
Computer Science 15–212–ML

Midterm Examination

October 1, 1998

Sample Solution

Instructions

• This is a closed-notes, closed-book, closed-notebook (computer) examination.

• There are 14 pages in this examination, including three worksheets.

• The examination consists of three (3) problems worth a total of 100 points, plus two extra-
credit problems worth a total of 30 points. The extra credit will be recorded separately; so
you should finish all of the regular questions before attempting the extra credit.

• Read each problem completely before attempting to solve any part.

• You do not need to re-state the given invariants, but you should annotate auxiliary functions
you define. Your answers should be correct, simple and clean, and they should take advantage
of the given invariants. In other respects, your functions do not need to be particularly
efficient, and they do not need to be tail-recursive.

• Write your answers legibly in the space provided on the examination sheet. If you use the
back of a sheet, indicate clearly that you have done so on the front.

• Write your name and Andrew id in the space provided at the top of this page, and write your
name at the top of each page in the space provided.

• The worksheets attached to the end of this examination for your own use; they will not be
used in grading.

Grading

Problem 1 2 3 Total Extra Credit

Score

Maximum 35 35 30 100 30

1

Sample Solution 2

1 Induction and Recursion [35 points]

We define binary trees having data only at the leaves by

datatype ’a tree = Leaf of ’a | Node of ’a tree * ’a tree

We can uniquely identify a subtree of a binary tree by specifying a path from the root to the
subtree: at each step during the top-down traversal we are instructed that we have arrived (H),
that we have to go left (L) or that we have to go right (R). We represent paths by

datatype path = H | L of path | R of path

We call a path p valid in a tree t if the path designates some subtree of t. We also refer to a
valid path as the address of a subtree or node. For example, the root of any tree has address H,
the left subtree has address L(H) and the right subtree has address R(H). The addresses L(H) and
R(H) are not valid in a tree Leaf(x).

1.1 [10 points] Write a function

val subtree : ’a tree * path -> ’a tree

where subtree (t, p) returns the subtree in t with address p, assuming the invariant that p is
valid in t.

fun subtree (t, H) = t

| subtree (Node(l, r), L(p)) = subtree (l, p)

| subtree (Node(l, r), R(p)) = subtree (r, p)

Sample Solution 3

1.2 [10 points] Write a function

val replace : ’a tree * path * ’a tree -> ’a tree

where replace (t, p, s) returns the tree which results from replacing that subtree in t with
address p by s. You may assume that p is valid in t.

fun replace (t, H, s) = s

| replace (Node (l, r), L (p), s) = Node (replace (l, p, s), r)

| replace (Node (l, r), R (p), s) = Node (l, replace (r, p, s))

Sample Solution 4

1.3 [15 points] Let the concatenation of two paths be defined by the following function.

fun concat (H, q) = q

| concat (L(p), q) = L(concat (p, q))

| concat (R(p), q) = R(concat (p, q))

Prove that

subtree (replace (t, p, s), concat (p, q)) ∼= subtree (s, q)

assuming that p is valid in t and q is valid in s. You may assume, without proof, that concat

always terminates. Make sure to clearly state the induction principle you use and mark the places
where you use the induction hypotheses and the validity assumptions about p and q (in case you
need them).

We proceed by induction on the structure of p.

Base Case: p = H. Then

subtree (replace (t, H, s), concat (H, q))

=⇒ subtree (s, concat (H, q))

=⇒ subtree (s, q)

Induction Step: p = L(p′). (The case for p = R(p′) is symmetric).

Since p is valid in t, t must have the form Node(l,r) where p′ is valid in l. We
compute

subtree (replace (Node (l, r), L(p′), s), concat (L(p′), q))

=⇒ subtree (Node (replace (l, p′, s), r), concat (L(p′), q))

=⇒ subtree (Node (l′, r), concat (L(p′), q))

where replace (l, p′, s) =⇒ l′ since p′ valid in l
=⇒ subtree (Node (l′, r), L (concat (p′, q)))

=⇒ subtree (Node (l′, r), L (p′′))
where concat(p′, q) =⇒ p′′

=⇒ subtree (l′, p′′)
∼= subtree (replace (l, p′, s), concat (p′, q))

by definition of l′ and p′′

∼= subtree (s, q)

by induction hypothesis on l

Sample Solution 5

2 Continuations and Higher-Order Functions
[35 points + 20 points extra credit]

Given a tree as introduced in the previous problem, with the data at the leaves, suppose that we are
interested in a function that determines the address of the leftmost leaf satisfying a given predicate
pred. That is, the function should search through the tree to find the leftmost leaf whose datum d

satisfies pred(d) =⇒ true, and return the path from the root of the tree to that leaf. If there is
no leaf satisfying the predicate, then this should be indicated. So, we’d like to define a function

val find : (’a -> bool) -> ’a tree -> path option

This problem asks you to implement such a function using continuations.

2.1 [15 points] Write a function

val find’ : (’a -> bool) -> ’a tree -> (path -> ’b) -> (unit -> ’b) -> ’b

satisfying the following specification:

1. find’ pred t sc fc =⇒ sc (p)

if p is a path to the leftmost datum in t satisfying predicate pred,

2. find’ pred t sc fc =⇒ fc ()

if there is no datum in t satisfying pred.

You may assume pred always terminates. In the language of functional programming, sc is called a
success continuation and fc a failure continuation. (Recall that unit is the type of the empty tuple
(); for example, the expression (fn () => 1) has type unit -> int.)

fun find’ pred (Leaf(d)) sc fc =

if pred(d) then sc H else fc ()

| find’ pred (Node(l,r)) sc fc =

find pred l (fn p => sc (L (p)))

(fn () => find pred r (fn p => sc (R (p))) fc)

Sample Solution 6

2.2 [10 points] Using the function find’, write a function

val find : (’a -> bool) -> ’a tree -> path option

satisfying the following specification:

1. find pred t =⇒ SOME(p)

if p is the path to the leftmost datum in t satisfying predicate pred,

2. find pred t =⇒ NONE

if there is no datum in t satisfying pred.

fun find pred t = find’ pred t (fn p => SOME(p)) (fn () => NONE)

Sample Solution 7

2.3 [10 points] Prove the correctness of your function find assuming the correctness of find’.

The proof is by cases.

Case: Assume p is the path to the leftmost datum in t satisfying pred. By correctness
of find’,

find’ pred t (fn p => SOME(p)) (fn () => NONE)

=⇒ (fn p => SOME p) p

=⇒ SOME(p)

Case: Assume there is no datum in t satisfying pred. Again, by correctness of find’,

find’ pred t (fn p => SOME(p)) (fn () => NONE)

=⇒ (fn () => NONE) ()

=⇒ NONE

Sample Solution 8

2.4 [20 points extra credit] Prove the correctness of the function find’.

The proof proceeds by induction on the structure of t.

Case: t = Leaf(d). If pred (d) =⇒ true then find’ pred (Leaf(d)) sc fc =⇒
sc (H), which is what we needed to show.

If pred (d) =⇒ false then find’ pred (Leaf(d)) sc fc =⇒ fc (), which was
required for this case.

Case: t = Node(l,r). There are three subcases to consider: l contains a datum satisfy-
ing pred, l does not contain such a datum, but r does, and neither l nor r contain
a datum satisfying pred.

Subcase: l contains a datum d satisfying pred with address p′. Then

find’ pred (Node(l,r)) sc fc
=⇒ find’ pred l (fn p => sc (L(p)))

(fn () => find’ pred r (fn p => sc (R(p))) fc)
=⇒ (fn p => sc (L(p))) p′

by induction hypothesis on l
=⇒ sc (L(p′))

and L(p′) is indeed the path to d in t.

Subcase: l contains no datum satisfying pred, but r contains such a datum d with
address p′. Then

find’ pred (Node(l,r)) sc fc
=⇒ find’ pred l (fn p => sc (L(p)))

(fn () => find’ pred r (fn p => sc (R(p))) fc)
=⇒ (fn () => find’ pred r (fn p => sc (R(p))) fc) ()

by induction hypothesis on l
=⇒ find’ pred r (fn p => sc (R(p))) fc
=⇒ sc (R(p′))

by induction hypothesis on r

and R(p′) is indeed the path to d in t.

Subcase: Neither l nor r contain a datum satisfying pred. Then

find’ pred (Node(l,r)) sc fc
=⇒ find’ pred l (fn p => sc (L(p)))

(fn () => find’ pred r (fn p => sc (R(p))) fc)
=⇒ (fn () => find’ pred r (fn p => sc (R(p))) fc) ()

by induction hypothesis on l
=⇒ find’ pred r (fn p => sc (R(p))) fc
=⇒ fc ()

by induction hypothesis on r

which is the desired result in this case.

Sample Solution 9

3 Data Abstraction and Representation Invariants
[30 points + 10 points extra credit]

Dyadic numbers are rational numbers such as 0, 1, 53
4 , and − 17

210 that can be written in the form
a
b where b is a power of two. This problem will work with the following signature for representing
dyadic numbers:

signature DYADIC =

sig

type number

val zero : number

val one : number

val half : number

val neg : number -> number (* negation of a number *)

val add : number * number -> number (* sum of two numbers *)

val mul : number * number -> number (* product of two numbers *)

val eq : number * number -> bool (* equal to *)

end

Each of the operations in the signature has the obvious specification. Dyadic numbers are useful
in symbolic computation, since even very small numbers have compact representations.

3.1 [5 points] Choose a representation for dyadic numbers by defining the type number, and
stating any representation invariants. Your implementation should be able to represent dyadic
numbers as small as 2−N , where N is the largest integer that can be represented by the type int.

type number = int * int

We represent a
b as a pair of integers (k,n) such that

1. a
b = k

2n ,

2. k is odd if n > 1,

3. n ≥ 0.

Sample Solution 10

3.2 [15 points] Write the code for a structure named Dyadic that matches the signature DYADIC,
by defining the appropriate values, using the type you defined in the previous question. Invariants
for auxiliary functions should be clearly stated.

structure Dyadic :> DYADIC =

struct

(* cancel (k,n) = (k’,n’) where n >= 0,

(k’,n’) satisfies representation invariants *)

fun cancel (0, n) = (0, 0)

| cancel (k, 0) = (k, 0)

| cancel (k, n) =

if k mod 2 = 0 then cancel (k div 2, n-1) else (k, n)

(* pow2 (n) = 2^n for n >= 0 *)

fun pow2 (0) = 1

| pow2 (n) = 2 * pow2 (n-1)

type number = int * int

val zero = (0, 0)

val one = (1, 0)

val half = (1, 1)

fun neg (k, n):number = (~k, n)

fun add ((k1, n1), (k2, n2)) = cancel (k1*pow2(n2)+k2*pow2(n1), n1+n2)

fun mul ((0,),) = zero

| mul (, (0,)) = zero

| mul ((k1, n1), (k2, n2)) = (k1*k2, n1+n2)

fun eq (d1, d2) = (d1 = d2)

end

Sample Solution 11

3.3 [10 points] Given a correct implementation Dyadic :> DYADIC, which of the following ex-
pressions and declarations are well-typed? If the expression or declaration is not well-typed, mark
its box with an X; if it is well-typed, leave the box empty.

X val a : Dyadic.number = 0

val b : Dyadic.number = Dyadic.add(Dyadic.zero, Dyadic.one)

X val c : bool = (Dyadic.one = Dyadic.add(Dyadic.half, Dyadic.half))

Dyadic.eq(Dyadic.add(Dyadic.one, Dyadic.neg(Dyadic.one)), Dyadic.zero)

datatype interval = Empty | Interval of Dyadic.number * Dyadic.number

fun f 1 = Dyadic.half | f n = Dyadic.mul(f 1, f (n-1))

(fn x => (Dyadic.eq x = true))

structure D : DYADIC = Dyadic

structure D :> DYADIC = Dyadic

X false orelse (Dyadic.zero = Dyadic.one)

3.4 [10 points extra credit] Given a correct implementation Dyadic :> DYADIC, is it possible
to write a function

val dyadic : int * int -> Dyadic.number option

that takes a rational number a
b represented as a pair (a, b) in cancelled form and returns an equiv-

alent dyadic number SOME d, if one exists, and returns NONE otherwise?

Write such a function, if possible, or explain why such a function cannot be defined.

Yes, such a function can be defined (see next page).

Sample Solution 12

local

exception Fail

(* dyadic’ (a,b), a/b cancelled, a >= 0, b >= 0 *)

fun dyadic’ (0,) = Dyadic.zero

| dyadic’ (a, 1) = Dyadic.add (Dyadic.one, dyadic’ (a-1, 1))

| dyadic’ (a, b) =

if b mod 2 = 0

then Dyadic.mul (Dyadic.half, dyadic’ (a, b div 2))

else raise Fail

in

fun dyadic (a,b) =

SOME (case (a >= 0, b >= 0)

of (true, true) => dyadic’ (a, b)

| (false, true) => Dyadic.neg (dyadic’ (~a, b))

| (true, false) => Dyadic.neg (dyadic’ (a, ~b))

| (false, false) => dyadic’ (~a, ~b))

handle Fail => NONE

end

