERr
I'-AAB T'HA T'B
THA T'B I'HAvB T up:A-C T up:BFC
[ L 7\/IR \/Eul’u2
I'AV B I'AV B I'C
I'wAk+ B 'HADB A
— DI DE
I'ADB I'+B
FuAbkp A I't+-A
_ P -BE
-4 I'C
— I
'ET no T elimination
'L
— 1E
no L introduction 'C
I'tla/z]A L'kVz. A
7VIG - @
I'FVz. A T+ [t/z]A
Tk [t/z]A '3z A T, u:la/z]AF C
—d1 JEav
'3z A I'+-C

We also have a new rule for hypotheses which was an implicit property of the
hypothetical judgments before.

—_—U
Fl,u:A,FQ FA

Other general assumptions about hypotheses, namely that they may be used ar-
bitrarily often in a derivation and that their order does not matter, are indirectly
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1.3 Localizing Hypotheses 17

reflected in these rules. Note that if we erase the context I' from the judgments
throughout a derivation, we obtain a derivation in the original notation.
When we discussed local reductions in order to establish local soundness, we

used the notation
D

—u
FA
E
FC

for the result of substituting the derivation D of F A for all uses of the hy-
pothesis F A labelled u in £. We would now like to reformulate the property
with localized hypotheses. In order to prove that the (now explicit) hypotheses
behave as expected, we use the principle of structural induction over derivations.
Simply put, we prove a property for all derivations by showing that, whenever
it holds for the premisses of an inference, it holds for the conclusion. Note that
we have to show the property outright when the rule under consideration has
no premisses, which amounts to the base cases forof the induction.

Theorem 1.1 (Structural Properties of Hypotheses) The following prop-
erties hold for intuitionistic natural deduction.

1. (Exchange) If T'1,u1:A, o, ue:B, T'o - C then T'y,u2:B,To,u1: A, To F C.
2. (Weakening) If T'1,T2 F C then Ty, u:A,To F C.

3. (Contraction) If T'1,u1:A,To,uz: A, To b C then T'y,u:A, T9, T3 - C.

4. (Substitution) If T1,uw:A,To F C and T'1 F A then T'1,Ty - C.

Proof: The proof is in each case by straightforward induction over the structure
of the first given derivation.

In the case of exchange, we appeal to the inductive assumption on the deriva-
tions of the premisses and construct a new derivation with the same inference
rule. Algorithmically, this means that we exchange the hypotheses labelled u
and us in every judgment in the derivation.

In the case of weakening and contraction, we proceed similarly, either adding
the new hypothesis u:A to every judgment in the derivation (for weakening), or
replacing uses of u; and ug by u (for contraction).

For substitution, we apply the inductive assumption to the premisses of the
given derivation D until we reach hypotheses. If the hypothesis is different from
u we can simply erase u:A (which is unused) to obtain the desired derivation.
If the hypothesis is u: A the derivation looks like

)
D= Fl,u:A,Fg FA
so C = A in this case. We are also given a derivation £ of I'y F A and have

to construct a derivation F of I';,I's = A. But we can just repeatedly apply
weakening to £ to obtain F. Algorithmically, this means that, as expected, we
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18 Natural Deduction

substitute the derivation & (possibly weakened) for uses of the hypotheses u:A
in D. Note that in our original notation, this weakening has no impact, since
unused hypotheses are not apparent in a derivation. a

It is also possible to localize the derivations themselves, using proof terms. As
we will see in Chapter 7?7, these proof terms form a A-calculus closely related
to functional programming. When parameters, hypotheses, and proof terms
are all localized our main judgment becomes decidable. In the terminology of
Martin-Lof [ML94], the main judgment is then analytic rather than synthetic.
We no longer need to go outside the judgment itself in order to collect evidence
for it: An analytic judgment encapsulates its own evidence.

1.4 Exercises

Exercise 1.1 Prove the following by natural deduction using only intuitionistic
rules when possible. We use the convention that O, A, and V associate to the
right, that is, AD BDC stands for AD(BDC). A = B is a syntactic abbreviation
for (AD B) A (B D A). Also, we assume that A and V bind more tightly than
D, that is, AA B D C stands for (A A B) D C. The scope of a quantifier extends
as far to the right as consistent with the present parentheses. For example,
(Vz. P(z) D C) A =C would be disambiguated to (Vz. (P(z) D C)) A (=C).

1. FADBDA.

2. FANBVC)=(AAB)V(ANC).

3. (Peirce’s Law). + ((ADB)D>A)DA.
4. FAV(BAC)=(AVB)A(AVC).

5. FAD(AAB)V(AA-B).

6. F(AD3z. P(x)) = Ja. (A D P()).

7. b ((Va. P(z)) D> C) = 3z. (P(z) > C).
8. F 3. Vy. (P(z) D> P(y)).

Exercise 1.2 We write A - B if B follows from hypothesis A and A -+ B
for AF B and B+ A. Which of the following eight parametric judgments are
derivable intuitionistically?

1. (3z. A) > B+ Vz. (AD B)
2. A>(3z. B) 4+ 3z. (AD B)
3. (V&. A) D B - 3z. (A> B)
4. A> (Vz. B) 4+ Vz. (AD B)
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1.4 Exercises 19

Provide natural deductions for the valid judgments. You may assume that the
bound variable = does not occur in B (items 1 and 3) or A (items 2 and 4).

Exercise 1.3 Show that the three ways of extending the intuitionistic proof
system are equivalent, that is, the same formulas are deducible in all three
systems.

Exercise 1.4 Assume we had omitted disjunction and existential quantification
and their introduction and elimination rules from the list of logical primitives.
In the classical system, give a definition of disjunction and existential quantifi-
cation (in terms of other logical constants) and show that the introduction and
elimination rules now become admissible rules of inference. A rule of inference is
admissible if any deduction using the rule can be transformed into one without
using the rule.

Exercise 1.5 Assume we would like to design a system of natural deduction
for a simple temporal logic. The main judgment is now “A is true at time t”
written as

H A

1. Explain how to modify the given rules for natural deduction to this more
general judgment and show the rules for implication and universal quan-
tification.

2. Write out introduction and elimination rules for the temporal operator
(OA which should be true if A is true at the next point in time. Denote
the “next time after t” by ¢ + 1.

3. Show the local reductions and expansions which show the local soundness
and completness of your rules.

4. Write out introduction and elimination rules for the temporal operator
OA which should be true if A is true at all times.

5. Show the local reductions and expansions.

Exercise 1.6 Design introduction and elimination rules for the connectives
1. A = B, usually defined as (A D> B) A (B D A),
2. A | B (exclusive or), usually defined as (A A—=B) V (A A B),

without recourse to other logical constants or operators. Also show the corre-
sponding local reductions and expansions.
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Chapter 2

Intuitionistic Linear Logic

Linear logic, in its original formulation by Girard [Gir87] and many subsequent
investigations was presented as a refinement of classical logic. This calculus of
classical linear logic can be cleanly related to classical logic and exhibits many
pleasant symmetries. On the other hand, a number of applications in logic and
functional programming can be treated most directly using the intuitionistic
version. In this chapter we present the basic system of natural deduction defin-
ing intuitionistic linear logic. Further surveys and introductions to linear logic
can be found in [Lin92, Sce93, Tro92]. A historical introduction [Do$93] and
context for linear and other substructural logics outside computer science can
be found in [SHD93].

We introduce linear logic by enriching our judgment forms by a linear hy-
pothetical judgment. A linear hypothetical judgment has the form “Js provided
resource J1”. We consider this judgment evident if we are prepared to make
judgment Jo when provided with the resource Ji. A resource or linear hypoth-
esis behaves like an ordinary hypothesis except that it must be used exactly
once.

As an example, consider the basic judgment “I own X” for objects X. We
would be prepared to make the linear hypothetical judgment

“I own book b provided I own $5”

if we know that book b costs five dollars and that it is available. If we ever
actually had $5, we could then achieve a situation in which we owned the book.
Obviously, we would no longer own the five dollars, since they would have been
consumed in the process of obtaining the book. It is clear that we would not
be prepared to make the judgment above if the book costs ten dollars due to
insufficient resources. But we would reject the judgment even if the book cost
only one dollar, since we would not use all the given resources.

We can already see that evidence for a judgment of this form is a derivation
in which we have to keep track of resources. Implicit here is a notion of state
and change of state which is not present in traditional mathematical logic. For
this reason, linear logic is often referred to as a “logic of state”.
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22 Intuitionistic Linear Logic

In the following section we develop the logical connectives of linear logic,
based on the notion of linear hypothetical judgment.

2.1 Purely Linear Natural Deduction

The main judgment of purely linear natural deduction is “A is true assuming
linear hypotheses Aj,...,A,”. Later we also admit unrestricted hypotheses,
but we postpone this complication. We refer to Ay, ... A, as resources and A as
the goal to be achieved. As for hypotheses in Section 1.3 we localize resources
into a context A and write

A+ A

Just as for ordinary hypotheses, we can substitute concrete evidence for a linear
hypothesis for its use in a derivation. The corresponding substitution principle
is the following:

If Aj,w:A,As - C and A+ A then A1, A, Ax - C.

Intuitively, it states that if we have a derivation of + C from resources Ay, As
and the additional resource F A labelled w, and if we have a derivation of - A
requiring resources A, then we can obtain a derivation of + C from resources
Al, A, and AQ.

Resources also satisfy the principle of exchange, since their order is irrelevant.

If Al,wltA,AQ,wQIB,Ag F C then Al,wQIB,AQ,wltA,Ag FC.

Note that unlike unrestricted hypotheses, resources cannot be weakened or
contracted since they must be used exactly once. Weakening would allow re-
sources to remain unused, while contraction would allow resources to be used
more than once.

Finally, the use of a resource is restricted (when compared to hypotheses in
the intuitionistic case) so that there are no other resources remaining.

—_—w
SwAFA

We now examine, connective by connective, the introduction and elimination
rules of linear logic and check their local soundness and completeness. In the
local reductions and expansion we will have to carefully check the preservation
of resources.

Simultaneous Conjunction. Assume we have some resources A and we
want to achieve goals A and B. We then need to split our resources A into
A1 and As and show that with resources A; we can achieve A and with A,
we can achieve B. The introduction rule for the corresponding connective of
simultaneous conjunction, written A® B and read “A tensor B”, then requires a
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2.1 Purely Linear Natural Deduction 23

notation for splitting resources (when viewed bottom-up) or merging resources
(when viewed top-down). We merge A; x Ag according to the following rules.

X . e .
Al X (AQ,UZA) = (Al X AQ),UZA
(Al,U,IA) X AQ = (Al X AQ),UZA

Note that this is a non-deterministic operation, since the last two rules might
both be applicable. We use the convention that any way to merge two contexts
in an inference rules yields a valid inference. With this preparation we can now
state the introduction rule for simultaneous conjunction.

A FA As B
A1XA2|_A®B

®I

The elimination rule should capture what we can achieve if we know that
we can achieve both A and B simultaneously from some hypothetical resources
A. We reason as follows: If with A, B, and additional resources A’ we could
achieve goal C, then we could achieve C' from resources A and A’.

AFA®B A wi:A, w:BFC
A xAFC

®Ew17w2

The way we achieve C' is to commit resources A to achieving A and B by the
derivation of the left premiss and then using the remaining resources A’ together
with A and B to achieve C.

As before, we should check that the rules above are locally sound and com-
plete. First, the local reduction

Dy D,
A FA Ao - B

®I € N [D1/w][D2/ws]€

A xAsFA®B A, wi:A, wy:BF C B A'x A x Ay - C

®Ewl7w2
A/ X Al X AQ FC

which requires two substitutions for linear hypotheses and the application of
the substitution principle. We have also used exchange implicitly on the right
hand side: if A’, A1, Ay = C then A’ x A; x Ay F C due to the principle of
exchange. We will use exchange tacitly from now on together with the substitu-
tion principle. The derivation on the right shows that the elimination rules are
not too strong: we cannot obtain more judgments than we used to introduce
the simultaneous conjunction.
For local completeness we have the following expansion.

B 1 0 | —_— W2
SwiAFA L we:B+F B
D ®I
D A+HA®B wwypA,we:BFA® B
—FE RQEW1,W2

AFA®B AFA®B
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24 Intuitionistic Linear Logic

The derivation on the right verifies that the elimination rules are strong enough
so that the simultaneous conjunction can be reconstituted from the parts we
obtain from the elimination rule.

Alternative Conjunction. Assume there are two books b; and by, each of
which costs five dollars. If we had five dollars, we could by each one, but not
both at the same time. It is our choice which one we buy and it therefore is
a form of conjunction. We call it alternative conjunction A& B and pronounce
it “A with B”. It is sometimes also called internal choice. In its introduction
rule, the resources are made available in both premisses, since we have to make
a choice which among A and B we want to achieve.

AFA A+FB
A+ A&B

&l

Consquently, if we have a resource A& B, we can recover either A or B, but not
both simultaneously. Therefore we have two elimination rules.

A+ A&B A+ A&B
—&EL, —— &
AR A A+FB

The local reductions formalize the reasoning above.

D1 Do
AFA A+ B
A+ A&B AFA
—&EL
AFA
D D>
AFA A+ B
A+ A&B A+ B
—— &Er
A+ B

We recognize these rules from intuitionistic natural deduction, where the
context I' is also made available in both premisses. The embedding of intu-
itionistic in linear logic will therefore map intuitionistic conjunction A A B to
alternative conjunction A& B. The expansion is also already familiar.

D D
- A+ AB A+ A&B
9 F, ——— &Fy
A+ AB < F Al A AF B
al
AL A2B
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2.1 Purely Linear Natural Deduction 25

Linear Implication. The linear implication or resource implication internal-
izes the linear hypothetical judgment at the level of propositions. We say A — B
for the goal of achieving B with resource A.

A, w:A+- B
AFA—<B
If we know A — B we can obtain B from a derivation of A.
AFA—oB A'FA
AxA+B

As in the case for simultaneous conjunction, we have to split the resources,
devoting A to achieving A — B and A’ to achieving A.

The local reduction carries out the expected substitution for the linear hy-
pothesis.

Iw

—o

D
A, w:A+F B
A+ A—B A A B AxA'+B
—E
AxA+B

The rules are also locally complete, as witnessed by the local expansion.
D

—_—w
A+FA—B Sw:AFA
D . R
A+A—B B A, w:A+ B
7_0111)
A+A—-B

Unit. The trivial goal which requires no resources is written as 1.

—1I
k1

If we can achieve 1 from some resources A we know that we can consume all
those resources.

AkF1 A’I—C’l

A xAFC
The rules above and the local reduction and expansion can be seen as a case of 0-

ary simultaneous conjunction. In particular, we will see that 1 ® A is equivalent
to A.

E

I £
k1 A'tC N 2
1E B OANFEC
A'+C
D —1I
D N A1 kRl
A1 E 1E
AF1
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26 Intuitionistic Linear Logic

Top. There is also a goal which consumes all resources. It is the unit of
alternative conjunction and follows the laws of intuitionistic truth.

TI
AT

There is no elimination rule for T and consequently no local reduction (it is
trivially locally sound). The local expansion replaces an arbitrary derivation by

the rule above.
D

ART TP OART

TI

Disjunction. The disjunction A ® B (also called external choice) is charac-
terized by two introduction rules.

AFA A+ B
@I,
A+FADB A+-ADB

@lIr

As in the case for intuitionistic disjunction, we therefore have to distinguish two
cases when we know that we can achieve A & B.

A+FADB A wiAFC A we:BFC
A xAFC

@Ewl ;W2

Note that resources A’ appear in both branches, since only one of those two
derivations will actually be used to achieve C, depending on the derivation of
A @ B. This can be seen from the local reductions.

D
Al A
- @IL 51 52 — [D/wl]é'l
A+-A®B A wiAFC A, wye:B+C BE AN xAFC
@Ewl W2
AN xAFC
D
A+-B
- @IL 51 52 — [D/UJQ]SQ
A+-A®B A wiAFC A, wye:B+C BE AN xAFC
@Ewl W2
AN xAFC

The local expansion is also familiar from intuitionistic disjunction.

— W1 — W2
SwpAE A we:B+FB
D D VIL, VIR
AFAGB =—FE A+HA®B SwitAFA® B wwy:BHA®B
VE®,w2
A-A®B
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2.1 Purely Linear Natural Deduction 27

Impossibility. The impossibility 0 is the case of a disjunction between zero
alternatives and the unit of @. There is no introduction rule. In the elimination
rule we have to consider no branches.

A0
A'xAFC

There is no local reduction, since there is no introduction rule. However, as in
the case of falsehood in intuitionistic logic, we have a local expansion.

D
b Ao
Ao N

Universal Quantification. Quantifiers do not interact much with linearity,
since we make no restrictions on occurrences of the parameter. They are in-
cluded here for reference, but we omit the local reductions and expansion which
are given in Section 1.1.

At [a/z]A At Ve, A

a

Y
AFVz. A AF[t/z]A

Existential Quantification. The idea remains the same as in the intuition-
istic case, except that we have to split resources among the premisses of the
elimination rule.

AF[t/z]A AFdz. A A w:la/z]AF C
—I JE»w
AF3dz. A A xAFC

We omit the local reduction and expansion, which are trivial modification of
the rules in Section 1.1.

This concludes the purely linear operators. Negation and another version of
falsehood are postponed to Section 77, since they may be formally definable, but
their interpretation is somewhat questionable in the context we have established
so far.

The connectives we have introduced may be classified as to whether the
resources are split among the premisses or distributed to the premisses. Con-
nectives of the former kind are called multiplicative, the latter additive. For
example, we might refer to simultaneous conjunction also as multiplicative con-
junction and to alternative conjunction as additive conjunction. When we line
up the operators against each other, we notice some gaps. For example, there
seems to be only a multiplicative implication, but no additive implication. Du-
ally, there seems to be only an additive disjunction, but no multiplicative dis-
junction. This is not an accident and is pursued further in Exercise ?77.
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28 Intuitionistic Linear Logic

2.2 Intuitionistic Hypotheses in Linear Logic

So far, the main judgment permits only linear hypotheses. This means that
the logic is too weak to embed intuitionistic logic, and we have failed so far to
design a true extension. We now generalize the main judgment to

INARA

which we read as “wunder unrestricted hypotheses I' with resources A we can
achieve goal A”. The hypotheses I' are intended to satisfy all the structural
properties of Section 1.3, that is, exchange, weakening, contraction, and substi-
tution. Substitution is not completely straightforward, since we have to consider
the interaction with linear hypotheses. It now reads as follows:

If (T, u:A,T2); AL C and I'y;-+ A then (I'1,T); AFC.

It is critical to understand why the derivation of F A may not use any linear
hypotheses. This is because in the construction of the resulting derivation of
F C we substitute the derivation of + A for any use of the hypothesis u:A in
the given derivation of C. But this hypothesis u:A is unrestricted and my be
used many times. The substitution could therefore replicate any resources used
in the derivation of + A, violating the basic principle that resources are used
exactly once.

For a similar reason, we can only use an unrestricted hypothesis if there are
no resources (which otherwise would not be used as required).

u
(r17 U’:A7 F2)7 A

All the other rules we presented for pure linear logic are extended by adding
the unrestricted context to premisses and conclusion (see the rule summary on
page 30). We now reflect the unrestricted hypotheses in the language of propo-
sition by reintroducing the corresponding operator of intuitionistic implication.

Intuitionistic Implication. The intuistionistic implication is the familiar
one, where we have to be careful in the elimination rule to capture the restriction
on the substitution property.

(T,w:A); A+ B Y INAFADB T;-

i FA
DI
I'NAFADB I'AFB

DE

The local reduction uses the substitution principle for unrestricted hypotheses.
D
(T,w:A); A+FB
ST & N [D/u]E
FADB I;-FA B I;AFB

DE

FB
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2.2 Intuitionistic Hypotheses in Linear Logic 29

In Exercise 77 you are asked to show that the rules would be locally unsound
(that is, local reduction is not possible), if the second premiss in the elimination
rule would be allowed to depend on linear hypotheses. The local expansion is
simpler.

D _u
(T,w:A);A-ADB (T,uw:A);-FHA
D E
=5 D)
INAFADB (T,w:A); AFB
—DI*
I'NAFADB

Notice that we weaken D with the added (and unused) hypothesis u, which does
not affect the structure of the derivation. This is not visible in the formulation
of the local reduction in Section 1.1, since we did not make the hypotheses
explicit.

“Of Course” Modality. Girard [Gir87] observed that there is an even sim-
pler way to connect intuitionistic and linear logic by internalizing the notion
of intuitionistic truth via a modal operator !A he called “of course A” (often
pronounced “bang A)”. A formula is intuitionistically true if it can be derived
without the use of any restricted resources.

I'FA
—
;- 1A

The elimination rule states that if we can derive F !A than we are allowed to
use A as an unrestricted hypothesis.

IARIA (T, uw:A); A’ C
1B
[ (A'"xA)FC

This pair of rules is locally sound and complete.

D
I HA
- E N [D/u]E
I; 1A (T, u:A); A"+ C E AR C
IE%
A FC
A Au
T u:A); -+
D D —( wd) I
T'Akl4 —°F IARIA (T, uw:A);-H!A
’ IEv
I;ARIA

Using the of course modality, one can define the intuitionstic implication A D B
as (1A) — B. It was this observation which gave rise to Girard’s development of
linear logic. Under this interpretation, the introduction and elimination rules
for intuitionistic implication are derived rules of inference (see Exercise 77).
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30 Intuitionistic Linear Logic

We now summarize the rules of intuitionistic linear logic. A very simi-
lar calculus was developed and analyzed in the categorical context by Bar-
ber [Bar96]. It differs from more traditional treatments by Abramsky [Abr93],
Troelstra [Tro93], Bierman [Bie94] and Albrecht et al. [ABCJ94] in that struc-
tural rules remain completely implicit. The logic we consider here comprises
the following logical operators.

Formulas A = P Atoms
| Aj — A | A1 ®@ Ay |1 Multiplicatives
| Al&AQ | T | A1 D A2 | 0 Additives
|Ve. A|Jz. A Quantifiers
|ADB|!A Exponentials

It is instructive to compare the rules below with those of intuitionistic natural
deduction on page 13, keeping in mind that hypotheses were left implicit in that
formulation.

Hypotheses.
_—w U
I;(,wA) - A (T1,u:A, Ty); -+ A
Multiplicative Connectives.
A FA ;A B I'NAFA®B T; (A, wi:A,we:B) = C
®I @EwLw2
I;(A,w:A) B I'NAFA—B ;A FA
INAFA—B I (AxAYEB
IAR1L ;A FC
11
I;-F1 [ (A" xA)FC
Additive Connectives.
I';A+- A&B B
. . — &KL
;AR A F,AI—B&I T AF A
I'; A+ A&B I AL AB
— &kR
I"AFB

— TI
IART no T elimination

Draft of January 20, 1998



2.2 Intuitionistic Hypotheses in Linear Logic

31

INARA I
— By . N . A .
. ’
I:AFB I;(A'xA)RC
— @Iy
INAFA® B
IARO
— 0k
no 0 introduction  T; (A" x A)FC
Quantifiers.
AF [a/x]A I ARVz. A
—VI® —VE
IARVZ. A ;AR [t/z]A
;AR [t/z]A ARGz A T (A" wia/z)A) F C
— I JE®»w
ARz A I (A"x AR C
Exponentials.
(T,w:A);A+B I'NAFADB ;A
— DI" DE
I'TAFADB I;ARB
I;-FA I;ARIA (T, uw:A); A’ C
1T E*
r;-H1A [ (A" x A)FC
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