
Lecture Notes on
Truth is Ephemeral

15-836: Substructural Logics
Frank Pfenning

Lecture 1
August 29, 2023

1 Introduction

When studying logic in an introductory course we are used to thinking of truth as
a mathematical concept, something that is objective and unalterable like the laws
of physics. Truth is something we may be able to uncover and understand, but not
something we can create. In this course I will try to convince you otherwise.

First, truth is ephemeral. At this point in lecture I held a piece of chalk. Direct
evidence confirmed: “Frank holds a piece of chalk.” After I put it down on the table in
front of me this proposition was no longer true. Hence, evidently, truth is ephemeral.
Substructural logics capture and analyze this phenomenon, which is of fundamen-
tal importance in computer science. For example, while executing a program in an
imperative language a variable x may hold the value 5. That’s an ephemeral truth,
because after assigning x the value 7 it is no longer true—instead, the value of x is
then 7.

Second, certain truths are persistent. For example, given the plethora of proofs,
it is difficult to deny the Pythagorean Theorem. Or, by the very nature of implica-
tion, A always implies A for any proposition A. Substructural logics account for
ephemeral as well as persistent truths and therefore generalize rather than replace
“traditional” logics that study persistent truth. In the context of this course we
call such logics structural. The origin of the terms structural and substructural will
become clear in the course of this lecture.

Logic is the study of the laws of valid inference, so we start the course in the
same way. In today’s lecture we avoid logical connectives entirely, just using rules
of inference. It turns out that we can use inference rules to describe some algo-
rithms that can be seen as performing logical inferences, which is one of the many
connections between logic and computer science.

LECTURE NOTES AUGUST 29, 2023

Truth is Ephemeral L1.2

2 Structural Inference

Consider a relation edge(x, y) between vertices x and y in a directed graph. We
would like to define when there is a path from x to y. Mathematically, we might
say that the path relation is the transitive closure of the edge relation. We define
this with two rules of inference:

edge(x, y)

path(x, y)
Edge

path(x, y) path(y, z)

path(x, z)
Trans

Some terminology: the propositions above the line in a rule of inference are called
premises, the propositions below conclusions. The variables in a rule (here x, y, and
z) are called schematic variables.

The process of inference starts from a given state of knowledge and deduces
additional propositions that must be true, according to the rules of inference. We
say we apply a rule of inference, given a particular instantiation of the schematic
variables.

Here is a small example: our initial state of knowledge is edge(a, b), edge(b, c),
edge(b, d) for some vertices a, b, c, and d. We apply all possible inferences at each
stage, but if a conclusion is already in our database of facts we don’t write it down
again. The justifications are just the inference rules applied to the labels of all the
premises.

(1) edge(a, b) given
(2) edge(b, c) given
(3) edge(b, d) given
(4) path(a, b) Edge(1)
(5) path(b, c) Edge(2)
(6) path(b, d) Edge(3)

(7) path(a, c) Trans(4, 5)
(8) path(a, d) Trans(4, 6)

At the last stage we have reached saturation: any way we can apply inference rules
will result in conclusions we already know. Because we think of the rules as defining
the propositions involved (specifically path(x, y) in this example) we stop inference
at this point. If we want to know if there is a path we can just look it up on this
final, saturated state. For example, there is a path from a to d, but there is no path
from b to a.

A few remarks about the process of inference. In general, it will not be the case
that given some initial facts we reach saturation. For example, rule that allows us
to conclude that nat(s(x)) if nat(x) would lead to an infinite set of facts if 0 is also
known to be a natural number. In our example, the size of the database is bounded
by 2n2 where n is the number of vertices.

LECTURE NOTES AUGUST 29, 2023

Truth is Ephemeral L1.3

Secondly, the justification gives us a proof of each derived fact. For example,
the proof of path(a, d) would be

edge(a, b)

path(a, b)
Edge

edge(b, d)

path(b, d)
Edge

path(a, d)
Trans

Such a proof can also be expressed as a term, thinking of the inference rule as a
term constructor. In this example, this might be written as

Trans(Edge(1),Edge(3))

substituting the proof terms for (4) and (6).
In general, a proposition may have multiple different proofs, including infinitely

many. For example, if we add an edge from b to a, then we can cycle from a to a
as many times as we wish. It is therefore important that we do not take the proofs
into account when we decide saturation: we want a finite number of facts (each
with at least one proof) but not necessarily a finite number of proofs.

We also observe that the order in which we perform inferences is nondetermin-
istic but entirely irrelevant: the saturated state will always be the same. This is an
example of so-called don’t-care nondeterminism. If we tracked proofs, though, they
could be different based on the order in which we performed the inferences.

Because (a) the order of the propositions in a state does not matter and (b)
knowing a fact once is just as good as “knowing it twice”, states form a set. Ex-
pressed as two laws: P,Q = Q,P and P, P = P . Because we view this as an equal-
ity between states, it can be applied anywhere in a state. We call these properties
exchange and contraction, respectively, although the latter may be called idempotence
in algebra.

Datalog (see, for example, Maier et al. [2018] or Green et al. [2012]) is a pro-
gramming language based on structural inference with some additional features
such as stratified negation and constraints. Applications in computer science in-
clude program analysis [Whaley et al., 2005, Smaragdakis and Bravenboer, 2010] and
algorithms such as subtyping [DeYoung et al., 2023]. An interesting sidebar is that
there are some meta-complexity theorems that allows us to read off the complexity
of algorithms from the inference rules that define the algorithms [Ganzinger and
McAllester, 2001, 2002].

Because it is difficult to express many common algorithms and programming
idioms just by inference, we see structural inference primarily as a way to express
algorithms that can then be implemented as a library in a language with a more
complete set of constructs. Our small and unrealistic implementation as part of
Assignment 1 is a tiny example of such a library.

LECTURE NOTES AUGUST 29, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//assignments/hw1.zip

Truth is Ephemeral L1.4

3 Linear Inference

Technically, linear inference arises from structural inference by denying contrac-
tion while keeping exchange. This means that the state becomes a multiset (or bag)
rather than being a set. Even more importantly, when applying an inference rule
we remove the premises from a state and then add in the conclusions.

As a first example we consider coin exchange: a quarter can be exchanged for
two dimes and a nickel, and a dime can be exchanged for two nickels. We can also
do the reverse exchange.

q

d d n
Q

d d n

q
Q

d

n n
D

n n

d
D

The first and third rules exemplify something new, namely rules with multiple con-
clusions. We cannot replace them with multiple rules, each with a single conclusion
since the premises will be consumed from the state during rule application.

Linear inference represents a change of state. Below we show the whole state
and all results of possible inferences. As an example, in the first step we replace q
by d, d, n, applying the rule Q. The additional n is just carried over.

(1) q, n given
(2) d, d, n, n Q(1)

(3) d, n, n, n, n D(2)

(4) d, d, d D(2)

(5) n, n, n, n, n, n D(3)

Note that the proof notation is somewhat approximate now: it only says which rule
is applied to which line, but the premises of a rule match only a portion of the state
while carrying over the remainder.

At the end of this process the application of any rule to any state will result
only in a state already in our collection. We have saturated the set of possible
states, rather than arrived at a single saturated state. It should be clear that termi-
nation must be redefined in this manner because inference does not monotonically
increase our knowledge. Furthermore, just as for structural inference, termination
is not guaranteed in general. For example, if we added a rule that allowed us to
conclude d, d from d we could produce arbitrarily many dimes starting from any
state with at least one.

We accomplish the change of state at the technical level by denying the struc-
tural rule of contraction, but we keep the rule of exchange. Linear inference is
therefore an example of substructural inference.

At first one might think that the right way to handle the “holding-the-chalk”
example from the introduction by using a temporal logic. That is, at some time t I am
holding the chalk, and at some time t+ δ I no longer hold the chalk. And, indeed,

LECTURE NOTES AUGUST 29, 2023

Truth is Ephemeral L1.5

temporal logic has a significant role both in philosophy and computer science. For
capturing a change of state (like putting down a piece of chalk, or assigning to a
variable) it has a severe drawback: it suffers from the frame problem. When I put
down my piece of chalk in lecture, all of you remained in your seats. When we
assign to a single variable, all the other variables in the program remain unchanged.
So we would also have to say “nothing else changes”, but it is difficult to circumscribe
the meaning of “nothing else”. It depends, and is therefore inherently anti-modular.
If we add another variable to our program, for example, suddenly “nothing else”
would have to include the new variable, even if in some sense it has nothing to do
with our particular assignment.

Substructural inference provides an intrinsic solution to the frame problem
since the premises of a rule are always matched against a portion of the state. Inher-
ently, no matter what else we add, only the matched portion of the state changes
and the remainder is carried over. Therefore, a priori, substructural logic is the
better choice for a controlled change of state. Temporal logic is suitable when,
intrinsically, many things happen in parallel (e.g., in a logic circuit) or when we
want to reason about temporal aspects of a computation that is described by state
change. Linear inference has its roots in linear logic [Girard, 1987], although the
state-changing aspect was formulated perhaps most explicitly in multiset rewrit-
ing [Cervesato et al., 2000, Cervesato, 2000, Cervesato and Scedrov, 2009] and ex-
tended in the Concurrent Logical Framework (CLF) [Watkins et al., 2002, Cervesato
et al., 2002, Schack-Nielsen and Schürmann, 2008, Schack-Nielsen, 2011].

4 Ordered Inference

We can go one step further in the exploration of substructural inference by also re-
moving exchange. This means the state is now just a sequence of propositions. We
write ordered states without a comma to remind ourselves of the lack of exchange.
Algebraically, the state is a monoid, the unit element being the empty state.

The example we start with is recognizing a word consisting of matching paren-
theses. The constituents of the state are left and right parentheses. We have just
one rule of inference

()

·
Cancel

This is an inference rule with zero conclusions, something that would be entirely
pointless in structural inference but makes sense for substructural inference. We
run through an example, but we don’t bother showing the inference rule that was

LECTURE NOTES AUGUST 29, 2023

Truth is Ephemeral L1.6

applied because there is only one.

(1) () (()) () given
(2) (()) () from (1)
(3) () () () from (1)
(4) () (()) from (1)

(5) () () from (2), (3) [in 3 ways], or (4)
(6) (()) from (2) or (4)
(7) () from (5) [in 2 ways] or (6)
(8) from (7)

Despite the suggestive way we have written the states to make them easier to relate,
note that the exact state (5) (namely, () ()) can be deduced in 5 different ways but
we only list it once.

We call the final state (8) quiescent because no inference rule can be applied to
it.

The claim is that given an ordered state consisting of left and right parentheses,
we can deduce the empty state if and only if the parentheses match in the given
order. In particular, if we start from a state where the parentheses don’t match, we
cannot reach the empty state. For example:

(1)) () (given
(2)) (from (1)

Here, we are stuck after one inference can cannot deduce anything new. In other
words, the final state (2) is quiescent but not empty.

We observe that in this example we don’t actually need to explore all reachable
states. We can arbitrarily apply cancellation (if possible) and then continue from
the resulting state until we reach a quiescent state. We call this don’t-care nonde-
terminism: the rules could be applied in multiple ways, but it is correct to pick an
arbitrary one. This is sufficient to determine if the initial state represents matching
parentheses.

The rules themselves don’t contain the assumptions about the initial state, the
way the rules are to be applied (in a don’t-care nondeterministic manner until qui-
escent or generating all reachable states), or how to interpret the final state(s). So
we should always give this information explicitly.

1. We are given an initial ordered state consisting of left ‘(’ and right ‘)’ paren-
theses.

2. We apply cancellation in a don’t-care nondeterministic manner until we reach
a quiescent state.

3. The quiescent state is empty if and only if the initial state had matching paren-
theses.

LECTURE NOTES AUGUST 29, 2023

Truth is Ephemeral L1.7

We say the problem representation by (structural, linear, or ordered) inference is
adequate if we can prove, at the meta-level the third part, given the circumstances
of the first and second parts.

Here is what we might say for the coin exchange:

1. We are given an initial linear state consisting of quarters (‘q’), dimes (‘d’) and
nickels (‘n’).

2. We apply the rules in don’t-know nondeterministic manner until we have de-
duced all reachable states.

3. A state is reachable if and only if it has the same total monetary value as the
initial state and consists only of quarters, dimes, and nickels.

5 Binary Increment as Ordered Inference

We explore incrementing a binary number as a second example of ordered infer-
ence. We have propositions 0 (bit 0), 1 (bit 1), and ϵ (end of number, not to be
confused with the empty word) to represent a natural number in binary form. For
example, the number 6 would be represented as the state ϵ 1 1 0. Furthermore, we
have the proposition inc which is meant to increment the binary number to its left.
We capture this meaning with the following rules:

0 inc

1
inc0

1 inc

inc 0
inc1

ϵ inc

ϵ 1
incϵ

In the inc1 rule, the increment in the conclusion represents the carry. We run a small
example, incrementing the number 5 by 2 to obtain 7. Each line is inferred from the
preceding one.

(1) ϵ 1 0 1 inc inc given
(2) ϵ 1 0 inc 0 inc by inc1
(3) ϵ 1 1 0 inc by inc0
(4) ϵ 1 1 1 by inc0

In state (2) we had a choice between applying inc0 to the first or second occurrence
of inc, and we arbitrarily picked the first one. Either way would have led to the
same quiescent state at the end. We express adequacy using regular expression
notation to capture the permissible forms of the ordered state.

1. We are given an initial state in the form ϵ (0 | 1)∗ inc∗.

2. We apply rules in a don’t-care nondeterministic manner until we reach qui-
escence. Each intermediate state will have the form ϵ (0 | 1 | inc)∗.

3. We have computed the output in the form of a final state ϵ (0 | 1)∗ when we
have reached quiescence.

LECTURE NOTES AUGUST 29, 2023

Truth is Ephemeral L1.8

6 Blocks World as Linear Inference

As a final example in today’s lecture we present a version of the classic blocks
world planning problem as linear inference. We have a robot hand that can hold a
single block and a table with possible severals stacks of labeled blocks. The robot
hand can pick up a block from the top of a stack and put it down on top of another
stack or an empty spot on the table. We can either explore all reachable states, or
create a plan to reach a particular goal state.

We start with the following propositions.

• empty (the robot hand is empty)

• holds(x) (the robot hand holds block x)

• on(x, y) (block x is on top of block y)

A plausible first attempt at a rule for picking up a block would be to state that we
can pick up a block x if (a) the hand is empty, and (b) is no other block on top of it.
In addition, if x is on some other block y then after we pick up x it is no longer on
y so we need to remove that fact from the state.

empty ¬∃z. on(z, x) on(x, y)

holds(x)
pickup?

The difficulty with this rule is that the middle premise is intended to check a con-
dition on the state without actually altering the state. For one, we don’t have the
means to express this since we didn’t want to use logical connectives (like nega-
tion and the existential quantifier) in this lecture. Perhaps even more troubling is
that it would violate our fundamental definition of linear inference which allows
us to match the premises against an arbitrary portion of the state and carry over the
remainder unchanged. But if have a state such as empty, on(b, table), on(a, b) then
adding on(c, a) would suddenly render the rule inapplicable.

The solution is to express the condition that allows us to pick up a block in a
positive way, as another proposition. We then need to maintain the new proposi-
tion as part of the inference rules. Here, we add clear(x) to express that block x is
clear, that is, there is nothing on top of x. This should be true exactly if there does
not exist a z such that z is on x. The rule then becomes

empty clear(x) on(x, y)

holds(x) clear(y)
pickup

Notice that application of this rule will remove clear(x) from the state (the hand
now holds it) and adds clear(y) (x is no longer on top of y).

LECTURE NOTES AUGUST 29, 2023

Truth is Ephemeral L1.9

We can think of the table itself as a pseudo-block, and mark the empty slots on
the table as clear. For example, if there are two spots on the table and on one we
have the stack a on top of b we would represent this as the state

empty, clear(a), on(a, b), on(b, table), clear(table)

In this state we can only pick up a, which would get us to the state

holds(a), clear(b), on(b, table), clear(table)

We can not pick up the table (the pseudo-block) because there is no proposition
on(table, x). Putting down a block is just the inverse of the rule for picking one up.

holds(x) clear(y)

empty clear(x) on(x, y)
putdown

At this point it should be clear that we can easily infer all the reachable state from
a valid initial state. But what is a valid initial state? This is not so easy to char-
acterize. For example, we don’t want to allow “circular stacks” with on(x, y) and
also on(y, x). We don’t want to allow the table to be on anything. We don’t want
to allow two different blocks to have the same label a. We don’t want the hand to
be empty and hold a block at the same time, because it would mean we really have
two hands. A general technique for describing valid linear states (including valid
initial states, which is the same in this case) is via generative grammars [Simmons,
2012], which are beyond the scope of the present lecture, but which we may return
to in a future lecture. Here we contend ourselves by saying that the state should
consist of distinct blocks and should be “physically possible”.

1. We are given a linear initial state consisting of distinct blocks and a finite
number of empty spots on the table clear(table) in a physically possible con-
figuration.

2. Inference rules are applied in a don’t-know nondeterministic way.

3. A state is reachable by robot actions from the initial state if and only if we can
reach it via linear inference.

Similar to the example of graph reachability, the actual plan for achieving a goal
state is encoded in its proof. We will return to the notion of proof at the beginning
of the next lecture.

7 Summary

We have introduced three forms of logical inference, without using any notion of
logical connective.

LECTURE NOTES AUGUST 29, 2023

Truth is Ephemeral L1.10

Structural inference. States are sets of propositions representing the current state
of knowledge that grows monotonically during inference. A state is saturated
if any inference only deduces facts we already know. Some algorithms can
be expressed as sets of inferences rules that must saturate, applying rules in a
don’t-care nondeterministic manner. It is called structural because states are
identified up to the structural rules of exchange and contraction.

Linear inference. States are multisets of propositions. Linear inference consumes
the premises of a rule and adds its conclusions, thereby describing a change of
state. We can perform don’t-know nondeterministic inferences until we have
deduced all reachable states, or we can perform don’t-care nondeterministic
inference until we reach quiescence where no further rules can be applied.
Linear inference is a form of substructural inference because we deny the law
of contraction for states (while keeping the law of exchange).

Ordered inference. States are sequences of propositions. Inferences apply to con-
secutive propositions, replacing them with the (also consecutive) conclusions.
Like for linear inference, we can explore all possible reachable states or pro-
ceed in a don’t-care nondeterministic manner to reach a quiescent state. Or-
dered inference is another form of substructural inference, denying both the
laws of exchange and contraction.

References

Iliano Cervesato. Typed multiset rewriting specifications of security protocols. In
A. Seda, editor, Proceedings of the First Irish Conference on the Mathematical Founda-
tions of Computer Science and Information Technology (MFCSIT’00), Cork, Ireland,
July 2000. Elsevier Electronic Notes in Theoretical Computer Science. To appear.

Iliano Cervesato and Andre Scedrov. Relating state-based and process-based con-
currency through linear logic. Information and Computation, 207(10):1044–1077,
October 2009.

Iliano Cervesato, Nancy A. Durgin, Max Kanovich, and Andre Scedrov. Interpret-
ing strands in linear logic. In E. Clarke, N. Heintze, and H. Veith, editors, Proceed-
ings of the Workshop on Formal Methods and Computer Security (FMCS’00), Chicago,
Illinois, July 2000.

Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concur-
rent logical framework II: Examples and applications. Technical Report CMU-
CS-02-102, Department of Computer Science, Carnegie Mellon University, 2002.
Revised May 2003.

LECTURE NOTES AUGUST 29, 2023

Truth is Ephemeral L1.11

Henry DeYoung, Andreia Mordido, Frank Pfenning, and Ankush Das. Parametric
subtyping for structural parametric polymorphism. CoRR, abs/2307.13661, July
2023. URL https://arxiv.org/abs/2307.13661. Submitted.

Harald Ganzinger and David A. McAllester. A new meta-complexity theorem for
bottom-up logic programs. In T. Nipkow R. Goré, A. Leitsch, editor, Proceedings of
the First International Joint Conference on ArAutomated Reasoning (IJCAR’01), pages
514–528, Siena, Italy, June 2001. Springer-Verlag LNCS 2083.

Harald Ganzinger and David A. McAllester. Logical algorithms. In P. Stuckey,
editor, Proceedings of the 18th International Conference on Logic Programming, pages
209–223, Copenhagen, Denmark, July 2002. Springer-Verlag LNCS 2401.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou. Datalog
and recursive query processing. Foundations and Trends in Databases, 5(2):105–
195, 2012.

David Maier, K. Tuncay Tekle, Michael Kifer, and David S. Warren. Datalog: Con-
cepts, history, and outlook. In Michael Kifer and Yanhong Annie Liu, editors,
Declarative Logic Programming: Theory, Systems, and Applications, pages 3–100.
ACM and Morgan & Claypool, 2018.

Anders Schack-Nielsen. Implementing Substructural Logical Frameworks. PhD thesis,
IT University of Copenhagen, January 2011.

Anders Schack-Nielsen and Carsten Schürmann. Celf - a logical framework for de-
ductive and concurrent systems. In A. Armando, P. Baumgartner, and G. Dowek,
editors, Proceedings of the 4th International Joint Conference on Automated Reasoning
(IJCAR’08), pages 320–326, Sydney, Australia, August 2008. Springer LNCS 5195.

Robert J. Simmons. Substructural Logical Specifications. PhD thesis, Carnegie Mellon
University, November 2012. Available as Technical Report CMU-CS-12-142.

Yannis Smaragdakis and Martin Bravenboer. Using Datalog for fast and easy pro-
gram analysis. In O. de Moor, G. Gottlob, T. Furche, and A. Sellers, editors,
Datalog Reloaded, pages 245–251, Oxford, UK, March 2010. Springer LNCS 6702.
Revised selected papers.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent
logical framework I: Judgments and properties. Technical Report CMU-CS-02-
101, Department of Computer Science, Carnegie Mellon University, 2002. Re-
vised May 2003.

LECTURE NOTES AUGUST 29, 2023

https://arxiv.org/abs/2307.13661

Truth is Ephemeral L1.12

John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using Datalog
and binary decision diagrams for program analysis. In K.Yi, editor, Proceedings
of the 3rd Asian Symposium on Programming Languages and Systems (APLAS’05),
pages 97–118. Springer LNCS 3780, November 2005.

LECTURE NOTES AUGUST 29, 2023

Lecture Notes on
From Inference to Logical Connectives

15-836: Substructural Logics
Frank Pfenning

Lecture 2
August 31, 2023

1 Introduction

Whenever we investigate logic we have to investigate proofs. They have many
roles, but in the context of the (sub)structural inference from the first lecture they
justify the truth of the propositions in a state. In different examples, this may give
rise to different concrete interpretations of proofs: in graph reachability, proofs cor-
responded to paths, in coin exchange to a sequence of exchange actions, in paren-
theses matching to a kind of parse tree, in binary increment to a trace of the com-
putation, and in blocks world to a plan to achieve a goal state. While in structural
inference it seemed convenient to represent proofs as terms, this did not work so
well with substructural inference, at least in part because of rules with multiple
(or zero) conclusions. We start this lecture by presenting (but not pursuing in full
rigorous detail) an idea proposed by C. B. Aberlé during the first lecture because
it is elegant and has some useful properties we can take of advantage later in the
course. Will call this proof representation CBA diagrams.

After this, we reflect back on what (substructural) inference can and cannot
achieve. One limitation is that we cannot, inside the logic, ask questions such as
“If we start with edges from a to b, from b to c and from b to d, is there a path from a
to d?”. Instead, we can only ask this looking at states “from the outside”. Asking
if-then questions, though, is central to logic so we start our path towards being
able to express richer statements. For this, we need logical connectives such as
conjunction, implication, disjunction, etc. There will be some surprises along the
way, because connectives in substructural logics have some unusual properties.

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.2

2 CBA Diagrams for Substructural Proofs

We start with linear inference and the coin exchange example

q

d d n
Q

d d n

q
Q

d

n n
D

n n

d
D

The idea is that propositions are nodes in a diagram and inference rule applications
are boxes connecting premises to conclusions. We build up the diagram here step
by step, each inference adding new propositions.

q n

Q

d d n

D

d

We can now visualize a reachable state as a horizontal slice through the CBA
diagram. For example, the initial state would include the top two nodes. On he
right, we show the slice after the Q inference. The nodes in the slides are in bold
and in blue.

q n

Q

d d n

D

d

q n

Q

d d n

D

d

The final state in this example will be the slice just containing the three dimes,
shown on the left below. Mathematically, it would be convenient to define the
graph and possible slices simultaneously by allowing an inference rule to be ap-
plied to an existing slice and moving it by replacing the premises in it by the con-
clusions. We may still have to account for the fact that identical propositions are
indistinguishable. For example, the version of the second diagram where the line

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.3

from the left n crosses the one from the right n should be identified. The BCA dia-
gram here succinctly represents a number proofs in one diagram. But we can also
change the diagram and it would yield a different proof. For example, we could
decide to exchange one of the dimes for two nickels and then back to a dime, as
shown on the right where the final slice also contains three dimes.

q n

Q

d d n

D

d

q n

Q

d d n

D

d

D

n n

D

d

3 CBA Diagrams and True Concurrency

As a next example we considered CBA diagrams for ordered inference, using the
example of binary increment.

0 inc

1
inc0

1 inc

inc 0
inc1

ϵ inc

ϵ 1
incϵ

We use the example from the first lecture, incrementing the number 5 twice to ar-
rive at 7. The first step is forced.

ϵ 1 0 1 inc inc

inc1

inc 0

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.4

At this point, either of the two remaining increments can interact with the 0 to its
left. Since they are independent, let’s do both.

ϵ 1 0 1 inc inc

inc1

inc 0

inc0

1

inc0

1

The final slice ϵ 1 1 1 is quiescent. Inference here proceeded with don’t care non-
determinism and the last two inferences using inc0 are independent in the sense
that neither consumes or produces a proposition that the other needs. There-
fore, the order between these two inferences is irrelevant. A nice property of the
CBA diagrams here is that you end up with the same diagram (and therefore the
same proof) no matter which of the independent actions are taken first. This phe-
nomenon is known as true concurrency: we cannot observe the order of indepen-
dent events. This will be useful later when we specify and reason about parallel
and concurrent programming languages.

What is the difference between linear and ordered BCA diagrams? One obser-
vation made in lecture is that the lines in order diagrams cannot cross the way they
can in linear diagrams. But that’s not quite sufficient: the premises of a rule ap-
plication need to be adjacent. That’s not always obvious. As a last substructural
example, let’s consider matching parentheses.

()

·
Cancel

We draw the complete BCA diagram right away for the example from lecture.

() (()) ()

C C C

C

Since the rule of cancellation has no conclusions, there are no outgoing edges from
the corresponding boxes. Then we see there is essentially only one proof of the

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.5

empty slice, because all the actions appear to be independent. However, that’s not
quite the case: between the two applications that are pictured on top of each other,
the one higher up needs to be done first so that the two premises for the lower
cancellation are adjacent. We can indicate that, for example, with a dashed line or
empty circle indicating zero conclusion, but allowing us to express an otherwise
implicit dependency.

() (()) ()

C C C

C

The final slice (shown above in bold blue) is empty.

4 CBA Diagrams for Structural Inference

We can apply the idea of CBA diagrams to structural inference, but slices are some-
what different because of the monotonic nature of inference. We just show the
example of graph reachability from last lecture.

edge(x, y)

path(x, y)
Edge

path(x, y) path(y, z)

path(x, z)
Trans

We go directly to the diagram at the point of saturation.

edge(a, b) edge(b, c) edge(b, d)

E

path(a, b)

E

path(b, c)

E

path(b, d)

T

path(a, c)

T

path(a, d)

A slice now has to be “upwards closed” to capture the fact that inference is mono-
tonic: we only add new facts to the slice. In the diagram below we colored a slice

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.6

containing path(a, d) in bold blue.

edge(a,b) edge(b, c) edge(b,d)

E

path(a,b)

E

path(b, c)

E

path(b,d)

T

path(a, c)

T

path(a,d)

While we can intuitively construct such slices that are closed under an ancestor
relation, we won’t attempt to give a formal definition in this lecture. In particu-
lar the fact that there may be multiple proofs of some propositions requires some
decisions regarding such a definition.

5 Hypothetical Judgments

Using inference rules we can specify the meaning of basic propositions and rea-
son about them with (sub)structural inference. We now pose several questions in
the examples we have considered. We can answer these questions via inference,
but, strangely, we cannot even asked them within logic because we have no logical
connectives!

• If we start with edges from a to b, from b to c, and from b to d, is there a path
from a to d?

• Can we exchange a quarter and a nickel for three dimes?

• Is () (()) () a word with matching parentheses?

• Is ϵ 1 1 1 the result of incrementing ϵ 1 0 1 twice?

• Starting from an initial state where the robot hand is empty, and we have a
stack of a on b, with b on the table, and a free spot on the table, can we reach
a state where b is on a?

These questions use forms of conjunction and implication, so we have to consider
what the meaning of such connectives is and how we can reason with them.

Let’s look at the question in the middle: “Can we exchange a quarter and a nickel
for three dimes?” We are asking if the state with three dimes is reachable from the

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.7

state with three dimes. We visualize this question as

q, n
...

d, d, d

So we not only have an initial state, but also a desired final state. This is a form of
a linear hypothetical judgment: if we had a quarter and a nickel, could we (by linear
inference) reach the state where we have three dimes. To express this within the
logic, we need to figure out how to internalize the components of this hypothetical
judgment as logical propositions. For linear logic, it will turn out that A,B (two
separate propositions in a state) is expressed as A⊗B. This allows us to combine the
initial and final states into a single proposition. Then the vertical dots are expressed
as a linear implication, that is,

A...
B

becomes the proposition A ⊸ B. So the original situation, as a single propositions,
is written as q ⊗ n ⊸ d⊗ d⊗ d.

An inference rule is also an example of a hypothetical judgment. For example,

q

d d n
Q

expresses that if we had a quarter, we could exchange it for two dimes and a nickel.
So it would be internalized as

q ⊸ d⊗ d⊗ n

There is one caveat, though: an inference rule can be used as many times as we
wish, even if the process of inference itself is linear. We say the rule is persistent
while propositions in the state like q or d are ephemeral. In order to express inference
rules within the logic we therefore will need to model persistence. We will return
to this point later in the lecture.

Focusing on the hypothetical judgment for now, we write

∆ −→ Σ for

∆...
Σ

primarily because it is easier to typeset. This form of hypothetical judgment has
some nice properties. For example, it is reflexive and transitive. Furthermore, it
affords is the option of reasoning “in two directions”. We can either perform an in-
ference starting with ∆, using the inference rules as we have done so far, or we can

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.8

conjecture how we might prove Σ and use an inference bottom-up. For example,
we might reduce

∆ −→ d, d, d

to proving
∆ −→ d, d, n, n

instead.
Unfortunately this attempt at explaining hypothetical judgments as reachabil-

ity between states runs into serious problem when we consider implication. How
would we prove A ⊸ B (remembering that this means “if we had an A we could de-
duce B”)? The obvious answer is that we would add A to the state and then attempt
to deduce B. That is:

∆, A ⊢ B,Σ

∆ ⊢ A ⊸ B,Σ
??

Unfortunately, this brings Σ into the scope of A, which is incorrect! For example,
the following purported proof is clearly wrong because the hypothesis A is sup-
posed to be available only for the proof of B and not A.

A,B ⊢ B,A
id

B ⊢ A ⊸ B,A
??

In order to extract ourselves from such incorrect reasoning we limit the conclusion
to be a single formula and write

∆ ⊢ A

for linear logic, with corresponding judgments for ordered (Ω ⊢ A) and structural
(Γ ⊢ A) logics. This structure is called a sequent, with the state to the left consisting
of the antecedents and the proposition to the right being the succedent.

We can complete a hypothetical proof when a hypothesis (antecedent) matches
the conclusion. In the sequent calculus, this is called the rule of identity. In the
linear and ordered case, this must be exact; in the structural case we can silently ig-
nore some antecedents. This is also a structural property, but it cannot be presented
as an equational property. Instead, it should be thought of as a relation between
states, Γ ⊇ Γ′. We could either have a general rule of weakening (from Γ ⊢ C infer
Γ, A ⊢ C for any A) or we can build it into the initial sequents, that is, sequents
without premises. We illustrate here the latter.

structural linear ordered

Γ, A ⊢ A
id

A ⊢ A
id

A ⊢ A
id

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.9

6 Internalizing State Formation as Conjunction

The first connective we consider is the one that expresses the state former, written
as a comma in structural and linear logic and juxtaposition in ordered logic. We
have the following rules, adhering to our convention that Γ is a structural state, ∆
is a linear state, and Ω is an ordered state. The rules below are left rules because they
apply to the proposition among the antecedents, that is, to the left of the turnstile
‘⊢’. Because we internalize state formation, it makes sense to first consider the
proposition with the connective to be among the antecedents.

structural linear ordered

Γ, A,B ⊢ C

Γ, A ∧B ⊢ C
∧L

∆, A,B ⊢ C

∆, A⊗B ⊢ C
⊗L

ΩL A B ΩR ⊢ C

ΩL (A •B) ΩR ⊢ C
•L

We see that the notation for the different forms is different. We also see that in
the structural and linear cases we write the conjunction in the rightmost position,
which is always possible due to the law of exchange. In the ordered case the con-
junction can be anywhere in the state, with ΩL to its left and ΩR to its right.

According to the structural properties we would expect the following laws to
hold or not hold in general. We write A ⊣⊢ B for A ⊢ B and B ⊢ A.

structural linear ordered

A ∧ (B ∧ C) ⊣⊢ (A ∧B) ∧ C A⊗ (B ⊗ C) ⊣⊢ (A⊗B)⊗ C A • (B • C) ⊢ (A •B) • C

A ∧B ⊣⊢ B ∧A A⊗B ⊣⊢ B ⊗A P •Q ⊣̸⊢ Q • P

A ∧A ⊣⊢ A P ⊗ P ⊣̸⊢ P P • P ⊣̸⊢ P

In the cases where the entailments do not hold (and neither direction is correct),
we use atomic propositions P and Q for our counterexamples because there may
be some specific propositions A and B for which such a law might hold.

In order decompose connectives when they appear as a succedent we use right
rules.

structural linear ordered

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B
∧R

∆1 ⊢ A ∆2 ⊢ B

∆1,∆2 ⊢ A⊗B
⊗R

Ω1 ⊢ A Ω2 ⊢ B

Ω1 Ω2 ⊢ A •B
•R

In the structural rule, all antecedents are available in both premises, so there is
only one way to apply this rule. This suggests we are reading the rule bottom-up,
which is true for our formulations of the sequent calculus. In the linear rule, we
have to find a way to split the antecedents among the two premises. Because the
antecedents satisfy exchange, any submultiset ∆1 can be used to prove A, with the
remaining antecedents ∆2 going to the proof of B. So there are 2n possible ways to

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.10

apply this rule when there are n antecedents. In the ordered rule, we have to split
the ordered context somewhere, and everything to the left of the split has to prove
A, while everything to the right has to prove B. So there are n+1 ways to possibly
apply this rule when there are n antecedents.

7 Internalizing Hypothetical Judgments as Implication

Among the statements we wanted to express as a logical proposition were if-then
statements, such as “If we had a quarter and a nickel, we could exchange them for three
dimes.” For this, we need implication, which renders the turnstile ⊢ as a logical
connective. We’ll consider this for ordered logic in the next lecture and just focus
on structural and linear logic.

Intuitively, A ⊃ B should be true if B is true under the assumption A. When our
logic is structural, A can be used arbitrarily many times in the proof of B. In linear
logic, A becomes part of the linear state and will be consumed when inference rules
are applied, so we have A ⊸ B as a different notation. In this case, we write out the
right rules first, because they most naturally relate the meaning of the connective
to the hypothetical judgment.

structural linear

Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃R

∆, A ⊢ B

∆ ⊢ A ⊸ B
⊸R

What are the corresponding left rules? An assumption A ⊃ B licenses us to assume
B if we can prove A. That is:

structural linear

Γ ⊢ A Γ, B ⊢ C

Γ, A ⊃ B ⊢ C
⊃L

∆1 ⊢ A ∆2, B ⊢ C

∆1,∆2, A ⊸ B ⊢ C
⊸L

These, like all rules in our sequent calculi, should be read from the bottom up-
wards. The slightly subtle point in ⊃L is that because the antecedents form a
set (and so comma is a form of union), the implication itself still remains in both
premises. By contrast, in the linear case we need to split up the antecedents be-
tween the two premises and we also remove the implication itself.

As mentioned before, inference rules themselves also form a hypothetical judg-
ment. Below are two examples from the coin exchange:

rule proposition
q

d d n
Q q ⊸ d⊗ d⊗ n

n n

d
D n⊗ n ⊸ d

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.11

Here is the proof that we can exchange a quarter and a nickel for three dimes. The
first few steps are easy. We have offset the inference rules to make them visually
easier to read.

...
q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d, q, n ⊢ d⊗ d⊗ d

q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d, q ⊗ n ⊢ d⊗ d⊗ d
⊗L

q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d ⊢ q ⊗ n ⊸ d⊗ d⊗ d
⊸R

At this point we need to decide which implication left rule to use. Since we have q
as an antecedent, it makes sense to use the first.

q ⊢ q
id

...
d⊗ d⊗ n, n⊗ n ⊸ d, n ⊢ d⊗ d⊗ d

q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d, q, n ⊢ d⊗ d⊗ d
⊸L

q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d, q ⊗ n ⊢ d⊗ d⊗ d
⊗L

q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d ⊢ q ⊗ n ⊸ d⊗ d⊗ d
⊸R

Now we can break up d⊗d⊗n and then apply implication left again. A key aspect
of the implication left rule is how we split the antecedents, so the two nickels go to
the first premises and the two dimes to the second (to be joined by the succedent
of the implication, which is the third dime).

q ⊢ q
id

...
n, n ⊢ n⊗ n

...
d, d, d ⊢ d⊗ d⊗ d

d, d, n, n⊗ n ⊸ d, n ⊢ d⊗ d⊗ d
⊸L

d⊗ d⊗ n, n⊗ n ⊸ d, n ⊢ d⊗ d⊗ d
⊗L2

q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d, q, n ⊢ d⊗ d⊗ d
⊸L

q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d, q ⊗ n ⊢ d⊗ d⊗ d
⊗L

q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d ⊢ q ⊗ n ⊸ d⊗ d⊗ d
⊸R

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.12

The remaining steps are straightforward applications of ⊗R and identities.

q ⊢ q
id

n ⊢ n
id

n ⊢ n
id

n, n ⊢ n⊗ n
⊗R

d ⊢ d
id

d ⊢ d
id

d ⊢ d
id

d, d ⊢ d⊗ d
⊗R

d, d, d ⊢ d⊗ d⊗ d
⊗R

d, d, n, n⊗ n ⊸ d, n ⊢ d⊗ d⊗ d
⊸L

d⊗ d⊗ n, n⊗ n ⊸ d, n ⊢ d⊗ d⊗ d
⊗L2

q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d, q, n ⊢ d⊗ d⊗ d
⊸L

q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d, q ⊗ n ⊢ d⊗ d⊗ d
⊗L

q ⊸ d⊗ d⊗ n, n⊗ n ⊸ d ⊢ q ⊗ n ⊸ d⊗ d⊗ d
⊸R

Even though this was not difficult, it is considerably longer and more elaborate
that our earlier proof using linear inference. So we pay some price for expressing
all the rules and components of the state in propositional form.

We have also cheated. We put exactly one copy of the two needed inference
rules among the antecedents. But even in linear inference, the inference rules them-
selves can be used arbitrarily often. So, really, the propositions q ⊸ d ⊗ d ⊗ n and
n⊗ n ⊸ d (and the ones corresponding to the other two rules we omitted) should
be persistent! There are multiple solutions on how to achieve this, which we discuss
in the next section.

8 Persistence as a Modality

We have characterized propositions in a linear state as ephemeral because they are
consumed as part of linear inference. In contrast, propositions in a structural state
are persistent: they are never removed, even if they may eventually be ignored. In
order to internalize (persistent) rules as propositions into linear logic, the simplest
way is to make them persistent. Then we have to kinds of antecedents: persistent
and ephemeral ones. It is not difficult to imagine what the rules might then look
like.

Another solution goes a little further: it also internalizes the very notion of
persistence into linear logic as a modal operator !A (pronounced “of course A” and
sometimes “bang A”. The key idea is that the proposition !A itself is also linear
(rather than persistent), but we have explicit rules to duplicate and delete such
propositions. They are the following:

∆, !A, !A ⊢ C

∆, !A ⊢ C
contraction

∆ ⊢ C

∆, !A ⊢ C
weakening

∆, A ⊢ C

∆, !A ⊢ C
!L

With these rules we can obtain as many copies of A from !A as we want. The !L
rule is also called dereliction. But what is the correct right rule? Because we are

LECTURE NOTES AUGUST 31, 2023

From Inference to Logical Connectives L2.13

supposed to be able to generate as many copies of !A as we want, any proof of A
can only depend on propositions that can be duplicated and erased themselves.
That is:

!∆ ⊢ A

!∆ ⊢ !A
!R

where !∆ means that every antecedent in ∆ has the form !B. In the next lecture we
will see some techniques to explicitly construct counterexamples to wrong rules,
such as the one where we do not restrict the context.

Returning to our previous example, the rules now become

∆0 = !(q ⊸ d⊗ d⊗ n), !(d⊗ d⊗ n ⊸ d), !(d ⊸ n⊗ n), !(n⊗ n ⊸ d)

and it should be easy to see how to construct a proof of

∆0 ⊢ q ⊗ n ⊸ d⊗ d⊗ d

using the new rules following the blueprint of our previous derivation.

LECTURE NOTES AUGUST 31, 2023

Lecture Notes on
Cut and Identity Elimination

15-836: Substructural Logics
Frank Pfenning

Lecture 3
September 5, 2023

1 Introduction

As we have seen in the last lecture, in order to capture the meaning of implication
we needed a hypothetical judgment with a single conclusion C

A1 . . . An...
C

where the hypotheses A1 . . . An are interpreted according to the structural prop-
erties under consideration (a set for structural logic, a multiset for linear logic, and
a sequence for ordered logic). We wrote this as Γ ⊢ A (structural), ∆ ⊢ A (linear)
and Ω ⊢ A (ordered) and wrote some inference rules for the logical connectives.

But how do we know the logical rules are correct? A standard approach due
to Tarski [1931] provides mathematical models for the language of logical formu-
las and thereby gives external notions of soundness and completeness for a set of
rules. This is in the tradition of what I called the “descriptive” approach to logic
and a worthwhile enterprise. While this is fine as a way to analyze logic from a
mathematical point of view, we do have to accept mathematics to start with as the
basis for the external semantics, so it has its limitations from the foundational point
of view.

In the current section of the course we are more interested in what I called
the creative use of logic, where the rules are justified internally and therefore them-
selves create a computational universe. This is often called a proof-theoretic semantics
because truth is justified by proofs and their structure. There is a long philosoph-
ical tradition for such an understanding of logic, perhaps starting with Gentzen
[1935] and worked out further by Dummett [1991] and others. The connection be-
tween such an approach to logic and computation was noted by Curry [1934] and

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.2

Howard [1969]. A seminal paper merging these threads by Martin-Löf [1983] also
highlights the difference between propositions (such as A ⊃ B) and judgments
(such as “A is true” or “A is false”). This analysis comes into play here since we
differentiate between “A is a hypothesis” and “A is a conclusion”.

In a hypothetical judgment, we can fundamentally either work forward from
the hypotheses or backwards from the conclusion we are trying to prove. Because
the word “conclusion” is somewhat overloaded (also meaning the judgment “con-
cluded” by an inference rule) we write a sequent as Ω ⊢ A and refer to Ω as the
antecedents and A as the succedent. This notion of a sequent (for structural logic)
originated in Gentzen [1935]; the version of ordered logic is due to Lambek [1958].
The rules that work forward from the antecedents are called left rules, because they
apply to propositions on the left of the turnstile ‘⊢’. The rules that work backward
from the succedent are called right rules because they apply to propositions on the
right of the turnstile. These rules should fundamentally in balance in the following
ways:

• If we have an antecedent A we should be able to conclude the succedent A.
This corresponds to closing the gap betwee hypotheses and conclusion, if we
think in two dimensions.

• If we have proved a succedent A we should be able to assume it as a hypoth-
esis. This corresponds to justifying a hypothesis by a proof, so it no longer is
a needed hypothesis.

When taken as rules in ordered logic, these take the following forms

A ⊢ A
idA

Ω ⊢ A ΩL A ΩR ⊢ C

ΩL Ω ΩR ⊢ C
cutA

We are careful here about the order about the antecedents because, well, we are
reasoning in ordered logic.

While these rules are certainly sound and useful, they should also be somehow
redundant. For example, there should be sufficiently strong left rules so we can
extract the component from a compound antecedent A to prove the succedent A.
Conversely, when an antecedent A is used in a proof of the succedent C, we should
be able to just use the proof of A wherever we use the hypothesis A. This is the
essence of the properties of identity elimination and cut elimination we tackle in this
lecture. They express a form of harmony between the left and right rules for a con-
nectives, a property usually shown for natural deduction [Gentzen, 1935, Prawitz,
1965, Dummett, 1991] rather than the sequent calculus. Since natural deduction for
substructural logics is somewhat delicate, we express and prove the corresponding
properties on the sequent calculus—incidentally the path also taken by Gentzen.

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.3

2 Right Rules Meeting Left Rules

Rather than presenting fully formed proofs of harmony between the right and left
rules, we proceed in small steps, eventually building up enough knowledge to then
state the desired theorems and assemble the pieces into their proofs. We proceed
connective by connective, which has the added advantage of arriving at our un-
derstanding in a modular way. When adding connectives, we (mostly) have to
consider the new cases. Some of this reviews the material from the last lecture in a
new light.

We foreshadow the idea that we end up with the sequent calculus without the
rule of cut, and a form of identity that is limited to atomic propositions. In this
calculus, cut and general identity should be admissible, that is, every instance of
these rules should be valid. We used dashed lines to indicate admissible rules, so
we are ultimately trying to justify

A ⊢ A
idA

Ω ⊢ A ΩL A ΩR ⊢ C

ΩL Ω ΩR ⊢ C
cutA

2.1 Ordered Conjunction A •B

Ordered conjunction A • B (pronounced A fuse B) internalizes the operation that
concatenates two ordered states. Therefore we may think of the left rule as defining
the connective.

Ω1 A B Ω2 ⊢ C

Ω1 (A •B) Ω2 ⊢ C
•L

We claimed that the corresponding right rule should split the ordered antecedents
somewhere devoting the first portion Ω1 to proving A and the second portion Ω2

to proving B.
Ω1 ⊢ A Ω2 ⊢ B

Ω1 Ω2 ⊢ A •B
•R

First, we want to check that the identity at A • B can be reduced to the identity at
A and B.

A •B ⊢ A •B
idA•B −→E

A ⊢ A
idA

B ⊢ B
idB

A B ⊢ A •B
•R

A •B ⊢ A •B
•L

Notice that the first step (thinking bottom-up as we should) in the proof is forced:
trying to use the •R rule will fail since there is only a single antecedent which we
cannot split into two yet. The good news is that the left/right split worked out in
this case.

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.4

Second, we should check if we can reduce a cut of proposition A • B into cuts
at propositions A and B while preserving the conclusion. The critical we examine
here is if a right rule for a connectives meets a corresponding left rule.

D1

Ω1 ⊢ A
D2

Ω2 ⊢ B

Ω1 Ω2 ⊢ A •B
•R

E ′

ΩL A B ΩR ⊢ C

ΩL (A •B) ΩR ⊢ C
•L

ΩL Ω1 Ω2 ΩR ⊢ C
cutA•B

We have given names to the derivations of the premises of •R and •L so we can
refer to them after the transformation. We observe we can appeal to cut on A be-
tween D1 and E ′, and then again on B between D2 and the result. This yields the
following:

−→R

D2

Ω2 ⊢ B

D1

Ω1 ⊢ A
E ′

ΩL A B ΩR ⊢ C

ΩL Ω1 B ΩR ⊢ C
cutA

ΩL Ω1 Ω2 ΩR ⊢ C
cutB

As we can see, everything works out in both cases.
But what goes wrong if we had the incorrect right rule, swapping the antecedents?

Ω2 ⊢ A Ω1 ⊢ B

Ω1 Ω2 ⊢ A •B
•R?

First, we notice that the identity is no longer admissible in the calculus without cut.
Here is a counterexample with atomic propositions P and Q.

...
P •Q ⊢ P •Q

Starting with •R? won’t work, since there is only a single antecedent, which would
either have to go to the first or second premise, while the other is empty. Proceeding
with •L:

...
P Q ⊢ P •Q
P •Q ⊢ P •Q

•L

Now there are only one rule and three possible pairs of premises with this conclu-
sion, depending on how the antecedents are split.

...
P Q ⊢ P

...
· ⊢ Q

P Q ⊢ P •Q
•R?

P •Q ⊢ P •Q
•L

...
Q ⊢ P

...
P ⊢ Q

P Q ⊢ P •Q
•R?

P •Q ⊢ P •Q
•L

...
· ⊢ P

...
P Q ⊢ Q

P Q ⊢ P •Q
•R?

P •Q ⊢ P •Q
•L

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.5

No rules apply to any of these premises. Since we have explored all possibilities,
the identity is not admissible for the incorrect right rules.

To make matters worse, cut would also not be admissible! You could try the
reduction and see that any natural attempt would change the order of Ω1 and Ω2

in the conclusion.

D1

Ω2 ⊢ A
D2

Ω1 ⊢ B

Ω1 Ω2 ⊢ A •B
•R?

E ′

ΩL A B ΩR ⊢ C

ΩL (A •B) ΩR ⊢ C
•L

ΩL Ω1 Ω2 ΩR ⊢ C
cutA•B

−→R ?

D2

Ω1 ⊢ B

D1

Ω2 ⊢ A
E ′

ΩL A B ΩR ⊢ C

ΩL Ω2 B ΩR ⊢ C
cutA

ΩL Ω2 Ω1 ΩR ⊢ C
cutB

Of course, this is not a refutation of cut elimination. It only shows that a partic-
ular way to attempt to prove the admissibility of cut does not work. But we can
fashion this failed proof attempt into a counterexample. Let’s pick Ω1 = B and
Ω2 = A. Then the figure can become

A ⊢ A
idA

B ⊢ B
idB

B A ⊢ A •B
•R?

E ′

ΩL A B ΩR ⊢ C

ΩL (A •B) ΩR ⊢ C
•L

ΩL B A ΩR ⊢ C
cutA•B

Now we see that if cut (and identity) were admissible, the rule of exchange between
two ordered(!) antecedents would also be admissible. In other words, our ordered
logic would become linear!

If cut and identity were primitive rules (our starting point) then we could even
derive exchange, and ordered logic would collapse to linear logic—order wouldn’t
mean anything. Clearly, the •R? rule would be wrong.

2.2 Left Implication A \B

In ordered logic, the usual implication A ⊃ B splits into two different connectives,
A \ B (pronounced A under B) and B / A (pronounced B over A), depending on
whether A is added to the left end or the right and of the antecedents. In this case,
we view the right rule as a definition of the connective.

A Ω ⊢ B

Ω ⊢ A \B
\R

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.6

What should the matching left rule be? Starting the proof of the identity gives some
intuition.

...
A (A \B) ⊢ B

A \B ⊢ A \B
\R

It looks as if the proof of A needs to come from the left of the implication. So let’s
hypothesize:

ΩA ⊢ A ΩL B ΩR ⊢ C

ΩL ΩA (A \B) ΩR ⊢ C
\L

We first check identity expansion.

A \B ⊢ A \B
idA\B

−→E

A ⊢ A
idA

B ⊢ B
idB

A (A \B) ⊢ B
\L

A \B ⊢ A \B
\R

Next, the cut reduction when the right rule meets the left rule.

D′

A Ω ⊢ B

Ω ⊢ A \B
\R

E1
ΩA ⊢ A

E2
ΩL B ΩR ⊢ C

ΩL ΩA (A \B) ΩR ⊢ C
\L

ΩL ΩA Ω ΩR ⊢ C
cutA\B

−→R

E1
ΩA ⊢ A

D′

A Ω ⊢ B

ΩA Ω ⊢ B
cutA

E2
ΩL B ΩR ⊢ C

ΩL ΩA Ω ΩR ⊢ C
cutB

It works out! A significant observation here is that the result of the reduction is not
unique. For example, we could have cut D′ with E2 first, and then E1 with the end
sequent.

3 Right Implication B / A

This is symmetric to the left implication, so we just show the rules. It is a recom-
mended exercise to go through the cases of identity expansion and cut reduction.

Ω A ⊢ B

Ω ⊢ B / A
/R

ΩA ⊢ A ΩL B ΩR ⊢ C

ΩL (B / A) ΩA ΩR ⊢ C
/L

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.7

4 Excursion: Parsing with the Lambek Calculus

A point in Lambek’s original calculus [Lambek, 1958] is to model natural language
parsing by (ordered) logical inference. For this purpose, we use the following spe-
cialized versions of the \L and \R rules:

ΩL B ΩR ⊢ C

ΩL A (A \B) ΩR ⊢ C
\L∗ ΩL B ΩR ⊢ C

ΩL (B / A) A ΩR ⊢ C
/L∗

Their soundness is easy to see, but it turns out we can’t quite replace the general
rules with these specialized ones (see Tasks 8 and 9 of Assignment 2).

Then we assign a syntactic category to every word appearing in a sentence. We
start with n for names such as Alice or Bob. We also have s for complete sentences.
An intransitive verb such as works has category n \ s which means that if we find a
name to its left then their combination forms a sentence.

To start the inference process we annotate each word with its syntactic category,
writing (w : A). We would like to parse a sequence of words as a sentence, so the
succedent of our sequent is s.

(Alice : n) (works : n \ s) ⊢ s

In this case, we can complete it in just two steps. We just concatenate the two proof
terms for the result of \L∗.

(Alice · works) : s ⊢ s
id

(Alice : n) (works : n \ s) ⊢ s
\L∗

Note that the proof of s here represents a parse tree, in this case trivial. What about
adjectives such as poor? If poor precedes a name, the phrase again functions as a
name. So (poor : n / n). We would then parse “poor Alice works” as

((poor ·Alice) · works : s) ⊢ s
id

(poor ·Alice : n) (works : n \ s) ⊢ s
\L∗

(poor : n / n) (Alice : n) (works : n \ s) ⊢ s
/L∗

A transitive verb such as likes has category n \ (s / n): if there is a name to its left
and to its right, then the result is a sentence. For example:

(poor : n / n) (Alice : n) (likes : n \ (s / n)) (Bob : n) ⊢ s

This example illustrates some nondeterminism in the parsing process. For exam-
ple, (Alice : n) is to the left of (likes : n\(s/n) so we could apply \L∗, but eventually
we would get stuck at

(poor : n / n) ((Alice · likes) · Bob : s) ⊢ s

LECTURE NOTES SEPTEMBER 5, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//assignments/hw2.pdf

Cut and Identity Elimination L3.8

which we cannot complete. Instead, we need to group poor with Alice first so that
(poor ·Alice : n). Then we can arrive at

(((poor ·Alice) · likes) · Bob : s) ⊢ s

Below is a small table with syntactic categories of other words.

Word Type Part of Speech
works n \ s intransitive verb
poor n / n adjective
here s \ s adverb
never (n \ s) / (n \ s) adverb
likes n \ (s / n) transitive verb
and s \ (s / s) conjunction
and s \ (n∗ / s) conjunction

For the last example we use n∗ for a plural name so that phrases like Alice and Bob
work can be parsed correctly with (work : n∗ \ s). But “and” is more complicated
because it is overloaded. For example, it would also have syntactic type s\(s/s) be-
cause it can conjoin two sentences into a longer sentence. This cannot be expressed
in Lambek’s original calculus, but it fits into the so-called full Lambek calculus which
we have called ordered logic. We can write

and : (s \ (s / s)) N (s \ (n∗ / s))

where A N B is a new connective. If we have the antecedent A N B we can choose
between A and B, while A • B necessarily gives us both, next to each other. We
give the rules below, in Section 6.

5 A Small Example

From the parsing intuition, we would expect A \ (C / B) to be equivalent to (A \
C) / B—a form of associativity. Whether we prove A to the left or B to the right
first should be irrelevant, since we need both before we obtain C.

Let’s prove one direction.

...
A \ (C / B) ⊢ (A \ C) / B

It turns out that the right rules for the two forms of ordered implication are invert-
ible in the sense that we can always apply them during bottom-up proof construc-
tion without ever considering alternatives.

It turns out the every connective is either invertible on the right or on the left.
A quick test (although not a proof) to see which one, see which side the proof of

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.9

the identity starts on. For B /A and A \B it starts with a right rule. So we can start
as follows without having to think:

...
A (A \ (C / B)) B ⊢ C

(A \ (C / B)) B ⊢ A \ C
\R

A \ (C / B) ⊢ (A \ C) / B
/R

At this point we can only apply \L because it is the only connective at the top level
among all antecedents and the succedent.

A ⊢ A
id

...
(C / B) B ⊢ C

A (A \ (C / B)) B ⊢ C
\L

(A \ (C / B)) B ⊢ A \ C
\R

A \ (C / B) ⊢ (A \ C) / B
/R

The open subgoal now follows by /L and two identities.

A ⊢ A
id

B ⊢ B
id

C ⊢ C
id

(C / B) B ⊢ C
/L

A (A \ (C / B)) B ⊢ C
\L

(A \ (C / B)) B ⊢ A \ C
\R

A \ (C / B) ⊢ (A \ C) / B
/R

The entailment in the other direction proceeds in a similar vein.

6 External Choice (A N B)

The parsing example suggests the following left rules:

ΩL A ΩR ⊢ C

ΩL (A N B) ΩR ⊢ C
NL1

ΩL B ΩR ⊢ C

ΩL (A N B) ΩR ⊢ C
NL1

What is the corresponding right rule? Rather then splitting the antecedents as for
A •B, we propagate all of them to both premises.

Ω ⊢ A Ω ⊢ B

Ω ⊢ A N B
NR

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.10

At first glance it may seem that this violates the principle that every hypothesis is
used exactly once. But any use of an antecedent ANB will pick either just A or just
B. This is reflected in the two local reductions.

D1

Ω ⊢ A
D2

Ω ⊢ B

Ω ⊢ A N B
NR

E ′

ΩL A ΩR ⊢ C

ΩL (A N B) ΩR ⊢ C
NL1

ΩL Ω ΩR ⊢ C
cutANB

−→R

D1

Ω ⊢ A
E ′

ΩL A ΩR ⊢ C

ΩL Ω ΩR ⊢ C
cutA

D1

Ω ⊢ A
D2

Ω ⊢ B

Ω ⊢ A N B
NR

E ′

ΩL B ΩR ⊢ C

ΩL (A N B) ΩR ⊢ C
NL2

ΩL Ω ΩR ⊢ C
cutANB

−→R

D2

Ω ⊢ B
E ′

ΩL B ΩR ⊢ C

ΩL Ω ΩR ⊢ C
cutB

We see both premises of NR are necessary, because we don’t know which left rule
(NL1 or NL2) it might meet. Also, if we had split the antecedents, then we wouldn’t
have enough of them in one branch or the other, or both. This would lend itself to
a counterexample.

The identity is straightforward, and we must start with the right rule. This
means the right rule for A N B is invertible.

A N B ⊢ A N B
idANB −→E

A ⊢ A
idA

A N B ⊢ A
NL1

B ⊢ B
idB

A N B ⊢ B
NL2

A N B ⊢ A N B
NR

Here we notice that both left rules are necessary. If we just had one (say, ∧L1) we
wouldn’t be able to complete the identity expansion because ANB ⊢ B would not
have a proof.

7 The Empty State (1)1

1covered in Lecture 4, but for continuity included here

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.11

We can also internalize the empty state as the proposition 1. As a left rule, the
proposition simply disappears. As a right rule, the state must be empty. We can
think of this as the unit for fuse in the sense that A • 1 ⊣⊢ A ⊣⊢ 1 •A.

· ⊢ 1
1R

ΩL ΩR ⊢ C

ΩL (1) ΩR ⊢ C
1L

Identity expansion and cut reduction are immediate, since there are no subformu-
las of 1.

· ⊢ 1
1R

E ′

ΩL ΩR ⊢ C

ΩL (1) ΩR ⊢ C
1L

ΩL ΩR ⊢ C
cut1

−→R

E ′

ΩL ΩR ⊢ C

1 ⊢ 1
id1 −→E

· ⊢ 1
1R

1 ⊢ 1
1L

8 Disjunction (A⊕B)2

Disjunction (also called internal choice) changes remarkably little from structural to
linear to ordered logic. We may think of it as being defined by the following two
right rules:

Ω ⊢ A

Ω ⊢ A⊕B
⊕R1

Ω ⊢ B

Ω ⊢ A⊕B
⊕R2

The situation is almost entirely symmetric to the one for external choice (A N B). If
A ⊕ B is among our antecedents, we do not now whether A or B will be true, but
we know only one of the two rules will be applied.

ΩL A ΩR ⊢ C ΩL B ΩR ⊢ C

ΩL (A⊕B) ΩR ⊢ C
⊕L

You can now easily convince yourself that identity expansion and cut reduction are
possible.

9 Truth (⊤)

Truth is the unit of external choice in the sense that AN⊤ ⊣⊢ A ⊣⊢ ⊤NA. Because
external choice has two left rules, its nullary version will have none. Conversely,

2covered in Lecture 4, but for continuity included here

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.12

the right rule for external choice has two premises, so the right rule for its nullary
version has none.

Ω ⊢ ⊤
⊤R

no ⊤L rules

Because there is no left rule, the right rule cannot meet any left rule and there is no
cut reduction. But there is a simple identity expansion:

⊤ ⊢ ⊤
id⊤ −→E ⊤ ⊢ ⊤

⊤R

10 Falsehood (0)

Falsehood is the unit of internal choice in the sense that 0 ⊕ A ⊣⊢ A ⊣⊢ A ⊕ 0. Its
properties are symmetric to that of truth (⊤).

no 0R rules ΩL (0) ΩR ⊢ C
0L

Because there are no right rules, there cannot be a case where a right rule meets a
left rule. But an identity expansion is possible.

0 ⊢ 0
id0 −→E 0 ⊢ 0

0L

This concludes the introduction of the connectives; see the summary in Figure 1.

11 Admissibility of Identity, as a Theorem

We can put together all the cases for identity expansions in the following theorem.

Theorem 1 (Admissibility of Identity) In the system with identity restricted to atomic
propositions, the rule

A ⊢ A
idA

is admissible for every A.

Proof: By induction on the structure of A. Many of the individual cases were pre-
sented in lecture; the others are analogous. □

12 Admissibility of Cut, as a Theorem

The cut reductions we have presented so far only cover the case where the cut
combines a right rule for a connective with its left rule. There are two other classes
of cases: if one of the premises is the identity (whether atomic or not), and when
the last inference on one or both sides is not on the cut formula.

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.13

Cuts and identity cancel each other. There are only two cases; we show one.

A ⊢ A
idA E ′

ΩL A ΩR ⊢ C

ΩL A ΩR ⊢ C
cutA

−→R

E ′

ΩL A ΩR ⊢ C

Now we consider a case of •L in D, where E remains completely arbirary.

D′

Ω1 B1 B2 Ω2 ⊢ A

Ω1 (B1 •B2) Ω2 ⊢ A
•L E

ΩL A ΩR ⊢ C

ΩL Ω1 (B1 •B2) Ω2 ΩR ⊢ C
cutA

Since D′ still has succedent A, we can now cut it with E and then apply •L after-
wards.

−→R

D′

Ω1 B1 B2 Ω2 ⊢ A
E

ΩL A ΩR ⊢ C

ΩL Ω1 B1 B2 Ω2 ΩR ⊢ C
cutA

ΩL Ω1 (B1 •B2) Ω2 ΩR ⊢ C
•L

In essence, we are “pushing the cut up”, past the preceding inference. There is
some nondeterminism here. For example, if E ends in a right rule, or a left rule on
a proposition that is not A, then we cut push it up into the second premise as well.

The immediate concern should be that we have not reduced the structure of the cut
formula: it is still A! However, we reduced the cut from one on D (the first premise
of the cut) to D′, a subproof.

All other cases of this kind often called commutative cases proceed in an analo-
gous manner. So we summarize: we reduce a cut on

D
Ω ⊢ A

E
ΩL A ΩR

ΩL Ω ΩR ⊢ C
cutA

either

1. to cuts on a subformulas of A, or

2. to cuts on the same formula A but subderivations of D or E .

Such reductions must always terminate, either because we reach derivations with-
out subderivations, or because we reach formulas without subformula. Formally, it
is a well-founded induction on a lexicographic ordering, first on A and then on D and
E . This is also called a nested induction. We summarize in the following theorem.

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.14

Theorem 2 (Admissibility of Cut) In the inference system without cut (where the iden-
tity may be general or restricted to atoms), the rule

D
Ω ⊢ A

E
ΩL A ΩR

ΩL Ω ΩR ⊢ C
cutA

is admissible.

Proof: By nested induction, first on the structure of A, and second on the structures
of D and E . We have the following classes of cases:

Principal Cases: D ends in a right rule inferring A and E ends in a left rule infer-
ring A. We have shown several of these cases and we appeal to the induction
hypothesis on subformulas on A. If A has no subformulas we have a base
case (as for 1).

Identity Cases: Either D or E is an identity. Then we directly reduce to the other
derivation.

Commuting Cases: Either D or E ends in an inference on a formula other than
A. In this case we appeal to the induction hypothesis, possible in more than
one way, on the same A and a subderivation on D or E , and the reapply the
inference.

□

From the admissibility of identity and cut we obtain the following straightfor-
ward corollaries that follow by straightforward induction over the structure of the
given derivation.

Corollary 3 (Identity Elimination) Given an arbitrary sequent derivation with uses of
the identity (with or without cut). Then we can eliminate all uses of the identity except on
atomic propositions P , obtaining a derivation with or without cut, respectively.

Proof: By induction on the structure of the given derivation. We appeal to the
induction hypothesis and reapply the rule, except for identity when we appeal to
the admissibility of identity. □

Corollary 4 (Cut Elimination) Given an arbitary sequent derivation with uses of cut
(with or without a general identity). Then we can eliminate all uses of cut, obtaining a
derivation with or without general identity, respectively.

Proof: By induction on the structure of the given derivation. We appeal to the
induction hypothesis and reapply the rule, except for cut when we appeal to the
admissibility of cut. □

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.15

13 Summary

The rules for the sequent calculus, marking cut and identity as admissible, are sum-
marized in Figure 1.

The admissibility of cut and identity in the sequent calculus without these rules
(except for identity on atomic formulas) is the key property to ensure we have a
proof-theoretic semantics for a logic. Cut-free proofs in particular always only refer
to subformulas of the original goal sequents, so any semantic content is internal to
what we are trying prove.

While we have shown some details for ordered logic, similar (and slightly more
complicated) arguments apply to linear and structural logics and, eventually, to
logics mixing these. This is the blueprint, and future proofs of identity and cut
elimination will often be discussed via the differences from the present approach.

In a few lectures from now we will see that sequent proofs correspond to pro-
grams, and principal cut reductions play a fundamental role in interpreting the dy-
namics of programs. Identity expansions and commuting reductions correspond
to equality between programs and are therefore slightly less significant.

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.16

A ⊢ A
idA

P ⊢ P
id∗P

Ω ⊢ A ΩL A ΩR ⊢ C

ΩL Ω ΩR ⊢ C
cutA

Ω1 ⊢ A Ω2 ⊢ B

Ω1 Ω2 ⊢ A •B
•R

Ω1 A B Ω2 ⊢ C

Ω1 (A •B) Ω2 ⊢ C
•L

A Ω ⊢ B

Ω ⊢ A \B
\R

ΩA ⊢ A ΩL B ΩR ⊢ C

ΩL ΩA (A \B) ΩR ⊢ C
\L

Ω A ⊢ B

Ω ⊢ B / A
/R

ΩA ⊢ A ΩL B ΩR ⊢ C

ΩL (B / A) ΩA ΩR ⊢ C
/L

Ω ⊢ A Ω ⊢ B

Ω ⊢ A N B
NR

ΩL A ΩR ⊢ C

ΩL (A N B) ΩR ⊢ C
NL1

ΩL B ΩR ⊢ C

ΩL (A N B) ΩR ⊢ C
NL1

Ω ⊢ A

Ω ⊢ A⊕B
⊕R1

Ω ⊢ B

Ω ⊢ A⊕B
⊕R2

ΩL A ΩR ⊢ C ΩL B ΩR ⊢ C

ΩL (A⊕B) ΩR ⊢ C
⊕L

· ⊢ 1
1R

ΩL ΩR ⊢ C

ΩL (1) ΩR ⊢ C
1L

Ω ⊢ ⊤
⊤R

no ⊤L rules

no 0R rules ΩL (0) ΩR ⊢ C
0L

Figure 1: Ordered Sequent Calculus

LECTURE NOTES SEPTEMBER 5, 2023

Cut and Identity Elimination L3.17

References

H. B. Curry. Functionality in combinatory logic. Proceedings of the National Academy
of Sciences, U.S.A., 20:584–590, 1934.

Michael Dummett. The Logical Basis of Metaphysics. Harvard University Press, Cam-
bridge, Massachusetts, 1991. The William James Lectures, 1976.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

W. A. Howard. The formulae-as-types notion of construction. Unpublished note.
An annotated version appeared in: To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, 479–490, Academic Press (1980), 1969.

Joachim Lambek. The mathematics of sentence structure. The American Mathemati-
cal Monthly, 65(3):154–170, 1958.

Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Notes for three lectures given in
Siena, Italy. Published in Nordic Journal of Philosophical Logic, 1(1):11-60,
1996, April 1983. URL http://www.hf.uio.no/ifikk/forskning/
publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf.

Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

Alfred Tarski. The concept of truth in formalized languages. In John Corcoran and
J. H. Woodger, editors, Logic, Semantics, Metamathematics, pages 152–278. Claren-
don Press, Oxford, 1931. Translation of a paper from 1931.

LECTURE NOTES SEPTEMBER 5, 2023

http://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf
http://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf

Lecture Notes on
Proof Terms

15-836: Substructural Logics
Frank Pfenning

Lecture 4
September 7, 2023

1 Introduction

In the last lecture we have seen the fundamental properties of cut and identity elim-
ination. They guarantee the harmony of the right and left rules for the connectives
provides us with a proof-theoretic semantics: the meaning of a proposition is given
by its cut-free proofs. This is a valid semantic point of view since the left and right
rules only decompose propositions into their constituents so we don’t have to look
“outside” for their meaning. To put it another way: the proof-theoretic semantics
is compositional.

In intuitionistic logics, therefore, proofs are the primary carriers of meaning.
We therefore should think of them as being “first-class”, which is not usually the
case in classical mathematics: proofs are carried out, of course, but the study of
their formal structure is not so important. For example, you are unlikely to see a
notation for mathematical proofs as objects.

Besides the fact that proofs fundamentally provide meaning to the propositions,
they also have a central computational role. We will explore this in the next lecture.
So we need notations so we can write out proofs, reason about them, execute them,
etc. In this lecture we take a neutral point of view: all we want to do is to com-
pactly record the structure of proofs in the form of terms. These terms should have
enough information to unwind them into the two-dimensional proofs we are used
to, and vice versa.

These desiderata don’t change from structural to substructural logics, although
the process of checking them may change substantially.

2 Annotating the Sequent

As in the last lecture, we will focus here on ordered logic but the approach itself is
quite general. Our goal is to endow the inference rules with additional information

LECTURE NOTES SEPTEMBER 7, 2023

Proof Terms L4.2

so they operate on sequents of the form

Ω ⊢ M : A

where M is a proof (term) of A. In order to write out proof terms we should be
able to refer to particular antecedents in Ω. For example, if we have a rule \L and
we have multiple antecedents for the form A \ B, which antecedent is the rule
applied to? One solution is to count. For example, the rule might be applied to
the fifth antecedent. This works to an extent in ordered logic because the order of
antecedents never changes. However, it is complicated by the fact that antecedents
are split in some rules. For example, in a concrete rule application

A0 A1 ⊢ B A2 A3 ⊢ C

A0 A1 A2 A3 ⊢ B • C
•R

the numbering of antecedents is simple in the conclusion, but in the second premise
we suddenly start counting at 2 instead of 0. It is possible to account for that, but
proofs are very difficult to read. Also, since antecedents in linear logic are subject
to exchange, the numbering might change in complicated ways, as in

A0 A2 ⊢ B A1 A3 ⊢ C

A0 A1 A2 A3 ⊢ B ⊗ C
⊗R

Again, this can be dealt with, but there is a more abstract alternative. We label all
antecedents with distinct variables that we can refer to in proof terms. A sequent
then has the form

(x1 : A1) . . . (xn : An) ⊢ M : A

where all the xi are distinct and may be mentioned in M . We show the proof terms
(but not the variables in the antecedents) in blue.

We start with A \ B. Starting out, here is rule we want to annotate on the left,
and a partial annotation on the right. The Ω’s now stand for antecedents annotated
with variables.

A Ω ⊢ B

Ω ⊢ A \B
\R

(x : A) Ω ⊢ ? : B

Ω ⊢ ? : A \B
\R

A first thing we can say is that x must be chosen so it is fresh and doesn’t occur
already in Ω. This is so pervasive that it may often not be explicitly stated, relying
on the presupposition that all variables declared in the antecedent are distinct.

Continuing, we see that somehow there will be proof M : B once we annotate
the premise. We then just need to fill in the slot in the conclusion with a term using
it. We uniformly use the name of the rule as a proof constructor.

(x : A) Ω ⊢ M : B

Ω ⊢ ? : A \B
\R

(x : A) Ω ⊢ M : B

Ω ⊢ (\R (x.M)) : A \B
\R

LECTURE NOTES SEPTEMBER 7, 2023

Proof Terms L4.3

We also need to indicate the variable x and track, somehow, that it will be fresh
in the premise. We use the notation (x.M) for a bound occurrence of x with scope
M . Because the concrete names of bound variables do not matter, we can always
silently rename it in case the particular name x is already among the antecedents.
Many rules will take advantage of this notation and convention.

What about the left rule? It is applied to a particular antecedent, so this needs
to be explicit.

ΩA ⊢ A ΩL B ΩR ⊢ C

ΩL ΩA (A \B) ΩR ⊢ C
\L

ΩA ⊢ M : A ΩL (y : B) ΩR ⊢ P : C

ΩL ΩA (x : A \B) ΩR ⊢ (\L x ? ?) : C
\L

We have already filled in the proof terms for the two premises, and also a name
(y) for the antecedent B in the second premise. Now M is carried down without
change, because all variables in ΩA already exists in the conclusion, but we need to
abstract P over y because it must be fresh.

ΩA ⊢ M : A ΩL (y : B) ΩR ⊢ P : C

ΩL ΩA (x : A \B) ΩR ⊢ (\L x M (y. P)) : C
\L

The rules for right implication can be developed entirely analogously.

Ω A ⊢ M : B

Ω ⊢ (/R (x.M)) : B / A
/R

ΩA ⊢ M : A ΩL (y : B) ΩR ⊢ P : C

ΩL (x : B / A) ΩA ΩR ⊢ (/L x M (y. P)) : C
/L

At this point we are almost ready for an example, except for the identity. In
certain places, like the first argument to left rules, only variables x are allowed. For
the succedent we have an arbitrary term M . This means we could either include
variables as a special case of a term, or we could use an explicit term construction
like Id. We use the latter approach, so that every inference rules is turned into a
corresponding constructor without exception.

(x : A) ⊢ (Id x) : A
id

As an example, let’s look at Lambek’s associativity law from last lecture, using
identity as a full rule.

A ⊢ A
id

B ⊢ B
id

C ⊢ C
id

(C / B) B ⊢ C
/L

A (A \ (C / B)) B ⊢ C
\L

(A \ (C / B)) B ⊢ A \ C
\R

A \ (C / B) ⊢ (A \ C) / B
/R

LECTURE NOTES SEPTEMBER 7, 2023

Proof Terms L4.4

To annotate this proof with a proof term, we start bottom up, labeling the an-
tecedent with a variable and writing question marks where we have not yet filled
in the information.

? : A ⊢ ? : A
id

(? : B) ⊢ ? : B
id

(? : C) ⊢ ? : C
id

(? : C / B) (? : B) ⊢ ? : C
/L

(? : A) (x : A \ (C / B)) (? : B) ⊢ ? : C
\L

(x : A \ (C / B)) (? : B) ⊢ ? : A \ C
\R

x : A \ (C / B) ⊢ ? : (A \ C) / B
/R

The /R rule introduces a new variable. In order to keep things straight, let’s give it
the name b.

? : A ⊢ ? : A
id

(b : B) ⊢ ? : B
id

(? : C) ⊢ ? : C
id

(? : C / B) (b : B) ⊢ ? : C
/L

(? : A) (x : A \ (C / B)) (b : B) ⊢ ? : C
\L

(x : A \ (C / B)) (b : B) ⊢ ? : A \ C
\R

x : A \ (C / B) ⊢ ? : (A \ C) / B
/R

Actually, we now have some information about the proof term in the conclusion,
but let’s hold off filling that in until we have propagated more information upward.
The second inference for \R works in a symmetric way. We call the new variable a.

a : A ⊢ ? : A
id

(b : B) ⊢ ? : B
id

(? : C) ⊢ ? : C
id

(? : C / B) (b : B) ⊢ ? : C
/L

(a : A) (x : A \ (C / B)) (b : B) ⊢ ? : C
\L

(x : A \ (C / B)) (b : B) ⊢ ? : A \ C
\R

x : A \ (C / B) ⊢ ? : (A \ C) / B
/R

Now the \L rule introduces a new variable, as does the following /L. We write
those in, naming sure to choose fresh names.

a : A ⊢ ? : A
id

(b : B) ⊢ ? : B
id

(c : C) ⊢ ? : C
id

(z : C / B) (b : B) ⊢ ? : C
/L

(a : A) (x : A \ (C / B)) (b : B) ⊢ ? : C
\L

(x : A \ (C / B)) (b : B) ⊢ ? : A \ C
\R

x : A \ (C / B) ⊢ ? : (A \ C) / B
/R

LECTURE NOTES SEPTEMBER 7, 2023

Proof Terms L4.5

Now that we have named all antecedents in all sequents, we can fill in the proof
terms according to our proof term language, starting at the top and moving to-
wards the bottom. We combine these into two steps, starting with the identities.

a : A ⊢ (Id a) : A
id

(b : B) ⊢ (Id b) : B
id

(c : C) ⊢ (Id c) : C
id

(z : C / B) (b : B) ⊢ ? : C
/L

(a : A) (x : A \ (C / B)) (b : B) ⊢ ? : C
\L

(x : A \ (C / B)) (b : B) ⊢ ? : A \ C
\R

x : A \ (C / B) ⊢ ? : (A \ C) / B
/R

And then we complete the terms for the remaining rule applications, working
downwards.

a : A ⊢ (Id a) : A
id

(b : B) ⊢ (Id b) : B
id

(c : C) ⊢ (Id c) : C
id

(z : C / B) (b : B) ⊢ (/L z (Id b) (c. Id c)) : C
/L

(a : A) (x : A \ (C / B)) (b : B) ⊢ (\L x (Id a) (/L z (Id b) (c. Id c))) : C
\L

(x : A \ (C / B)) (b : B) ⊢ (\R (a. \L x (Id a) (/L z (Id b) (c. Id c)))) : A \ C
\R

x : A \ (C / B) ⊢ (/R (b. \R (a. \L x (Id a) (/L z (Id b) (c. Id c))))) : (A \ C) / B
/R

There is a lot of redundant information in this derivation. In fact, starting with

x : A \ (C / B) ⊢ (/R (b. \R (a. \L x (Id a) (/L z (Id b) (c. Id c))))) : (A \ C) / B

we can reconstruct the whole derivation in a unique way.
This correspondence can be stated formally as two theorems (for antecedents Ω

that are labelled with unique variables).

(i) Given Ω, M , and A, either there is a unique derivation

D
Ω ⊢ M : A

or there is no such derivation.

(ii) Given a derivation Ω ⊢ A where the applications of left rules are marked
with their corresponding variable, then there is a unique term M such that
Ω ⊢ M : A.

The process s of constructing a derivation from a term is not entirely straight-
forward because of the necessary splits of the hypotheses in rules with multiple
premises. We could either look ahead to see which variables occur, or we can prop-
agate all antecedents to one of the premises and then pass on the ones that were

LECTURE NOTES SEPTEMBER 7, 2023

Proof Terms L4.6

not used to the other premises. In this algorithm, we need to make sure that uses
of variables in a derivation are consecutive so that order is suitably respected.

A general algorithm for the input/output interpretation of antecedents that
works for structural, linear, and ordered antecedents and even a mix is described
by Polakow [2000], with more proof details in his Ph.D. thesis [Polakow, 2001].
This system work during proof search when a full proof term isn’t even available for
checking, so it solves a somewhat more difficult problem than is needed here. Still,
it provides an elegant algorithmic solution.

We show one more example, for A •B. There is no variable binding in the right
rule.

Ω1 ⊢ A Ω2 ⊢ B

Ω1 Ω2 ⊢ A •B
•R

Ω1 ⊢ M : A Ω2 ⊢ N : B

Ω1 Ω2 ⊢ (•R M N) : A •B
•R

The left rule is a kind of pattern matching and therefore has to bind two fresh vari-
ables.

ΩL A B ΩR ⊢ C

ΩL (A •B) ΩR ⊢ C
•L

ΩL (y : A) (z : B) ΩR ⊢ P : C

ΩL (x : A •B) ΩR ⊢ (•L x (y. z. P)) : C
•L

Since the proof terms are constructed quite systematically, we don’t show the re-
maining rules. The language of proof terms is summarized in Figure 1.

3 Cut Reductions on Proof Terms

We an express the cut reductions between two proofs on the proof terms them-
selves. We show only one example (the principal reduction for fuse), but others are
similar. We first introduce a proof term for cut, taking it here as a given rules of
inference rather than just admissible.

Ω ⊢ M : A ΩL (x : A) ΩR ⊢ P : C

ΩL Ω ΩR ⊢ (CutA M (x. P)) : C
cutA

Now to the particular case. Before the reduction, we have

Ω1 ⊢ M : A Ω2 ⊢ N : B

Ω1 Ω2 ⊢ (•R M N) : A •B
•R

ΩL (y : A) (z : B) ΩR ⊢ P : C

ΩL (x : A •B) ΩR ⊢ (•L x (y. z. P)) : C
•L

ΩL Ω1 Ω2 ΩR ⊢ (CutA•B (•R M N) (x. •L x (y. z. P))) : C
cutA•B

and after the reduction (writing in proof terms afresh):

−→R

Ω2 ⊢ N : B

Ω1 ⊢ M : A ΩL (y : A) (z : B) ΩR ⊢ P : C

ΩL Ω1 (z : B) ΩR ⊢ (CutA M (y. P)) : C
cutA

ΩL Ω1 Ω2 ΩR ⊢ (CutB N (z.CutA M (y. P))) : C
cutB

LECTURE NOTES SEPTEMBER 7, 2023

Proof Terms L4.7

Expressing this purely on the proof term, we can recognize it as a kind of pattern
matching reduction, except that we don’t substitute the way we would usually
think of it in the definition of functional languages.

CutA•B (•R M N) (•L x (y. z. P)) −→R CutB N (z.CutA M (y. P))

In the next lecture similar cut reductions play a much more significant role because
we will make the computational intuition more precise.

4 Invertibility and Polarity

When constructing proofs, bottom-up, a priori we have many possible choices.
Any left rule might apply to any matching antecedent, or a right rule to a matching
succedent. Applying a rule is a small step, breaking down just one connective.
Then we are again faced with a similar choice. Reducing this nondeterminism is
critical in proof search procedures, although it may not mean much regarding the
question of decidability.

For example, it is easy to see that the pure ordered logic we have seen is decid-
able once we know cut elimination, because the premises of all the rules are smaller
than the conclusion in the sense of having fewer connectives in them. Therefore,
any way we can try to construct a proof, bottom-up, will have to terminate, either
in success or in failure. If we try all of them, we will either find a proof or there
cannot be any.

Fortunately, we don’t need to search that blindly while remaining complete.
For each connective, either the left rule or the right rule in the sequent calculus is
invertible in the sense that the premises are provable if and only if the conclusion
is. So we can use such a rule, bottom-up, without having to consider any other
choices because we have preserved provability exactly.

The question is which rules are invertible. There is an easy test: whichever rule
is applied first (again, reading bottom-up) in the identity expansion is the invertible
rule while the counterpart on the other side is not. Here is a tiny example:

A ⊢ A
idA

B ⊢ B
idB

A B ⊢ A •B
•R

A •B ⊢ A •B
•L

While it is now plausible that •L rule is invertible, we can see that •R is not because
we cannot (yet) break up the antecedents appropriately.

We can prove invertibility of •L in pure ordered logic using the admissibility of
cut and identity. You may want to try this yourself before peeking at the solution
on the next page.

LECTURE NOTES SEPTEMBER 7, 2023

Proof Terms L4.8

A ⊢ A
idA

B ⊢ B
idB

A B ⊢ A •B
•R

ΩL (A •B) ΩR ⊢ C

ΩL A B ΩR ⊢ C
cutA•B

You can see if you read this from the unproved premise to the conclusion, it is
just the inverted •L. Given any concrete proof of the second premise we can apply
cut elimination to obtain a direct proof of the conclusion.

But we have to be a bit careful that this notion of invertibility may not completely
coincide with the inference rule being reversible. For example, the rule

· ⊢ 1
1R

is technically invertible in the sense that whenever the conclusion is, so are all the
premises (namely none). However, we cannot always apply this rule when we see
1 in a succedent because the antecedents may not be empty. If we had formulated
the rule slightly differently:

∆ = (·)

∆ ⊢ 1
1R

then it would not no longer be invertible.
Therefore, instead of talking about the right or left invertibility of a rule, we

talk about the right or left invertibility of a connective. If we can always apply its
right or left rule without losing provability when a connective appears at the top
level of a proposition, we call the connective invertible on the right or on the left,
respectively.

The distinction of whether left or right rules are invertible is of fundamental im-
portance in studying proof theory, and its connection to computation. We call the
right invertible connectives negative, while left invertible connectives are positive.
For ordered logic, we get the following classification:

Negative (right invertible): A \B, A / B, A N B, ⊤

Positive (left invertible): A •B, A ◦B, 1, A⊕B, 0

5 A Zoo of Connectives

In linear and ordered logic, the polarity of each connective is uniquely determined.
Somewhat surprisingly, though, in structural logic conjunction has both invertible
left and right rules. This is because it actually unifies two different connectives we
know from linear logic: truth in the same state A⊗B (positive) and external choice
ANB (negative). It turns out that it is highly beneficial to make this distinction even

LECTURE NOTES SEPTEMBER 7, 2023

Proof Terms L4.9

for intuitionistic logic, but this is rarely done—its significance was not recognized
until the discovery of call-by-push-value (really: a polarized type system) [Levy,
2006]. We will see that positive types (including positive pairs) are eager while
negative types (including externa choice) are lazy.

Below is the table of connective in the various logics, where we see that certain
connectives further on the right becomes indistinguishable when we move to the
left. For example, if the order of antecedents is irrelevant (e.g., in linear logic) then
left and right implication (A\B and B/A) become indistinguishable and are written
as A ⊸ B.

structural linear ordered polarity pronunciation

A ⊃ B A ⊸ B A \B negative A under B
B / A negative B over A

A ∧B A⊗B A •B positive A fuse B
A ◦B positive A twist B

A N B A N B negative A with B

A ∨B A⊕B A⊕B positive A plus B

⊤ 1 1 positive one
⊤ ⊤ negative top

⊥ 0 0 positive zero

The ambiguous nature of general structural conjunction A∧B and ⊤ is resolved
at the linear level because these connectives split into two each: one positive and
one negative.

6 Summary

The language of proof terms is in Figure 1. Since the constructors are named after
the inference rules we don’t bother showing the inference rules. You should be able
to easily write them out.

Valid proof terms are in one-to-one correspondence with proofs, so they merely
serve as a compact notation here. We can then express operations such as cut re-
duction on these terms, rather than showing complex derivations.

If we think of cut and identity as being admissible, then IdA (at types other than
atoms P) and CutA would be meta-level operations to compute a cut-free proof
from the arguments. But we need to keep in mind that cut reduction is highly
nondeterministic, so perhaps CutA M (x. P) ∼ N it is best thought of a 4-place
relation between A, M , x. P , and N (all of the proofs being cut-free).

LECTURE NOTES SEPTEMBER 7, 2023

Proof Terms L4.10

M,N,P ::= CutA M (x. P) | Id x
| \R (x.M) | \L x M (y. P)
| /R (x.M) | /L x M (y. P)
| •R M N | •L x (y. z. P)
| ◦R M N | ◦L x (z. y. P)
| NR M N | NL1 x (y. P) | NL2 x (z. P)
| 1R | 1L x M
| ⊕R1 M | ⊕R2 N | ⊕L x (y.N) (z. P)
| ⊤R |
| | 0L x

Figure 1: Proof terms for ordered logic

LECTURE NOTES SEPTEMBER 7, 2023

Proof Terms L4.11

References

Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-by-
name. Higher-Order and Symbolic Computation, 19(4):377–414, 2006.

Jeff Polakow. Linear logic programming with an ordered context. In M. Gabbrielli
and F. Pfenning, editors, Conference on Principles and Practice of Declarative Pro-
gramming (PPDP 2000), pages 68–79, Montreal, Canada, September 2000. ACM.

Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis, Department of
Computer Science, Carnegie Mellon University, August 2001.

LECTURE NOTES SEPTEMBER 7, 2023

Lecture Notes on
Linear Message Passing I

15-836: Substructural Logics
Frank Pfenning

Lecture 5
September 12, 2023

1 Introduction

In this lecture we start a new section of the course. We have studied proof systems
for substructural logics and their properties, such as cut and identity elimination.
We have also seen that substructural inference itself can express certain algorithms
(e.g., for parsing) at a high level of abstraction. We can summarize this with the
slogan “computation is proof construction”. The final answer is a proof, or sometimes
just the information of whether a proof exists or not.

Now we look at a connection where proofs themselves are programs, and com-
putation proceeds by proof reduction rather than proof construction. The new slogan
is “computation is proof reduction”. This notion of computation inherits many desir-
able properties from logic and proof theory, but it is certainly not without its own
set of challenges and difficulties. We will come back to these challenges in Lecture
7, once we have developed an intuitive understanding of the relationship.

Here is the basic table of correspondences:

Logic Programming
Proposition Type

Proof Program
Reduction Computation

The specifics of the correspondence are dramatically dependent on the following
variables (and maybe more):

• The logic. Ordered logic is different from linear logic, which is be different
from structural logic, and several of these come in intuitionistic as well as
classical versions. Other examples are temporal logics, modal logics, epis-
temic logics, and so on, each with their opportunity for computational mean-
ing.

LECTURE NOTES SEPTEMBER 12, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/07-preservation.pdf
http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/07-preservation.pdf

Linear Message Passing I L5.2

• The proof system. Since proofs are programs, the specifics of each proof sys-
tem determine the structure of programs. And different proof systems have
different notion of reduction, which induce different forms of computation.

Such variations are not trivial, but fundamentally change the way we think about
programs and their computation. For example, early work by Curry [1934] es-
sentially assigned computational meaning to axiomatic proofs in Hilbert-style sys-
tems. Such computation is in the form of combinatory reduction which can be seen
at the root of the APL programming language. Later work by Howard [1969] es-
tablished a relationship between Gentzen’s system of natural deduction [Gentzen,
1935, Prawitz, 1965] and Church’s typed λ-calculus [Church, 1940]. Here, compu-
tation proceeds by substitution which is at the root of modern functional program-
ming languages.

In today’s lecture, we begin to establish a connection between linear logic [Gi-
rard, 1987, Girard and Lafont, 1987] presented as a sequent calculus, and message-
passing processes. The propositions of linear logic express communication pro-
tocols, giving a post-hoc logical justification for session types [Honda and Tokoro,
1991, Honda, 1993, Honda et al., 1998]. The connection in this form was first es-
tablished by Caires and Pfenning [2010] and followed up in various ways (e.g.,
[Wadler, 2012, Caires et al., 2016]).

But enough of the generalities. Let’s get started! Instead of ordered logic which
has been mostly our focus so far, we now move to linear logic because of the wider
variety of programs it supports.

2 Cut as Process Composition

The first two fundamental ideas are the following:

• Proofs represent processes.

• Cut corresponds to the parallel composition of two processes with a private
communication channel connecting them.

In order to see how processes are connected, exactly, we label antecedents as we did
in Lecture 4. This removes ambiguity, for example, when we have more than one
antecedent with a particular proposition A. In addition, we also label the succedent
with a channel in order to clarify which of the antecedents in the other premise of a
cut it is connected to. Without an explicit proof term, the sequent then would have
the form

x1 : A1, . . . , xn : An︸ ︷︷ ︸
channels used

⊢ x : A︸ ︷︷ ︸
channel provided

A process provides exactly one channel and may use multiple channels. All the
variables xi and x must be distinct.

LECTURE NOTES SEPTEMBER 12, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/04-proofterms.pdf

Linear Message Passing I L5.3

We need cut as a primitive rule now because cut reduction induces computa-
tion. Without cut, there will be no computation! We call the process P (= the proof
of the first premise) the provider (or server) and the the process Q (= the proof of the
second premise) the client.

P
∆ ⊢ (x : A)

Q

∆′, x : A ⊢ (z : C)

∆,∆′ ⊢ (z : C)
cut

The variable x represents the channel of communication between provider and
client. This channel is private in the sense that P and Q are the only two endpoints,
which is guaranteed by our convention about the uniqueness of variable names.

Because the variables in a sequent represent channels, we often just refer to
them as channels, just like we might say “the integer x” when x is a variable stand-
ing for an integer.

3 Cut Reduction as Communication

The next question is how cut reduction corresponds to communication. We have
seen that there are three different kinds of cut reduction:

1. principal reductions, where a right rule for a connective meets a corresponding
left rule;

2. identity reductions, where one of the premises is an identity rule; and

3. permuting reductions, where an inference is applied to an antecedent or succe-
dent not involved in the cut.

It turns out that only the first two are of interest computationally while the third
represents a form of equality reasoning between processes.

We start with principal reductions, using internal choice A ⊕ B as a guiding
example. There are two—we show the first one, since the second one is entirely
symmetric.

P =

P1

∆ ⊢ x : A

∆ ⊢ x : A⊕B
⊕R1

Q1

∆′, x : A ⊢ z : C

Q2

∆′, x : B ⊢ z : C

∆′, x : A⊕B ⊢ z : C
⊕L

 = Q

∆,∆′ ⊢ z : C
cutA⊕B

−→R

P1

∆ ⊢ x : A

Q1

∆′, x : A ⊢ z : C

∆,∆′ ⊢ z : C
cutA

LECTURE NOTES SEPTEMBER 12, 2023

Linear Message Passing I L5.4

There are some syntactic details to consider, but the first and most important ques-
tion is “What is the flow of information here between the first premise (process P) and the
second premise (process Q)?” We see that Q, with the ⊕L rule is prepared for both
eventualities: either A might be true or B might be true. This choice is made by
P which ends in either ⊕R1 (A is true) or ⊕R2 (B is true). Therefore, P has to
communicate this information to Q.

We say that P either sends π1 or π2, and Q is set to receive and branch on either
of those two tokens. So we write

P = send x π1 ; P1

Q = recv x (π1 ⇒ Q1 | π2 ⇒ Q2)

where P could also send π2. If we write the process P into the judgment in the
form

∆ ⊢ P :: (x : A)

then we get the following three rules

∆ ⊢ P1 :: (x : A)

∆ ⊢ send x π1 ; P1 :: (x : A⊕B)
⊕R1

∆ ⊢ P2 :: (x : B)

∆ ⊢ send x π2 ; P2 :: (x : A⊕B)
⊕R2

∆, x : A ⊢ Q1 :: (z : C) ∆, x : B ⊢ Q2 :: (z : C)

∆, x : A⊕B ⊢ recv x (π1 ⇒ Q1 | π2 ⇒ Q2) :: (z : C)
⊕L

These rules are actually closely related to the rules for proof terms from the last
lecture, except that our purpose and therefore notation are quite different. For
one, we have labeled the succedent with a variable that represent a communica-
tion channel. For another, we have used the terms send and receive to capture the
communication action.

We now prefer to read these rules as typing rules for the processes P and Q, but
we should keep in mind that erasing all the process information turns them back
into the familiar logical rules.

We can now go back to the cut reduction and annotate each sequent with its
process term. Writing the cut with x as a private channel as P ∥x Q, we can read
off the reduction on processes from the reduction on proofs.

(send x π1 ; P1) ∥x (recv x (π1 ⇒ Q1 | π2 ⇒ Q2)) −→R P1 ∥x Q1

(send x π2 ; P2) ∥x (recv x (π1 ⇒ Q1 | π2 ⇒ Q2)) −→R P2 ∥x Q2

An interesting observation here is that the type of the channel x evolves from A ⊕
B to either A or B, depending on whether the message was π1 or π2. In most
programming languages the type of a variable never changes, but here this seems
essential. We also see that the “outside” channels (the ones in the conclusion of
the cut) which we wrote as ∆,∆′ and z : C do not change their type. This will
be important in Lecture 7 when we investigate the properties of the programming
language as distinct from the properties of the proof system.

LECTURE NOTES SEPTEMBER 12, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/07-preservation.pdf

Linear Message Passing I L5.5

4 Communication and Polarity

With the example of internal choice A ⊕ B, we have seen that the type prescribes
a communication protocol: the provider sends either π1 or π2 and the client must be
prepared to receive either one. Before we look at other connectives, can we predict
whether the provider or the client will have information to send? A key idea is
that the rule for an invertible connective does not have any information. After
all, the premises can be derived if and only if the conclusion can. On the other
hand, noninvertible connectives are noninvertible precisely because applying them
requires a choice. The information contained in this choice (like π1 and π2) is then
communicated to the connected process.

Recall that all positive connectives are noninvertible on the right. Therefore,
taking the provider’s perspective, the right rules for positive connectives will send
a message, while their left rules will receive a message. In linear logic, these are
A⊕B, 1, and A⊗B. Looking at the unit, we have

· ⊢ 1
1R

∆ ⊢ C

∆,1 ⊢ C
1L

1 is not a right invertible connective, because the rule cannot be applied to a section
∆ ⊢ 1 unless ∆ is empty.

· ⊢ (x : 1)
1R

Q

∆′ ⊢ C

∆′, x : 1 ⊢ C
1L

∆′ ⊢ (z : C)
cut

−→R

Q

∆′ ⊢ C

The information conveyed, therefore, is only that the associated process terminates,
which is done by sending the unit message (). First, the typing rules and then the
reduction rule.

· ⊢ send x () :: (x : 1)
1R

∆ ⊢ Q :: (z : C)

∆, x : 1 ⊢ recv x (()⇒ Q) :: (z : C)
1L

send x () ∥x recv x (()⇒ Q) −→R Q

Before we move on to the meaning of A ⊗ B and the other linear connectives, we
program some small examples that are already expressible with just A⊕B and 1.

5 An Example: Booleans

A very simple type is that of the Booleans.

bool = 1⊕ 1

LECTURE NOTES SEPTEMBER 12, 2023

Linear Message Passing I L5.6

Perhaps not coincidentally, 1 + 1 = 2 is also the number of different message se-
quences that can be communicated on a channel x : bool. Namely:

· ⊢ false :: (c : bool)
· ⊢ true :: (c : bool)

false = send c π1 ; send c ()
true = send c π2 ; send c ()

It is possible for a process P with the typing · ⊢ P :: (c : bool) to spawn other
processes and perform a lot of computation, but ultimately it can only send π1, ()
or π2, () along c, because that is what the type of the channel enforces. It might also
fail to terminate if the language permits recursion, which we come to in the next
section.

Before that, let’s consider a process that receives a Boolean and passes on the
negation.

a : bool ⊢ neg :: (c : bool)

neg = recv a (π1 ⇒ recv a (()⇒ send c π2 ; send c ())
| π2 ⇒ recv a (()⇒ send c p1 ; send c ()))

From the purely logical perspective, this is uninteresting because this program rep-
resents a proof of

1⊕ 1 ⊢ 1⊕ 1

There should be four cut-free and identity-free proofs of this proposition that rep-
resents the four unary Boolean functions.

Even though for the moment we have a perfect correspondence between proofs
and programs, there is a shift in perspective. Proofs are primarily thought of as ev-
idence for truth, while programs are primarily thought of as objects that compute.
Through the correspondence each view influences the others, and we can see rela-
tionships and interpretations that may otherwise be missed or found insignificant.

6 Another Example: Natural Numbers

Natural numbers are a mainstay both in logic and programming languages. In
logic, they are studied in Peano Arithmetic, in programming languages they are
either primitive (perhaps with a bounded range) or thought of as an inductive type.

We will put off any investigation of induction and inductive types and instead
go directly to recursion, both at the level of types and at the level of programs. Con-
sider, for example, the type 1 ⊕ 1 ⊕ 1. This has three possible message sequences,
1 ⊕ 1 ⊕ 1 ⊕ 1 has four, and so on. There are infinitely many natural numbers, so
the definition would be infinite:

nat = 1⊕ (1⊕ . . .)

LECTURE NOTES SEPTEMBER 12, 2023

Linear Message Passing I L5.7

Using recursion, we can express this directly as

nat = 1⊕ nat

The corresponding message sequences can also be recursively defined:

n = π1 () | π2 n

We see that the use of π1 and π2 is a bit awkward from the programming perspec-
tive, so we generalize the binary sum A⊕B to ⊕{ℓ : Aℓ}ℓ∈L where ℓ are labels (also
called tags) and L is a finite index set. Then the binary sum can be defined with the
index set {π1, π2}, maybe written as A⊕B ≜ ⊕{π1 : A, π2 : B}.

Then we define:

nat = ⊕{zero : 1, succ : nat}

· ⊢ zero :: (n : nat)
zero = send n zero ; send n ()

In order to define the successor process, it is convenient to consider the computa-
tional interpretation of the identity. First, the cut reductions, which show that cut
and identity “cancel” each other. The structure of A is irrelevant, because the cut is
directly eliminated.

P (x)

∆ ⊢ x : A x : A ⊢ y : A
id

∆ ⊢ y : A
cut

−→R

P (y)

∆ ⊢ y : A

y : A ⊢ x : A
id

Q(x)

∆′, x : A ⊢ z : C

∆′, y : A ⊢ z : C
cut

−→R

Q(y)

∆′, y : A ⊢ z : C

We see that cut reduction in these two cases performs a variable substitution or re-
naming (P (x) becomes P (y) and Q(x) becomes Q(y)). This renaming is necessary
so that the conclusion before and after the reduction remains the same. Compu-
tationally, this is necessary because the channels in the conclusion of the cut are
connected to other processes (either clients or providers), and these other processes
should be able continue to communicate along the same channels as before.

We refer to this operation as forwarding because the identity intuitively forwards
any messages on the x and y channels to the other.

x : A ⊢ fwd y x :: (y : A)
id

The provided channel y here comes first, which may seem unintuitive but is part
of a number of coordinated decisions is the design of the MPASS programming

LECTURE NOTES SEPTEMBER 12, 2023

Linear Message Passing I L5.8

language. The reductions:

P (x) ∥x fwd y x −→R P (y)

fwd x y ∥x Q(x) −→R Q(y)

To make sure the forwarder is connected to the correct provider P (x) or client Q(x),
the channel x must actually occur in these processes. Since communication chan-
nels are private and linear, this condition is sufficient to guarantee a correct reduc-
tion.

We can now complete the brief example of natural numbers by writing the suc-
cessor process.

nat = ⊕{zero : 1, succ : nat}

· ⊢ zero :: (n : nat)
zero = send n zero ; send n ()

m : nat ⊢ succ :: (n : nat)
succ = send n succ ; fwd n m

In programming language parlance, types like nat are equirecursive, which means
here that there is no message associated with the unfolding of the recursion. In
the context of a language such as ML we would think of the type nat as inductive
because we would like values of this type to be isomorphic to the usual natural
numbers. In a non-strict language such as Haskell the type would instead be in-
terpreted coinductively because we can write a simple program that produces an
infinite stream of succ constructors. Similarly, in the context of our message-passing
programming language, a recursive program could easily send an infinite stream
of succ labels. So types in MPASS are interpreted coinductively. This means that
we disallow type definition such as ω = ω: the right-hand side of a type definition
must always start with a constructor so it uniquely represents a potentially infinite
type (that is, a potentially infinite communication protocol) in a finitary way.

For example, the type

bits = ⊕{b0 : bits, b1 : bits}

represents an infinite stream of bits 0 and 1. It is easy to write a transducer process
that negates each bit as it comes in.

7 MPASS Syntax

We introduce the syntax of the MPASS language for the remaining examples of this
lecture and the following two lectures. You can download a version of MPASS from
the course resources page. This contains a readme.txt file with a full grammar

LECTURE NOTES SEPTEMBER 12, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//resources.html

Linear Message Passing I L5.9

and other useful information. The examples from this lecture can be found in the
file lecture5.mps.

We can define types recursively at the top level using the type keyword, in-
cluding mutual recursion. Labels must be preceded by a single quote so they are
syntactically distinguished from the names of types, channels, and processes.

% unary natural numbers
type nat = +{’zero : 1, ’succ : nat}

Processes are defined with the proc keyword, followed by the name of the process,
then followed by the channel provided by the process and its type. Continuing the
example:

proc zero (n : nat) = send n ’zero ; send n ()

This avoids the need for a separate type declaration. If the process additionally
uses channels, they follow after the provided one.

proc succ (n : nat) (m : nat) = send n ’succ ; fwd n m

8 Example: Natural Numbers in Binary Form

We have already seen natural numbers in binary form as an example for ordered
inference. Now we think of them in terms of message-passing like the natural
numbers, where the least significant bit is sent first.

type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}

proc zero (x : bin) = send x ’e ; send x ()
proc succ (x : bin) (y : bin) =

recv y (’b0 => send x ’b1 ; fwd y x
| ’b1 => send x ’b0 ; call succ x y % carry
| ’e => recv y (() => send x ’b1 ; send x ’e ; send x ()))

We also see an example for the call keyword. Its first argument is a process (here
a recursive call), the second is the provided channel, and the remaining ones are
the used channels passed to the process. These arguments must match the type
declarations in the process header.

To write and understand such a program it is often extremely valuable to cal-
culate the type of every variable at various program points. That’s because they
change, and yet determine what may be possible as a next interaction.

The syntax for cut is, abstractly xA ← P (x) ; Q(x), where P (x) provides x and
Q(x) uses x. The typing rule:

∆ ⊢ P (x) :: (x : A) ∆′, x : A ⊢ Q(x) :: (z : C)

∆,∆′ ⊢ xA ← P (x) ; Q(x) :: (z : C)
cut

LECTURE NOTES SEPTEMBER 12, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/05-mpass1/lecture5.mps

Linear Message Passing I L5.10

The type A indicates the type of the new private channel, which may not be readily
inferable. We do not indicate how the antecedents of the conclusion are to be split
between ∆ and ∆′; instead this is determined by a type-checking algorithm.

Dynamically, cut creates a (globally fresh) channel a, spawns the process P (a)
and continues as Q(a). So there is a small asymmetry here inherent in the nature of
the (intuitionstic) sequent with a single conclusion.

xA ← P (x) ; Q(x) −→ P (a) ∥a Q(a) (a fresh)

Since cut just allocates a fresh channel and spawns a new process, there is no inter-
process communication involved in its operational interpretation.

We can use this to test our small successor programs: we create a channel ini-
tialized to zero and then increment it several times. We show the current state of
the typing judgment after a line of code. For example, the first call to succ will
pass x0 to it, so it is no longer in the current context.

proc test (x : bin) =
x0 <- call zero x0 ; % x0 : bin |- x : bin
x1 <- call succ x1 x0 ; % x1 : bin |- x : bin
x2 <- call succ x2 x1 ; % x2 : bin |- x : bin
x3 <- call succ x3 x2 ; % x3 : bin |- x : bin
fwd x x3

We recognize an idiom here, where we allocate a fresh channel like x1 and spawn
a new named process providing it at the same time. When we use cut this way we
can omit the type annotation for the new channel.

Because our language is concurrent, all these successor processes may be lined
up in a pipeline, passing bits through. Because the process test provides a chan-
nel x but does not use any channels, we can execute this program with the exec
keyword.

exec test

This will print back the channels that have been created and are externally observ-
able, starting with the initial channel (0), and the message observed on each of
the channels. Here, there is only one because the other ones are closed when the
successor processes terminate.

% executing test
(0) -> b1.b1.e.()

So the sequence of messages on channel (0) is b1, followed by b1, followed by e
and () which closes this channel.

9 Summary

We have introduced a message-passing interpretation of sequent calculus proofs in
linear logic and given it a syntax. We will summarize the statics (typing rules) and

LECTURE NOTES SEPTEMBER 12, 2023

Linear Message Passing I L5.11

dynamics (computation rules) after the next lecture. So far, we have only consider
internal choice and unit, but due to the presence of recursion we were already able
to write some small but nontrivial programs.

References

Luı́s Caires and Frank Pfenning. Session types as intuitionistic linear propositions.
In Proceedings of the 21st International Conference on Concurrency Theory (CONCUR
2010), pages 222–236, Paris, France, August 2010. Springer LNCS 6269.

Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as
session types. Mathematical Structures in Computer Science, 26(3):367–423, 2016.
Special Issue on Behavioural Types.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

H. B. Curry. Functionality in combinatory logic. Proceedings of the National Academy
of Sciences, U.S.A., 20:584–590, 1934.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In H. Ehrig,
R. Kowalski, G. Levi, and U. Montanari, editors, Proceedings of the International
Joint Conference on Theory and Practice of Software Development, volume 2, pages
52–66, Pisa, Italy, March 1987. Springer-Verlag LNCS 250.

Kohei Honda. Types for dyadic interaction. In E. Best, editor, 4th International Con-
ference on Concurrency Theory (CONCUR 1993), pages 509–523. Springer LNCS
715, 1993.

Kohei Honda and Mario Tokoro. An object calculus for asynchronous commu-
nication. In P. America, editor, Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’91), pages 133–147, Geneva, Switzerland, July
1991. Springer-Verlag LNCS 512.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In C. Han-
kin, editor, 7th European Symposium on Programming Languages and Systems (ESOP
1998), pages 122–138. Springer LNCS 1381, 1998.

LECTURE NOTES SEPTEMBER 12, 2023

Linear Message Passing I L5.12

W. A. Howard. The formulae-as-types notion of construction. Unpublished note.
An annotated version appeared in: To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, 479–490, Academic Press (1980), 1969.

Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

Philip Wadler. Propositions as sessions. In Proceedings of the 17th International Con-
ference on Functional Programming (ICFP 2012), pages 273–286, Copenhagen, Den-
mark, September 2012. ACM Press.

LECTURE NOTES SEPTEMBER 12, 2023

Lecture Notes on
Linear Message Passing II

15-836: Substructural Logics
Frank Pfenning

Lecture 6
September 14, 2023

1 Introduction

We continue the development of a concurrent linear message-passing language. In
the last lecture we introduced only the constructs below. Spawn and forward work
for arbitrary types, other others apply to a specific type. The actions are viewed
from the provider’s point of view.

Process Action Rule Type
xA ← P (x) ; Q(x) spawn cut A
fwd x y forward id A
send x k ; P send label k ⊕R ⊕{ℓ : Aℓ}ℓ∈L
recv x (ℓ⇒ Qℓ)ℓ∈L receive label k ⊕L ⊕{ℓ : Aℓ}ℓ∈L
send x () send unit 1R 1
recv x (()⇒ Q) receive unit 1L 1
call p x y1 . . . yn call process p

The last one is not associated with any particular type but invokes a defined process
with name p, passing it x and y1, . . . , yn. This is how recursion enters (and exceeds
the sequent calculus of linear logic) because these processes may be recursively
defined.

We begin by reformulating the dynamics slightly from the previous lecture,
recognizing it as a form of linear inference!

2 Dynamics as Linear Inference

We mentioned in an earlier lecture that linear inference provides a form of true
concurrency because with the CBA-graphs we cannot actually tell the order of inde-
pendent inferences. The rules from the last lecture can in fact be written in the form

LECTURE NOTES SEPTEMBER 14, 2023

Linear Message Passing II L6.2

of linear inference and take advantage of the earlier observation to get a concurrent
semantics “for free”.

We need a predicate, say proc, so that proc(P) is a semantic object represent-
ing a running process in state P . Today, we refer to these as objects rather than
propositions, because we have already coopted those to represent types! We write
channels now as a, b and c, because such channels replace variables in the program
at runtime. They are typed just as variables are. The whole collection of semantic
objects form a configuration C, where the order is irrelevant.

proc(send a ()) proc(recv a (()⇒ Q))

proc(Q)

Recall that such a rule picks out two matching objects from the linear state and
replaces them by the conclusion. Similarly:

proc(send a k ; P) proc(recv a (ℓ⇒ Qℓ)ℓ∈L) (k ∈ L)

proc(P) proc(Qk)

proc(xA ← P (x) ; Q(x)) (a fresh)

proc(P (a)) proc(Q(a))

The condition on the freshness of a is somewhat problematic since the premise
matches only part of the linear state, but a must be globally fresh in the whole state.
At the more technical level, this corresponds to existential quantification, but since
we haven’t discussed quantifiers just rely on this global freshness condition.

Now that we know that the dynamics is “just” linear inference, we’ll revert
to the left-to-right arrow notation for the rules on semantic objects. We actually
introduced this ∆ −→ ∆′ for linear inference before as a more convenient notation
(not to be confused with the ∆ that types channels in the antecedent of a sequent).
Here, it will be C −→ C′.

3 Typing Finite Internal Choice

We actually defined only the typing rules for the binary internal choice. Here are
the ones for finite sums (or: internal choice between a finite number of alternatives).

∆ ⊢ Ak (k ∈ L)

∆ ⊢ ⊕{ℓ : Aℓ}ℓ∈L
⊕R

∆, Aℓ ⊢ C (∀ℓ ∈ L)

∆,⊕{ℓ : Aℓ}ℓ∈L ⊢ C
⊕L

LECTURE NOTES SEPTEMBER 14, 2023

Linear Message Passing II L6.3

The ⊕L rule has one premise for each ℓ ∈ L and is therefore finitary. Adding
process terms yields typing rules:

∆ ⊢ P :: (x : Ak) (k ∈ L)

∆ ⊢ send x k ; P :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕R

∆, x : Aℓ ⊢ Qℓ :: (z : C) (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ recv x (ℓ⇒ Qℓ)ℓ∈L :: (z : C)
⊕L

It is convenient to assume that the set L is nonempty, but it certainly wouldn’t be
problematic logically since 0 = ⊕{}.

4 Sending Channels Along Channels

A characteristic of Milner’s π-calculus [Milner, 1999] is that one can send channels
along channels, changing how the processes are interconnected. In the linear set-
ting, such a protocol is the computational interpretation of A⊗B and A ⊸ B. Since
we have worked with positive types so far, we start with A⊗ B. First, let’s review
and analyze the logic rules.

∆1 ⊢ A ∆2 ⊢ B

∆1,∆2 ⊢ A⊗B
⊗R

∆′, A,B ⊢ C

∆′, A⊗B ⊢ C
⊗L

The cut reduction between these two rules is straightforward

∆1 ⊢ A ∆2 ⊢ B

∆1,∆2 ⊢ A⊗B
⊗R

∆′, A,B ⊢ C

∆′, A⊗B ⊢ C
⊗L

∆′,∆1,∆2 ⊢ C
cutA⊗B

−→R

∆2 ⊢ B

∆1 ⊢ A ∆′, A,B ⊢ C

∆′,∆1, B ⊢ C
cutA

∆′,∆1,∆2 ⊢ C
cutB

From the point of view of processes, the provider of the channel x : A⊗B spawns
two processes, one providing A and one providing B. Both will be connected to
the original client of x. There are several pragmatic reasons to chose the following
alternative right rule, shown also with the channel-annotated versions.

∆ ⊢ B

∆, A ⊢ A⊗B
⊗R∗ ∆ ⊢ x : B

∆, w : A ⊢ x : A⊗B
⊗R∗

∆′, A,B ⊢ C

∆′, A⊗B ⊢ C
⊗L

∆′, y : A, x : B ⊢ C

∆′, x : A⊗B ⊢ C
⊗L

LECTURE NOTES SEPTEMBER 14, 2023

Linear Message Passing II L6.4

A process ending with the ⊗R∗ rule will send the channel w : A along x : A ⊗ B
and continue to provide x : B. Reusing the send/receive style syntax for these
processes, we get:

∆ ⊢ P :: (x : B)

∆, w : A ⊢ send x w ; P :: (x : A⊗B)
⊗R∗

∆′, y : A, x : B ⊢ Q(y) :: (z : C)

∆′, x : A⊗B ⊢ recv x (y ⇒ Q(y)) :: (z : C)
⊗L

The computation rule just passes the given channel.

proc(send a b ; P), proc(recv a (y ⇒ Q(y))) −→ proc(P), proc(Q(b))

A nice property of this formulation with ⊗R∗ as compared to the standard two-
premise version ⊗R is that the only rule that spawns a new process is now the cut
rule. Also, every construct (send or receive) has a single continuation, except for
sending the unit which terminates a process.

But is this rule substitution actually okay? We should check that (a) ⊗R∗ is
sound in the sense that we can derive it using ⊗R, and (b) that it is complete in the
sense that we can use it to derive ⊗R. This is an instructive exercise, so you might
want to give it a try before reading on.

LECTURE NOTES SEPTEMBER 14, 2023

Linear Message Passing II L6.5

In one direction we require an identity, in the other direction a cut. If we make
up a syntax for the standard two-premise rule, we can translate the derivations
below into small programs.

A ⊢ A
id

∆ ⊢ B

∆, A ⊢ A⊗B
⊗R

∆1 ⊢ A

∆2 ⊢ B

A,∆2 ⊢ A⊗B
⊗R∗

∆1,∆2 ⊢ A⊗B
cut

The downside of a wholesale replacement of⊗R with⊗R∗ is that cut elimination no
longer holds in its usual formulation. So the new calculus is most easily justified
by translation as we did here. Alternatively, one can formulate an alternative “cut
elimination” theorem that allows some cuts that satisfy the subformula property
(so-called analytic cuts) to remain in proofs. We will not pursue this further here
since it does not impact the computational interpretation of the MPASS language.

5 Example: Sequences

In a functional language it is often convenient to work with lists. Here, they are
sequences of channels of some arbitrary type A, but we still call them lists.

listA = ⊕{nil : 1, cons : A⊗ listA}

This type is entirely positive, so messages still only flow from provider to client. We
can define the standard constructors corresponding to the alternatives in the sum.
Since MPASS at present does not support polymorphism, we restrict ourselves to
lists of binary numbers. It should be clear that nothing depends on this choice. We
can define the boilerplate constructors corresponding to nil and cons.

type list = +{’nil : 1, ’cons : bin * list}

proc nil (l : list) = send l ’nil ; send l ()
proc cons (l : list) (x : bin) (k : list) =

send l ’cons ; send l x ; fwd l k

A standard functional program appends two lists. We can write the same program
in different ways. In Listing 1 we show a version where the recursive call to append
is a tail call (which usually isn’t possible in a functional language). We annotate
each line with the typing of the continuation of the process following this line. In
the file lecture6.mps there is also a test case for the append process.

6 External Choice

We now come to negative connectives, starting with external choice. Analogously
to internal choice, we also generalize external choice to have a finite number of

LECTURE NOTES SEPTEMBER 14, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/06-mpass2/lecture6.mps

Linear Message Passing II L6.6

1 proc append (l : list) (k1 : list) (k2 : list) =
2 recv k1 (’nil => % k1 : 1, k2 : list |- l : list
3 recv k1 (() => % k2 : list |- l : list
4 fwd l k2)
5 | ’cons => % k1 : bin * list, k2 : list |- l : list
6 send l ’cons ; % k1 : bin * list, k2 : list |- l : bin * list
7 recv k1 (x => % x : bin, k1 : list, k2 : list |- l : bin * list
8 send l x ; % k1 : list, k2 : list |- l : list
9 call append l k1 k2))

Listing 1: Append process in MPASS

alternatives. First, the purely logical rules.

∆ ⊢ Aℓ (∀ℓ ∈ L)

∆ ⊢ N{ℓ : Aℓ}ℓ∈L
NR

∆, Ak ⊢ C (k ∈ L)

∆,N{ℓ : Aℓ}ℓ∈L ⊢ C
NL

Conversely to the rules for internal choice, the provider has to be prepared for
the client to choose a suitable k ∈ L. We also see that if these two proofs are
combined with a cut, then in this case the clients sends a label to the provider. This is
a characteristic of negative types, where the right rules are invertible and therefore
contain no information.

Because of the symmetry between external and internal choice, we can reuse
the process notation, just swapping the roles of provider and client.

∆ ⊢ Pℓ :: (x : Aℓ) (∀ℓ ∈ L)

∆ ⊢ recv x (ℓ⇒ Pℓ)ℓ∈L :: (x : N{ℓ : Aℓ}ℓ∈L)
NR

∆, x : Ak ⊢ Q :: (z : C) (k ∈ L)

∆, x : N{ℓ : Aℓ}ℓ∈L ⊢ send x k ; Q :: (z : C)
NL

Furthermore, the same rule in the dynamics still applies and doesn’t need to be
changed! Writing it again in our linear notation, just for reference:

proc(recv a (ℓ⇒ Pℓ)ℓ∈L), proc(send a k ; Q) −→ proc(Pk), proc(Q) (k ∈ L)

7 Linear Implication

Linear implication A ⊸ B is symmetric to A ⊗ B: the provider receives a channel
of type A instead of sending one. We also change the sequent calculus rules in an
analogous way to avoid multiple premises for the ⊸L rule.

∆, A ⊢ B

∆ ⊢ A ⊸ B
⊸R

∆′, B ⊢ C

∆′, A,A ⊸ B ⊢ C
⊸L∗

LECTURE NOTES SEPTEMBER 14, 2023

Linear Message Passing II L6.7

We move directly to the process assignment, leaving the logical investigation of
these rules to Assignment 2.

∆, y : A ⊢ P :: (x : B)

∆ ⊢ recv x (y ⇒ P (y)) :: (x : A ⊸ B)
⊸R

∆′, x : B ⊢ Q :: (z : C)

∆′, w : A, x : A ⊸ B ⊢ send x w ; Q :: (z : C)
⊸L∗

Once again, the computational rule for this construct already exists: the rule for
tensor applies. We restate it for completeness.

proc(recv a (y ⇒ P (y))), proc(send a b ; Q) −→ proc(P (b)), proc(Q)

8 Example: A Storage Server

We now use an interface to a storage server as an example incorporating negative
types (external choice and linear implication). The client has the option between
inserting or deleting an element from the store. When deleting, the provider replies
with none if there is no element in the store, or some followed by the element if there
is one.

storeA = N{ ins : A ⊸ storeA,
del : ⊕{ none : 1, some : A⊗ storeA } }

As for sequences, in the implementation we commit to the type A to be the binary
numbers since MPASS doesn’t currently support polymorphism.

Our implementation behaves like a stack; for a queue, see Assignment 3. The
state of the store is represented by a sequence of processes, each holding one ele-
ment, with the last one being empty. We define this empty process first. In the case
of insert we have to start a node process with the element we received. The tail of
the this new store must again be empty, so we have to spawn a new empty process.

proc empty (s : store) =
recv s (’ins => recv s (x => e <- call empty e ;

call node s x e)
| ’del => send s ’none ; send s ())

When receiving a ’del message we respond with ’none and terminate. In order
to keep the store service running, we could also change the type and recurse. With
that change, though, a process using a store could never terminate, because the
store it uses can never terminate. So we would have to add another option to the
interface to deallocate the store. However, due to linearity, this could only succeed
if the store is in fact empty, so it seems better to integrate this into the interaction
after a deletion.

LECTURE NOTES SEPTEMBER 14, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//assignments/hw2.pdf
http://www.cs.cmu.edu/~fp/courses/15836-f23//assignments/hw3.pdf

Linear Message Passing II L6.8

For a node process, we create a new node s′ with the prior value x and then
become (through a tail call) a node holding the new value y. The external inter-
face remains the channel s. We’ll walk through this code practicing type-directed
programming: letting the types inform us about our choices. Linearity is an even
bigger help here than types are in functional programming already because they
further constrain our choices.

We begin with just the header, showing the typing judgment in effect for the
body of the node.

1 proc node (s : store) (x : bin) (t : store) =
2 % (x : bin) (t : store) |- (s : store)

At this point we can’t do anything useful with x or t. On the other hand, the type
of s is an external choice between labels ins and del, so the client will send one of
these two messages. We write down the two branches and note the typing in the
first branch. Note that the type of s has advanced from store to bin ⊸ store due to
the receipt of the ins label.

1 proc node (s : store) (x : bin) (t : store) =
2 recv s (’ins => ... % (x : bin) (t : store) |- (s : bin -o store)
3 | ’del => ...)

From the type of s we can see it is still the client’s turn, this time to send us a
channel (say y) of type bin. After receiving y we own channel y (in addition to x
and t), and the type of s has cycled all the way around back to store.

1 proc node (s : store) (x : bin) (t : store) =
2 recv s (’ins => recv s (y => ...
3 % (y : bin) (x : bin) (t : store) |- (s : store)
4 | ’del => ...)

At this point it seems we have more than one option. We could insert x or y into t.
Or we could create a new node holding x with tail t and then recur with y. Let’s do
the latter, because it looks like it might avoid a cascading sequent of inserts rippling
to the end of the chain of nodes. The idiom allocates a new channel s′ and spawns
a new process mode providing this channel. Since we pass it x and t they disappear
from the antecedents and are supplanted by s′.

1 proc node (s : store) (x : bin) (t : store) =
2 recv s (’ins => recv s (y => s’ <- call node s’ x t ;
3 % (y : bin) (s’ : store) |- (s : store)
4 | ’del => ...)

At this point we can make a recursive call to node , providing s and holding the
value y with tail s′.

1 proc node (s : store) (x : bin) (t : store) =
2 recv s (’ins => recv s (y => s’ <- call node s’ x t ;
3 call node s y s’)
4 | ’del => ...)

LECTURE NOTES SEPTEMBER 14, 2023

Linear Message Passing II L6.9

This takes care of the insert branch. In the delete branch we have the following
type:

1 proc node (s : store) (x : bin) (t : store) =
2 recv s (’ins => recv s (y => s’ <- call node s’ x t ;
3 call node s y s’)
4 | ’del =>
5 % (x : bin) (t : store) |- (s : +{’none : 1, ’some : bin * store})
6 ...)

Since we hold an element x we have to respond with the some label.

1 proc node (s : store) (x : bin) (t : store) =
2 recv s (’ins => recv s (y => s’ : store <- call node s’ x t ;
3 call node s y s’)
4 | ’del => send s ’some ;
5 % (x : bin) (t : store) |- (s : bin * store)
6)

Again, the positive type bin ⊗ store means we should send a channel of type bin
along s—in this case the element we hold (x).

1 proc node (s : store) (x : bin) (t : store) =
2 recv s (’ins => recv s (y => s’ : store <- call node s’ x t ;
3 call node s y s’)
4 | ’del => send s ’some ;
5 send s x ;
6 % (t : store) |- (s : store)
7)

At this point we forward from t to s, since t represents the remainder of the stack.

1 proc node (s : store) (x : bin) (t : store) =
2 recv s (’ins => recv s (y => s’ : store <- call node s’ x t ;
3 call node s y s’)
4 | ’del => send s ’some ;
5 send s x ;
6 fwd s t)

We can convert a store back to a list simply by recursively deleting the elements
until the store is empty. This time we just show the code at the end, but we recom-
mend you walk through it similar to the way we did for the node process.

proc store2list (l : list) (s : store) =
send s ’del ;
recv s (’none => recv s (() => send l ’nil ; send l ())

| ’some => recv s (x => send l ’cons ; send l x ;
call store2list l s))

You can find a few more examples of store/list programs in the file lecture6.mps.

LECTURE NOTES SEPTEMBER 14, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/06-mpass2/lecture6.mps

Linear Message Passing II L6.10

9 A Brief Note on Parametricity

As a side remark, the structural version of the polymorphic type

storeA = N{ ins : A→ storeA,
del : +{ none : 1, some : A× storeA } }

guarantees that the elements returned by the store are among the ones inserted into
an empty store. This is an application of parametricity [Reynolds, 1983]. However,
the store may drop or duplicate elements. The linear type

storeA = N{ ins : A ⊸ storeA,
del : ⊕{ none : 1, some : A⊗ storeA } }

sharpens this: the elements returned must be a permutation of the elements inserted.
We also conjecture (but haven’t proved) that in the case of ordered connectives

we can guarantee the behavior of a queue or a stack.

10 Summary

We summarize the statics (typing rules) and dynamics (computation rules) of the
MPASS language in Figure 1 and Figure 2 respectively.

References

Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

John C. Reynolds. Types, abstraction, and parametric polymorphism. In R.E.A.
Mason, editor, Information Processing 83, pages 513–523. Elsevier, September 1983.

LECTURE NOTES SEPTEMBER 14, 2023

Linear Message Passing II L6.11

∆ ⊢ P (x) :: (x : A) ∆′, x : A ⊢ Q(x) :: (z : C)

∆,∆′ ⊢ xA ← P (x) ; Q(x) :: (z : C)
cut

x : A ⊢ fwd y x :: (y : A)
id

· ⊢ send x () :: (x : 1)
1R

∆ ⊢ Q :: (z : C)

∆, x : 1 ⊢ recv x (()⇒ Q) :: (z : C)
1L

∆ ⊢ P :: (x : Ak) (k ∈ L)

∆ ⊢ send x k ; P :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕R

∆, x : Aℓ ⊢ Qℓ :: (z : C) (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ recv x (ℓ⇒ Qℓ)ℓ∈L :: (z : C)
⊕L

∆ ⊢ P :: (x : B)

∆, w : A ⊢ send x w ; P :: (x : A⊗B)
⊗R∗

∆′, y : A, x : B ⊢ Q(y) :: (z : C)

∆′, x : A⊗B ⊢ recv x (y ⇒ Q(y)) :: (z : C)
⊗L

∆ ⊢ Pℓ :: (x : Aℓ) (∀ℓ ∈ L)

∆ ⊢ recv x (ℓ⇒ Pℓ)ℓ∈L :: (x : N{ℓ : Aℓ}ℓ∈L)
NR

∆, x : Ak ⊢ Q :: (z : C) (k ∈ L)

∆, x : N{ℓ : Aℓ}ℓ∈L ⊢ send x k ; Q :: (z : C)
NL

∆, y : A ⊢ P :: (x : B)

∆ ⊢ recv x (y ⇒ P (y)) :: (x : A ⊸ B)
⊸R

∆′, x : B ⊢ Q :: (z : C)

∆′, w : A, x : A ⊸ B ⊢ send x w ; Q :: (z : C)
⊸L∗

Figure 1: Statics for MPASS

LECTURE NOTES SEPTEMBER 14, 2023

Linear Message Passing II L6.12

proc(xA ← P (x) ; Q(x)) −→ proc(P (a)), proc(Q(a)) (a fresh)

proc(P (b)), proc(fwd a b) −→ proc(P (a))
proc(fwd a b), proc(Q(a)) −→ proc(Q(b))

proc(send x k ; P), proc(recv x (ℓ⇒ Qℓ)ℓ∈L) −→ proc(P), proc(Qk) (k ∈ L)
proc(send x ()), proc(recv x (()⇒ Q)) −→ Q
proc(send a b ; P), proc(recv a (y ⇒ Q(y))) −→ proc(P), proc(Q(b))

Figure 2: Dynamics for MPASS

LECTURE NOTES SEPTEMBER 14, 2023

Lecture Notes on
Preservation and Progress

15-836: Substructural Logics
Frank Pfenning

Lecture 7
September 19, 2023

1 Introduction

Our investigation has shown the close correspondences between linear proposi-
tions and session types, between sequent proofs and synchronous message-passing
programs, and between cut reduction and communication. Despite these close con-
nections, there are also differences. For example, permuting cut reductions and
identity expansion are related to process equalities, but not directly to computa-
tion. Here are some other key differences:

Recursion. Recursion is a central concept in programming languages but much
less prevalent in the study of logic. Nevertheless, there is a whole branch of
logic dedicated to arithmetic, including induction and primitive recursion.
See, for example, once again Gentzen’s pioneering work [Gentzen, 1936].
Also, infinitary proofs have been studied—we’ll see an example in Lecture 8
on Subtyping.

Observability. The primary purpose of proofs is to convince you that a proposi-
tion is true and explain why. As such, the whole proof must be subject to
inspection so we can check it and also understand it. The primary purpose
of programs is computation. As such, we are mostly interested in observing
its outcome (assuming that maybe we have separately verified or trust in its
correctness). But we do not observe functions directly, only their results on
particular inputs. This gives the provider of a library the freedom to change
function definitions (e.g., improve their efficiency) without changing the ob-
servable input/output behavior.

After motivating our MPASS language through logic and proof theory, we will see
the differences that arise when we put our programmers’ hats on. In particular,
the theorems we prove about the logic and the theorems we prove about our linear

LECTURE NOTES SEPTEMBER 19, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/08-subtyping.pdf

Preservation and Progress L7.2

message-passing programming language will by necessity be different. Neverthe-
less, we can see how the effort we invested in proof of cut elimination does not go
to waste; it is just that the key insights appear in different contexts.

From the foregoing discussion it might appear that logic and programming and
in fact two different subjects, albeit with close connections. In my view they are in
fact synthesized and generalized in constructive type theory. On one side, type the-
ory generalizes logic by providing the intrinsic ability to talk about its own proofs.
On the other side, type theory generalizes programming languages by providing
the intrinsic ability to reason about their correctness. I don’t know how much op-
portunity we will have to explore substructural type theory (in this sense) in this
course. Many questions here are not yet well understood.

2 Integrating Recursion

In the last two lectures and the MPASS examples we have seen that recursion is
introduced in two ways, both coming down to definitions:

(1) Types may be defined recursively. For example,

nat = ⊕{zero : 1, succ : nat}

Such types are equirecursive in the sense that recursion at the type level is not as-
sociated with any messages. During type-checking we are permitted to silently
replace a type name such as nat with its definition. In Lecture 8 we explore the
algorithmic consequences of this decision.

(2) Processes may be defined recursively. For example, the successor process on
binary numbers required recursion in order to represent the carry bit.

These two go hand-in-hand: often the recursive structure of processes is dictated
by the recursive structure of the types they operate on.

Based on these observation we integrate recursion into our programming lan-
guage via a signature Σ containing definitions at the type and process level. We
write t and s for type names, p for process names, and (y : B) for a sequence of
parameters yi : Bi.

Signature Σ ::= · | Σ, t = A | Σ, p (x : A) (y : B) = P

Because we want to make mutual recursion as natural as possible, the individual
declarations in a signature Σ are checked for correctness against the whole signa-
ture rather than the usual left-to-right manner. We write ⊢ Σ sig to mean that Σ is
a valid signature, and ⊢Σ Σ′ sig to mean that all declarations in Σ′ are valid in the
signature Σ. We have the following rules:

⊢Σ (·) sig

⊢Σ Σ′ sig ⊢Σ A type

⊢Σ (Σ′, t = A) sig

⊢Σ Σ′ sig (y : B) ⊢Σ P (x, y) :: (x : A)

⊢Σ (Σ′, p (x : A) (y : B) = P (x, y) sig

LECTURE NOTES SEPTEMBER 19, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/08-subtyping.pdf

Preservation and Progress L7.3

In these rules the index Σ in ⊢Σ never changes: the signature is in a sense global.
Therefore we omit it from all the judgments and imagine that in any given situation
it will be fixed and valid. Furthermore, all type names and process names in a
signature must be distinct.

The judgment ⊢Σ A type means that A is (or can be implicitly expanded to) one
of the types in our language, and that all the type names in A are defined in Σ.

Computationally, a call simply expands to its definition.

proc(call p a b) −→ proc(P (a, b)) where p (x : A) (y : B) = P (x, y) ∈ Σ

3 Typing Configurations of Processes

When running a program, we imagine starting with a single process P . During the
computation, many new processes may be spawned and interact with each other.
We think of these processes of defining a multiset in the sense of linear inference.
We can define it more syntactically with the following.

Configuration C ::= proc(P) | C1, C2 | ·

Here, the comma operator is associative and commutative with the empty config-
uration (·) as its unit.

There are many meaningless configurations, such as one where one process
sends a label that the recipient does not expect, or one where a process send unit
while the recipient expects a channel. Undoubtedly, while programming in MPASS

you have encountered such incorrect processes, which would have become incor-
rect configurations when running.

How do we ensure configurations are meaningful, which is to say, they are
well-typed? For a single process, our judgment is ∆ ⊢ P :: (x : A) which means
that P provides x at type A and uses the channels in ∆ at their given types. A
configuration may consist of multiple processes, so this generalizes to

∆ ⊢ C :: ∆′

which means the configuration C uses (is a client to) all the channel in ∆ and pro-
vides all the channels in ∆′. We might at first hypothesize the following rule:

∆ ⊢ P :: (a : A)

∆ ⊢ proc(P) :: (a : A)
proc?

Here, we take advantage of the fact that channels a, b, c behave exactly the same
under typing as variables x, y, z so that the typing judgment in the premise is well-
defined. But this is not quite sufficient: There may be other channels among the

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.4

antecedents to proc(P) that are not used by P . These will still be available to clients
of this configuration. So we get

∆ ⊢ P :: (a : A)

∆′,∆ ⊢ proc(P) :: (∆′, a : A)
proc

For process terms, cut requires that the provider and the client agree on the type of
the private channel that enables communication between them. For configurations,
this has to hold for all channels since they are all derived from cut. The empty
context just passes through all channels provided to it, since it neither uses nor
provides any channels of its own.

∆0 ⊢ C1 :: ∆1 ∆1 ⊢ C2 :: ∆2

∆0 ⊢ C1, C2 :: ∆2

join
∆ ⊢ (·) :: ∆

empty

At this point we notice an emerging conflict. On one hand we think of configura-
tions as multisets in the sense that the order of the individual processes is relevant.
On the other, for a typing derivation we require some ordering. As we can see from
the join rule, the typing derivation requires that each provider precedes its client.
Furthermore, we need to make sure that this relation is uniquely determined so we
stipulate that each channel in a configuration with

∆ ⊢ C :: ∆′

occurs either in ∆, or in ∆′ (or both), or has exactly one provider and exactly one
client in C. When we start from an initial configuration with a single main process,
this will be true, and all the rules can be seen to preserve this property. The only
doubt one might have is about cut, but the new channel is chosen such that it
does not already occur in the whole configuration. Moreover, this new channel has
exactly one provider and exactly one client.

Coming back to the ordering, the join operator as combining two derivations is
associative with unit empty, but it is not commutative. For a configuration to be
well-typed we require that there is an ordering of the processes that can be typed
with the given rules. This ordering is not unique: satisfying the provider-before-
client requirement still may leave many options. Which of these possibilities we
pick is irrelevant. A key property only briefly mentioned in lecture is the following
exchange lemma.

Lemma 1 (Exchange) If process P provides a channel a which is not used by the follow-
ing process Q in the configuration typing, then the two processes can be exchanged.

Proof: By inspection of the two typing derivations, since the first represents the
most general case of two consecutive processes satisfying the given condition. Given

∆P ⊢ P :: (a : A)

∆′,∆P ⊢ proc(P) :: (∆′, a : A)
proc

∆Q ⊢ Q :: (c : C)

∆′, a : A,∆Q ⊢ proc(Q) :: (∆′, a : A, c : C)
proc

∆′,∆P ,∆Q ⊢ proc(P), proc(Q) :: (∆′, a : A, c : C)
join

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.5

we construct

∆Q ⊢ Q :: (c : C)

∆′,∆P ,∆Q ⊢ proc(Q) :: (∆′,∆P , c : C)
proc

∆P ⊢ P :: (a : A)

∆′,∆P , c : A ⊢ proc(P) :: (∆′, a : A, c : C)
proc

∆′,∆P ,∆Q ⊢ proc(Q), proc(P) :: (∆′, a : A, c : C)
join

□

We can iterate the exchange so that a process P that provides a channel a can
always be moved to the right until it is next to its client. If it does not have a client,
then it can be moved to be the rightmost process in a configuration.

4 Preservation

Unlike pure logic where cut elimination always terminates in a cut-free proof, com-
putation may run forever due to the presence of recursion. So rather than cut elim-
ination (or admissibility of cut as the key lemma) we prove that as computation
proceeds the configuration remains well-typed. Since the computation rules are
(mostly) derived from principal cut reductions, patterns from the proof of the ad-
missibility of cut recur.

We have already remarked on a fundamental property, namely that the type of
channels evolves as communication takes place. So it what sense are types actually
preserved? What happens is that the types of internal channels in a configuration
changes consistently between client and provider, but the types of externally visible
channels remain invariant.

Theorem 2 (Preservation) If ∆ ⊢ C :: ∆′ and C −→ D then ∆ ⊢ D :: ∆′.

Theorem 3 The proof proceeds by cases over the forms of the reduction. There are four
kinds of cases: spawn (= cut), fwd (= identity), call, and interactions. We show two repre-
sentative cases. We analyze the configuration in the order of its typing derivation.

Cut: C = (CL, proc(xA ← P (x) ; Q(x)), CR) where

∆ ⊢ CL :: ∆L

∆L ⊢ proc(xA ← P (x) ; Q(x)) :: ∆R

∆R ⊢ CR :: ∆′

and
D = (CL, proc(P (a)), proc(Q(a)), CR)

for a globally fresh channel a.

In order to construct a typing derivation for D as required, we apply inversion to
the typing

∆L ⊢ proc(xA ← P (x) ; Q(x)) :: ∆R

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.6

This means we analyze the typing rules for processes and consider what we might
say about this typing derivation. We find that for some ∆′

L, ∆P , ∆Q, and c : C, we
must have

∆L = (∆′
L,∆P ,∆Q)

∆P ⊢ P (x) :: (x : A)
∆Q, x : A ⊢ Q(x) :: (c : C)
∆R = (∆′

L, c : C)

Because a is globally fresh, we can substitute it for x in the two typing derivation in
the middle, and conclude that

∆L = (∆′
L,∆P ,∆Q)

∆P ⊢ P (a) :: (a : A)
∆Q, a : A ⊢ Q(a) :: (c : C)
∆R = (∆′

L, c : C)

Now we can construct a typing derivation forD = (CL, proc(P (a)), proc(Q(a)), CR)
from

∆ ⊢ CL :: ∆L

∆L = (∆′
L,∆P ,∆Q)

∆′
L,∆P ,∆Q ⊢ proc(P (a)) :: (∆′

L,∆Q, a : A)
∆′

L,∆Q, a : A ⊢ proc(Q(a)) :: (∆′
L, c : C)

(∆′
L, c : C) = ∆R

∆R ⊢ CR :: ∆′

This concludes this case of type preservation.

⊗R/⊗L: C = (CL, proc(send a b ; P), proc(recv a (y ⇒ Q(y))), CR) where

∆ ⊢ CL :: ∆L

∆L ⊢ proc(send a b ; P), proc(recv a (y ⇒ Q(y))) :: ∆R

∆R ⊢ CR :: ∆

and
D = (CL, proc(P), proc(Q(b)), CR)

Here we have taken advantage the exchange lemma to restrict ourselves to the case
where the provider and client are immediately adjacent in the typing derivation.
Again we apply inversion to analyze the possible typing derivations for the mid-
dle line and find that for some ∆′

L, ∆P , a : A, b : B, and c : C we must have

∆L = (∆′
L,∆P , b : B,∆Q)

∆P ⊢ P :: (a : A)
∆Q, a : A, b : B ⊢ Q(b) :: (c : C)
∆R = (∆′

L, c : C)

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.7

A critical step here is examine the typing rules for send a b ; P and recv a (y ⇒
Q(y)) for which there is only one each once we know the first process is the provider
(which comes from their relative position in the typing derivation for C)

From these pieces we can assemble a typing derivation for

D = (CL, proc(P), proc(Q(b)), CR)

as follows:

∆ ⊢ CL :: ∆L

∆L = (∆′
L,∆P , b : B,∆Q)

∆′
L,∆P , b : B,∆Q ⊢ proc(P) :: (∆′

L, a : A, b : B,∆Q)
∆′

L, a : A, b : B,∆Q ⊢ Q(b) :: (∆′
L, c : C)

(∆′
L, c : C) = ∆R

∆R ⊢ CR :: ∆′

There is a lot of bureaucracy in the proof of preservation, but ultimately the
core reasoning step in the communication steps is that cut reduction preserves the
conclusion of the cut (in particular, the antecedents and the succedent).

5 Progress

Preservation means that in any computation C1 −→ C2 −→ · · · the interface to the
configuration never changes. Cut elimination would also predict that reduction
always terminates, but that’s not true in the presence of recursion unless we make
some restrictions. Instead, we would like to prove that “we never get stuck”: ei-
ther we can take a step, or the configuration is final in a well-defined way. We are
looking for analogue to the statement that in functional languages every expres-
sion e either can take a step or it is a value already. But what’s the analogue of
value? In our language of synchronous communication (that is, both sender and re-
ceiver proceed in lock-step when a message is exchanged) a configuration is final
if all processes attempt to communicate along an external channel. Such a chan-
nel does not have a second endpoint, so such a process can legitimately not make
further progress.

To keep the argument simple we assume that the configuration is closed on the
left, that is,

· ⊢ C :: ∆

In other words, C provides some external channels but does not use any. That’s
analogous to the usual assumption that in a functional language we only evaluate
closed expressions, that is, expressions without free variables.

Theorem 4 (Progress) If · ⊢ C :: ∆ then either C is final or C −→ D for some D.

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.8

Proof: This time we do a right-to-left induction over the structure the given typing
derivation (which we associate to the left). So C = (CL, proc(P)) for some process
P with · ⊢ CL :: ∆′ and ∆′ ⊢ proc(P) :: ∆.

By induction hypothesis, either CL −→ DL for some DL or CL is final.
In the first case C −→ (DL, proc(P)) by definition of reduction.
In the second case, all processes in CL will try to communicate along the channel

that they provide. Now we distinguish cases based on the process P .

Cut/Spawn: P = (xA ← P1(x) ; P2(x)) for some P1 and P2. Then proc(P) −→
proc(P1(a)), proc(P2(a)) for a fresh a, and therefore also C −→ (CL, proc(P1), proc(P2)).

Receive Channel: P = (recv a (y ⇒ P ′(y))) for some P ′. If P provides a (that is,
a : A ∈ ∆ for some A) then all of C is final.

Otherwise P uses a and must (by inversion) end in the ⊗L rule. That is the
typing derivation of ∆′ ⊢ proc(P) :: ∆ looks like

∆P , a : A, y : B ⊢ P ′(y) :: (c : C)

∆P , a : B ⊗A ⊢ (recv a (y ⇒ P ′(y))) :: (c : C)
⊗L

∆′ ⊢ proc(P) :: ∆
proc

where ∆′ = (∆L,∆P , a : B ⊗A) and ∆ = (∆L, c : C)

Because CL :: (∆L,∆P , a : B ⊗ A) there must be a process in CL providing
a : B ⊗ A. In particular, it cannot be part of the antecedents of CL because
these must be empty.

By inversion on the typing of a we find that there must be an object proc(Q)
in CL that provides a : B ⊗ A. Moreover, since CL is final, this process must
be trying communicate along a, so it must have form Q = (send a b ; Q′).
By the rule for sending and receiving a channel Q and P can interact, and
therefore C −→ D for some D.

□

Again, there is a lot of bureaucracy, but in the end the progress theorem comes
down to the fact that during the proof of admissibility of cut all the principal cases
could be reduced (= make progress).

6 Observation

We think of a closed configuration · ⊢ C :: ∆ as a collection of processes that provide
all the channels in ∆. As we have seen, the external interface ∆ will never change
during the computation. Moreover, when C is final, every process in C is trying to

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.9

communicate along a channel in ∆. Because our language is synchronous (both
send and receive block), this means none of the processes in C can take a step.

The question is how do we observe the outcome of the computation? Unlike
functional languages, the value is not presented to us a whole. For example, if we
have a final configuration

· ⊢ proc(P) :: (a : nat)

where nat = ⊕{zero : 1, succ : nat}, then we do not yet have any information except
that the process P terminated.

So we need to receive a label from the channel a in order to observe the outcome.
As soon as we interact with P , it will resume computation with its continuation
until is once again blocks with a send.

An observation may actually change the type of the channel a at the interface.
For example, if we received zero along a then afterwards we have P ′ :: (a : 1). If
instead we received succ, then afterwards the continuation process P ′ will again
provide a : nat.

A similar interaction protocol holds for all positive types (A ⊗ B, 1, ⊕{ℓ :
Aℓ}ℓ∈L). For a negative type like N{ℓ : Aℓ}ℓ∈L the situation is different. As pointed
out in the introduction, we cannot actually observe the process that is trying to re-
ceive along the channel it provides. The best thing we could do at this point is send
it (separately) each of the labels ℓ in the set L and observe the continuation Aℓ in
each case. This strategy breaks down when we encounter a : B ⊸ A because we
cannot possibly send it a channel B that explores all possible behaviors along a.
For example, if B = nat, there would be infinitely many.

This means when we encounter a channel of negative type we stop our obser-
vation process. An analogous decision is made in functional languages such as ML
or Haskell: values of function types are simply not directly observable, although
we can probe their behavior by applying them to different arguments.

The implementation of the exec P in MPASS observes the outcome of a compu-
tation just as described above and prints the observed messages. When a negative
type is encountered it prints just a dash.

7 Refactoring the Dynamics

It is often convenient to treat all the send and receive actions in a uniform way. In
order to support this, we can refactor the syntax and also the dynamics with the

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.10

following definitions.

Processes P,Q ::= xA ← P (x) ; Q(x) (cut)
| fwd x y (id)
| send x m ; P (positive right or negative left rules)
| recv x K (positive left or negative right rules)
| call p x y (possibly recursive process p)

Messages m ::= () (1)
| k (⊕,N)
| y (⊗,⊸)

Continuations K ::= ()⇒ P (1)
| (ℓ⇒ Pℓ)ℓ∈L (⊕,N)
| (y ⇒ P (y)) (⊗,⊸)

In the dynamics, we pass a message to a continuation m▷K to obtain a process.

() ▷ (()⇒ P) = P
k ▷ (ℓ⇒ Pℓ)ℓ∈L = Pk (k ∈ L)
b ▷ (y ⇒ P (y)) = P (b)

The computation rules then simplify.

proc(xA ← P (x) ; Q(x)) −→ proc(P (a)), proc(Q(a)) (a fresh)
proc(P (b)), proc(fwd a b) −→ proc(P (a))
proc(send a m ; P), proc(recv a K) −→ proc(P), proc(m▷K)

proc(call p a b) −→ proc(P (a, b))

where p (x : A) (y : B) = P (x, y) ∈ Σ

There are some possible variations on the identity rules that are sometimes useful.
For an implementation, for example, we might enforce that P (b) actually tries to
communicate along b so it is expecting to interact. There is also a symmetric rule
to the given one where proc(fwd a b) interacts with its client proc(P (a)) to yield
proc(P (b)). Such variations are consistent with logical cut reduction but we are not
forced to specialize or generalize the rule above.

References

Gerhard Gentzen. Die Widerspuchsfreiheit der reinen Zahlentheorie. Mathematis-
che Annalen, 112:493–565, 1936. English translation in M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 132–213, North-Holland, 1969.

LECTURE NOTES SEPTEMBER 19, 2023

Lecture Notes on
Subtyping

15-836: Substructural Logics
Frank Pfenning

Lecture 8
September 21, 2023

1 Introduction

So far, we have always worked under the presupposition that the provider and
client of a channel agree on its type. This is fundamentally inspired by the cut
rule in logic, and it also seems necessary to ensure that all messages are properly
understood. For example, the progress property would fail spectacularly if one
process sends a label while the recipient expects a channel.

In this lecture we consider if we can loosen this restriction without violating
progress and preservation. If we can, it might allow us to simplify some programs,
or to capture more properties of the programs we write in their type.

As an introductory example, consider the following two types.

nat = {zero : 1, succ : nat}
pos = { succ : nat}

If we have a provider − ⊢ P :: (n : pos) and a client (n : nat) ⊢ Q :: − then nothing
can go wrong. P restricts itself to start with the message succ but the client does
not have to be aware of this—it will simply not receive a first message zero. On the
other hand, if we have − ⊢ P :: (n : nat) and (n : pos) ⊢ Q :: − then things can go
wrong immediately because P could send the label zero that Q is not expecting.

The notion of subtyping we consider here has been developed by Gay and Hole
[2005]. Although for a different underlying programming language, the result is
essentially the same, except that in their setting the roles of sender and receiver are
reversed from ours.

2 Message Understood

The key to subtyping in the message-passing setting is to make sure that the recipi-
ent of a message is ready for every possible message it could receive. Semantically,

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.2

we define subtyping A ≤ B this way:

If ∆ ⊢ P :: (a : A) and A ≤ B and ∆′, a : B ⊢ Q :: (c : C) then every
message along channel a is understood by the receiver.

For our purposes of study here, we’d like the relation A ≤ B to be as large as
possible. Or, to put it another way, if A ̸≤ B then there should be counterexample,
that is, a message along the channel a that the recipient does not understand. By
“does not understand” we mean that in the refactored rule from the last lecture

proc(send a m ; P), proc(recv a K) −→ proc(P), proc(m▷K)

the operation m▷K is undefined.
In order to see what kind of subtyping might hold we walk through the critical

steps in type preservation and progress in a hand-wavy fashion. These form the
core of the proof of progress and preservation in the presence of subtyping. An
important point here is to think connective by connective, so that it is open-ended
and adaptable to other languages.

Before we get to the specifics, there are a few general properties we expect. We
expect these to be admissible and rather than primitive.

• Subtyping should be reflexive: A ≤ A for all types A. This vaguely corre-
sponds to identity.

• Subtyping should be transitive: if A ≤ B and B ≤ C, then A ≤ C. This
vaguely corresponds to cut.

• Right subsumption should be admissible: If ∆ ⊢ P :: (a : A) and A ≤ B then
also ∆ ⊢ P :: (a : B).

• Left subsumption should be admissible: If A ≤ B and ∆, b : B ⊢ P :: (c : C)
then ∆, b : A ⊢ P :: (c : C)

We now build up a set of rules that allow us to conclude A ≤ B as a judgment.
One thing we can say immediately based on the semantic definition: there

should be no rules for A ≤ B if the top level type constructor of A and B is dif-
ferent. For example, 1 ̸≤ A ⊗ B and A ⊸ B ̸≤ ⊕{ℓ : Aℓ}ℓ∈L. In all these cases, a
message sent along the channel will not be understood by the recipient.

3 Internal Choice and Unit

As the example in the introduction suggests, ⊕{ℓ : Aℓ}ℓ∈L ≤ ⊕{k : Bk}k∈K requires
that every label in L must also be in K. That’s because the provider will send some
ℓ ∈ L along channel a so the recipient must be ready for it. But that’s not quite
sufficient: after a label ℓ ∈ L is sent, the two processes will still be connected along

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.3

a, but now the provider will have type Aℓ and the client Bℓ, so one must be a
subtype of the other. Pictorially:

provider P client Q

⊕{ℓ : Aℓ}ℓ∈L ⊕{k : Bk}k∈K

Aℓ Bℓ

≤
a

send a ℓ

≤
a

From this we extract the rule

L ⊆ K Aℓ ≤ Bℓ (∀ℓ ∈ L)

⊕{ℓ : Aℓ}ℓ∈L ≤ ⊕{k : Bk}k∈K

We also have 1 ≤ 1 without any condition since the channel a is closed.

provider client

1 1
≤
a

send a ()

The corresponding rule

1 ≤ 1

has no premise because the unit message closes the channel.
At this point we can already show some examples. Since type definitions are

equirecursive we just unfold them.

nat ≤ nat

⊕{succ : nat} ≤ ⊕{zero : 1, succ : nat}
pos ≤ nat

Here we stopped at reflexivity. But if we think of reflexivity as just admissible, we

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.4

would continue:

1 ≤ 1 nat ≤ nat

⊕{zero : 1, succ : nat} ≤ ⊕{zero : 1, succ : nat}
nat ≤ nat

⊕{succ : nat} ≤ ⊕{zero : 1, succ : nat}
pos ≤ nat

At this point we realize we can continue indefinitely building a deeper and deeper
derivation by expanding the recursive definition. But somehow that should be
okay: if there is no subproof where we actually get stuck then there should be no
“message not understood” problem when the processes communicate. So the proof
system is infinitary. Even infinite derivations are sufficient to guarantee that there
is no finite counterexample.

Another way to express this is to say that the proof rules here are interpreted
coinductively. A proof is valid if we can always proceed further along all the open
branches. This is in contrast to the proof systems we have seen so far, where proofs
are defined inductively: we are only satisfied if we have a finite proof constructed
from the rules.

In general, coinductive proofs system are more difficult to work with because
we cannot actually write down infinite proofs. But they can still serve a useful
purpose when they capture an intuitive notion. Here, and in some other cases I am
aware of, they capture the absence of a counterexample. Constructively, this is not
the same as a direct proof, but a refutation of its negation and therefore in some
sense “weaker” than a (constructive inductive) proof.

In this particular example, we actually have a finitary representation of an in-
finitary proof since we have reached a cycle: the judgment at the top is the same as
one lower in the same proof branch. In that case we can mark it as a loop and not
explore this branch further. This way to proceed is sound since we could always
unfold the looping proof into an infinite one. Or we can say that if there were a
counterexample, there would be a shortest one. But the shortest one wouldn’t go
through the same judgment more than once.

In lecture we noted this with arcs, but in LATEX we just label the lower judgment
in the proof and then use this to justify the leaf.

1 ≤ 1

(x)

nat ≤ nat

⊕{zero : 1, succ : nat} ≤ ⊕{zero : 1, succ : nat}

nat ≤ nat (x)

⊕{succ : nat} ≤ ⊕{zero : 1, succ : nat}
pos ≤ nat

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.5

In this particular example it seems like we should have been able to avoid the
loop altogether by promoting reflexivity to be a rule. In other example, this is not
possible. For example:

nat = ⊕{zero : 1, succ : nat}
even = ⊕{zero : 1, succ : odd}
odd = ⊕{succ : even}

We start to construct circular proof of even ≤ nat:

1 ≤ 1

...
odd ≤ nat

⊕{zero : 1, succ : odd} ≤ ⊕{zero : 1, succ : nat}
even ≤ nat

We see that we have “reduced” the question of even ≤ nat to the question if odd ≤
nat. We go on until we can complete all branches in the proof.

1 ≤ 1

(x)

even ≤ nat

⊕{succ : even} ≤ ⊕{zero : 1, succ : nat}

odd ≤ nat

⊕{zero : 1, succ : odd} ≤ ⊕{zero : 1, succ : nat}

even ≤ nat (x)

In order to explore a failure of subtyping, consider the judgment nat ≤ even.
Clearly, this should not be provable.

1 ≤ 1

fails, since {zero, succ} ̸⊆ {succ}
⊕{zero : 1, succ : nat} ≤ ⊕{succ : even}

nat ≤ odd

⊕{zero : 1, succ : nat} ≤ ⊕{zero : 1, succ : odd}
nat ≤ even

Here we observe that this particular failed derivation contains enough information
to extract a sequence of messages where the last one is not expected by the recipi-
ent: succ followed by zero. And, indeed, this sequence of message is (the start of)
the number 1 which is not even.

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.6

4 Example: Binary Numbers in Standard Form

As another example we consider binary numbers. Their representation is not uniquely
determined because of the possibility of leading zeros. For example, (0100)2 =
(100)2 = 4. We say a number is in standard form if it has no leading zeros. We can
define this using positive numbers as an additional type.

bin = ⊕{b0 : bin, b1 : bin, e : 1}
std = ⊕{b0 : pos, b1 : std, e : 1}
pos = ⊕{b0 : pos, b1 : std}

Then pos ≤ std:

(x)

pos ≤ pos

...
std ≤ std

⊕{b0 : pos, b1 : std} ≤ ⊕{b0 : pos, b1 : std}

pos ≤ pos (x)

...
std ≤ std

⊕{b0 : pos, b1 : std} ≤ ⊕{b0 : pos, b1 : std, e : 1}

pos ≤ std

This example is a (mild) illustration of a concern about circular proofs: we do not
transfer what we learn on one branch to another. One technique to deal with this is
to turn an infinitary (circular) proof system into a saturation procedure that works
with forward inference. In such a system there is more reuse. DeYoung et al. [2023]
then justify the saturating rules with respect to the infinitary rules.

In our system for subtyping (incomplete, at this point), attempts are construct-
ing circular proofs will always either fail finitely or end up with a (finite) circular
proof. The reason is that in a signature in which n syntactically different types oc-
cur, there can be at most n2 pairs A ≤ B that might appear on a branch in the proof.
This will continue to be the case when our set of rules is complete.

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.7

5 Tensor

Let’s consider the interaction when a : A1 ⊗ A2. The provider will send a channel
b : A1 and the channel a will afterwards have type A2.

provider P client Q

A1 ⊗A2 B1 ⊗B2

A2 B2

≤
a

send a b

≤
a

From this we see that A2 ≤ B2 is required for the connection to continue to be well-
typed. But what is the situation with the channel b, provided by, say R? We have
the following chain of reasoning:

1. P was the original client of b at type A1.

2. Q will be its new client of b at type B1.

3. R provided the channel to P at some type C1, so C1 ≤ A1.

So for R and Q to be properly connected over the channel b we must have A1 ≤ B1

because then C1 ≤ B1 follows by transitivity.
Actually, we can be more lenient that what we just described. Provider P can

send a channel b : A′
1 as long as A′

1 ≤ A1. Then we get:

1. P was the original client of b at type A′
1.

2. Q is the new client of b at type B1.

3. A′
1 ≤ A1 (the condition for P to send b along a : A1 ⊗A2)

4. R is the provider at some type C1, so C1 ≤ A′
1.

Still, A1 ≤ B1 is sufficient to guarantee the chain of subtyping from the provider
R to the new client Q: C1 ≤ A′

1 ≤ A1 ≤ B1. Without the condition, if C1 = A′
1 =

A1 ̸≤ B1 an incorrect situation would arise, leading to the potential of a “message
not understood” error along channel b later. So our rule is just:

A1 ≤ B1 A2 ≤ B2

A1 ⊗A2 ≤ B1 ⊗B2

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.8

We can exploit subtyping as sketched above to generalize the ⊗R∗ rule.

A′
1 ≤ A1 ∆ ⊢ P :: (x : A2)

∆, y : A′
1 ⊢ send x y ; P :: (x : A1 ⊗A2)

⊗R∗

6 Negative Types

For negative types, the role of sender and receive are reversed, so we need to reex-
amine the situation carefully. We start with external choice, that should be analo-
gous to internal choice.

provider P client Q

N{ℓ : Aℓ}ℓ∈L N{k : Bk}k∈K

Ak Bk

≤
a

send a k

≤
a

We see that for the label k to be understood, we need that k ∈ L, so we must require
that L ⊇ K, the opposite inclusion from the internal choice. However, provider and
client remain the same, so the continuation types must be related in the same order.

L ⊇ K Ak ≤ Bk (∀k ∈ K)

N{ℓ : Aℓ}ℓ∈L ≤ N{k : Ak}k∈K

In the dynamics of linear implication a channel b is received by the provider
along a.

provider client

A1 ⊸ A2 B1 ⊸ B2

A2 B2

≤
a

send a b

≤
a

The handoff of the channel b leads to the following reasoning.

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.9

1. A process R provides b at type C1 ≤ B′
1.

2. The client Q sees b at type B′
1 ≤ B1.

3. The new client P sees b at type A1.

So for the new connection to be well-typed, we need C1 ≤ A1. We can get this by
C1 ≤ B′

1 ≤ B1 ≤ A1, so we should require B1 ≤ A1. This is the manifestation of
contravariance of subtyping for arguments at function type in this context.

B1 ≤ A1 A2 ≤ B2

A1 ⊸ A2 ≤ B1 ⊸ B2

We have already anticipated the generalization of the typing rule for sending a
channel.

A′
1 ≤ A1 ∆, x : A2 ⊢ P :: (z : C)

∆, y : A′
1, x : A1 ⊸ A2 ⊢ send x y ; P :: (z : C)

⊸L∗

We can look among the rules for opportunities for generalization. The only
other place where types are compared for equality in the rules so far is the identity
rule and, depending on how one looks at it, the cut rule. We generalize identity.

A′ ≤ A

y : A′ ⊢ fwd x y :: (x : A)
id

You should convince yourself that this rule is correct by simple transitivity reason-
ing.

We do not generalize cut, because due to the admissibility of left and right sub-
sumption, this would complicate the syntax without changing the set of well-typed
processes. However, we do generalize the call rule (see Figure 2).

7 Example: Subtyping of Stores

As an example of subtyping with negative types we consider the store interface
from before.

store = N{ ins : bin ⊸ store,
del : ⊕{ none : 1, some : bin⊗ store } }

There are uses of a stack where it is important that we only insertions followed
only by deletions until the stack is empty. For example, the amortized analysis of
queues, implemented by two stacks, relies on a property along these lines [Okasaki,
1998].

This is an example of an interaction protocol with a data structure prescribed
by a type. In object-oriented programming related techniques have been referred
to as typestate analysis Strom and Yemini [1986].

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.10

We have two phases of communication, store1 where we only insert (until the
first deletion) and store2 where we only delete. This is expressed in the following
two types.

store1 = N{ ins : bin ⊸ store1,
del : ⊕{ none : 1, some : bin⊗ store2 } }

store2 = N{ del : ⊕{ none : 1, some : bin⊗ store2 } }

What are the expected subtyping relationships between store, store1 and store2? We
suggest you work this out for yourself before you read on.

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.11

Maybe, like me, you got it wrong and conjectured, for examples, that store2 ≤
store1. Let’s see if we can prove this or find a counterexample.

fails, since {del} ̸⊇ {del, ins}
N{del : . . .} ≤ N{del : . . . , ins : . . .}

store2 ≤ store1

Oops! And, indeed, if the client sees the type with both insert and delete options,
it could send del. This message will not be understood by a provider in the phase
2, expecting only deletions.

So the relationship is the other way around. We skip some intermediate unfold-
ing of type definitions. The missing part is a simple instance of reflexivity, which
we have marked as an instance of an admissible rule.

{ins, del} ⊇ {del} ⊕{ none : 1, some : bin⊗ store2 } ≤ ⊕{ none : 1, some : bin⊗ store2 }

store1 ≤ store2

We also have store ≤ store1 by a derivation that should not be surprising at this
point.

bin ≤ bin

(x)

store ≤ store1

bin ⊸ store ≤ bin ⊸ store1

1 ≤ 1

bin ≤ bin
D

store ≤ store2

bin⊗ store ≤ bin⊗ store2

⊕{ none : 1, some : bin⊗ store } ≤ ⊕{ none : 1, some : bin⊗ store2 }

store ≤ store1 (x)

D =

1 ≤ 1

bin ≤ bin

(y)

store ≤ store2

bin⊗ store ≤ bin⊗ store2

⊕{ none : 1, some : bin⊗ store } ≤ ⊕{ none : 1, some : bin⊗ store2 }

store ≤ store2 (y)

8 Subtyping in MPASS

Subtyping is implemented in MPASS and will be used when it is called with --subtyping,
or -s for short.

There is no separate declaration to test subtyping, but we can use forwarding
because x : A ⊢ fwd y x :: (y : B) is well-typed if and only if A ≤ B. Examples can
be found in the file lecture8.mps; excerpts are in Listing 1 and Listing 2.

LECTURE NOTES SEPTEMBER 21, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/08-subtyping/lecture8.mps

Subtyping L8.12

1 type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}
2

3 type std = +{’b0 : pos, ’b1 : std, ’e : 1}
4 type pos = +{’b0 : pos, ’b1 : std }
5

6 proc pos_std (y : std) (x : pos) = fwd y x % pos <: std
7 proc std_bin (y : bin) (x : std) = fwd y x % std <: bin
8

9 fail
10 proc bin_std (y : std) (x : bin) = fwd y x % bin </: std

Listing 1: Subtyping for some subsets of binary numbers

The last declaration in Listing 2 illustrates how we can test that A is not a sub-
type of B. We do this by using the construct fail <dec> which succeeds if the
declaration <dec> fails. If you run this through MPASS with the -d flag it will still
show the error message it would have printed if the declaration were not preceded
by fail.

The only example of testing subtyping on programs are the list2store and
store2list processes. The first, only inserts numbers into a store, while the second
only deletes them, so they use the store1 and store2 types from this lecture. You can
find the code in Listing 2.

9 Summary

We summarize the rules for subtyping, interpreted coinductively, in Figure 1 and
the updated rules for process typing in Figure 2. The other rules remain unchanged.

References

Henry DeYoung, Andreia Mordido, Frank Pfenning, and Ankush Das. Parametric
subtyping for structural parametric polymorphism. CoRR, abs/2307.13661, July
2023. URL https://arxiv.org/abs/2307.13661. Submitted.

Simon J. Gay and Malcolm Hole. Subtyping for session types in the π-calculus.
Acta Informatica, 42(2–3):191–225, 2005.

Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

Robert E. Strom and Shaula Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Transactions on Software Engineering, 12
(1):157–171, 1986.

LECTURE NOTES SEPTEMBER 21, 2023

https://arxiv.org/abs/2307.13661

Subtyping L8.13

1 type list = +{’nil : 1, ’cons : bin * list}
2

3 type store = &{’ins : bin -o store,
4 ’del : +{’none : 1, ’some : bin * store}}
5 type store1 = &{’ins : bin -o store1,
6 ’del : +{’none : 1, ’some : bin * store2}}
7 type store2 = &{’del : +{’none : 1, ’some : bin * store2}}
8

9 (* note use of ’store1’ below! *)
10 proc list2store (s : store1) (l : list) (t : store1) =
11 recv l (’nil => recv l (() => fwd s t)
12 | ’cons => recv l (x =>
13 send t ’ins ;
14 send t x ;
15 call list2store s l t))
16

17 (* note use of ’store2’ below! *)
18 proc store2list (l : list) (s : store2) =
19 send s ’del ;
20 recv s (’none => recv s (() => send l ’nil ; send l ())
21 | ’some => recv s (x => send l ’cons ; send l x ;
22 call store2list l s))
23

24 proc roundtrip (l : list) (k : list) =
25 e <- call empty e ; % start with empty store
26 s <- call list2store s k e ; % add all elements from k
27 call store2list l s % retrieve all element from s

Listing 2: Phase 1 and 2 store typing

L ⊆ K Aℓ ≤ Bℓ (∀ℓ ∈ L)

⊕{ℓ : Aℓ}ℓ∈L ≤ ⊕{k : Bk}k∈K

1 ≤ 1

A1 ≤ B1 A2 ≤ B2

A1 ⊗A2 ≤ B1 ⊗B2

L ⊇ K Ak ≤ Bk (∀k ∈ K)

N{ℓ : Aℓ}ℓ∈L ≤ N{k : Ak}k∈K

B1 ≤ A1 A2 ≤ B2

A1 ⊸ A2 ≤ B1 ⊸ B2

Figure 1: Subtyping, rules interpreted coinductively

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.14

A′ ≤ A

y : A′ ⊢ fwd x y :: (x : A)
id

f (x : A′) (yi : B′
i) = P ∈ Σ Bi ≤ B′

i (∀i) A′ ≤ A

yi : Bi ⊢ call f x yi :: (x : A)
call

A′
1 ≤ A1 ∆ ⊢ P :: (x : A2)

∆, y : A′
1 ⊢ send x y ; P :: (x : A1 ⊗A2)

⊗R∗

A′
1 ≤ A1 ∆, x : A2 ⊢ P :: (z : C)

∆, y : A′
1, x : A1 ⊸ A2 ⊢ send x y ; P :: (z : C)

⊸L∗

Figure 2: Process typing, extended for subtyping

LECTURE NOTES SEPTEMBER 21, 2023

Lecture Notes on
Validity

15-836: Substructural Logics
Frank Pfenning

Lecture 9
September 26, 2023

1 Introduction

So far we have drawn strict boundaries between ordered, linear, and structural
logic. To make linear logic more expressive we have used recursion because it is
quite natural from the programming perspective. In Lecture 2 we briefly men-
tioned and showed rules for the exponential modality !A which is subject to weak-
ening and contraction.

In this lecture we explain that !A is the result of a general construction that can
be carried out for other logics as well. In structural logics, for example, it is usually
written as □A, expressing that A is necessarily true or A is true in all possible
worlds. The proof theory for !A when viewed from this perspective is somewhat
more pleasant, but ultimately still not entirely satisfactory. We will come back to
this in the next lecture to improve and in the process generalize it even further.

2 Girard’s Exponential

Girard’s [1987] exponential modality, in the intuitionistic setting [Girard and La-
font, 1987], can be defined in the sequent calculus with the following rules.

!∆ ⊢ A

!∆ ⊢ !A
!R

∆, A ⊢ C

∆, !A ⊢ C
!L

∆, !A, !A ⊢ C

∆, !A ⊢ C
contract

∆ ⊢ C

∆, !A ⊢ C
weaken

Here, !∆ means that every antecedent in ∆ has the form !B. With these rules we
can obtain as many copies of A from !A as we want.

LECTURE NOTES SEPTEMBER 26, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/02-connectives.pdf

Validity L9.2

3 Andreoli’s Exponential

Andreoli [1992] introduced what he calls a dyadic system for linear logic where we
have two distinct forms of antecedents (later also given in its intuitionistic ver-
sion [Barber, 1996]). From our perspective, one collection of antecedents is struc-
tural and the other is linear. We write such a sequent as

Γ ; ∆ ⊢ A

Here, Γ represents a set and ∆ a multiset. For Andreoli, this was mostly a technical
device; we will justify it as the result of studying validity.

What does it mean for a proposition A to be valid as opposed to merely true? A
slogan from an earlier lecture may be helpful:

Truth is ephemeral, validity forever.

A proposition such as “it is raining” may be true in a particular state and false in
others, while a proposition such as “A implies A” should be true for all proposi-
tions A in all states. In linear logic we can capture this with

· ⊢ A true

⊢ A valid

It expresses that if A is true without using any hypotheses, then A is valid.
From the perspective of linear logic, A being valid means we should be able to

produce as many proofs of A as we wish. This in turn allows us to use A as many
times as we wish in a proof. After all, a proof of A requires no resources. Using cut:

· ⊢ A ∆, A ⊢ C

∆ ⊢ C
cut

So we should treat antecedents A valid as structural.
The judgment we end up with has the form anticipated at the beginning of this

section.
Γ︸︷︷︸

valid

; ∆︸︷︷︸
true

⊢ A true

An interesting property of this formulation is that we do not change (yet) our lan-
guage of propositions at all: they are all linear, with the usual linear connectives.
This means that propositional inference rules are applied only to the succedent
A true and the antecedents in ∆, not those in Γ.

Once we have the judgment A valid we also obtain a second judgment

Γ︸︷︷︸
valid

⊢ A valid

LECTURE NOTES SEPTEMBER 26, 2023

Validity L9.3

but there is only a single rule that applies here because the meaning of the connec-
tives arises entirely from their linear nature. An antecedent A valid allows us to
use it whenever we wish.

Γ ; · ⊢ A true

Γ ⊢ A valid
validR

Γ, A valid ; ∆, A true ⊢ C true

Γ, A valid ; ∆ ⊢ C true
validL

These rules are not regular right or left rules, because validity is a judgment, not a
proposition. Just to remind ourselves of this we write R and L as a subscript.

In some ways these rules are similar to cut and identity in the sense that they
apply to arbitrary propositions A. So rather than defining the nature of the connec-
tives, they define the nature of the judgments. Cut and identity explain the nature
of the hypothetical judgment, while validR and validL explain the nature of validity.

The next question is about how to express validity, internally, as a proposition.
At this point this has become easy!

Γ ⊢ A valid

Γ ; · ⊢ !A true
!R

Γ, A valid ; ∆ ⊢ C true

Γ ; ∆, !A ⊢ C true
!L

Since there is only one rule to conclude Γ ⊢ A valid (namely validR) the system is a
little less symmetric but a little more streamlined if we combine !R with validR into
the rule

Γ ; · ⊢ A true

Γ ; · ⊢ !A true
!R′

As discussed in lecture, we couldn’t allow a nonempty ∆ in the conclusion of !R′

(or !R, for that matter) because in the premise it must definitely be empty, and then
none of the supposedly linear antecedents in ∆ would actually be used.

As one might expect, things do go horribly wrong without this restriction. Since
Γ is structural, it is just added parametrically to all the right and left rules and we
have and also allowed for cut and identity.

Γ ; A ⊢ A
id

Γ ; ∆ ⊢ A Γ ; ∆′ ⊢ C

Γ ; ∆,∆′ ⊢ C
cut

Without the restriction on !R′, we could prove:

· ; A ⊢ A
id

· ; A ⊢ !A
!R′??

A ; A ⊢ A
id

A ; · ⊢ A
validL

A ; A ⊢ A
id

A ; · ⊢ A
validL

A ; · ⊢ A⊗A
⊗R

· ; !A ⊢ A⊗A
!L

· ; A ⊢ A⊗A
cut

and similarly · ; A ⊢ 1. For these it is an easy step to show that weakening and
contraction for all linear antecedents would be admissible. In other words, the logic
would no longer be linear!

LECTURE NOTES SEPTEMBER 26, 2023

Validity L9.4

4 Examples

As mentioned in the introduction, the construction of validity is quite generic. For
example, it could be carried out even if the base logic were already structural, in
which case we obtain a version of the intuitionistic modal logic S4 [Pfenning and
Davies, 2001], where !A would be written □A. So we can test some laws of modal
logic here. The first three judgments below are derivable; the last one isn’t.

⊢ !(A ⊸ B) ⊸ (!A ⊸ !B)
⊢ !A ⊸ A
⊢ !A ⊸ !!A

̸⊢ P ⊸ !P

Let’s write out the first one, which indicates that linear logic is a “normal” modal
logic because the exponential distributes over implication.

...
· ; !(A ⊸ B), !A ⊢ !B

· ; · ⊢ !(A ⊸ B) ⊸ (!A ⊸ !B)
⊸R× 2

At this point we cannot apply !R because there are linear antecedents, so we have
to shuffle them into the structural antecedents and then apply !R′.

...
A ⊸ B,A ; · ⊢ B

A ⊸ B,A ; · ⊢ !B
!R′

· ; !(A ⊸ B), !A ⊢ !B
!L× 2

· ; · ⊢ !(A ⊸ B) ⊸ (!A ⊸ !B)
⊸R× 2

Now we can copy A ⊸ B to the linear context since we would like to apply a left
rule to it. The premises of ⊸L then follow readily.

A ⊸ B,A ; A ⊢ A
id

A ⊸ B,A ; · ⊢ A
validL

A ⊸ B,A ; B ⊢ B
id

A ⊸ B,A ; A ⊸ B ⊢ B
⊸L

A ⊸ B,A ; · ⊢ B
validL

A ⊸ B,A ; · ⊢ !B
!R′

· ; !(A ⊸ B), !A ⊢ !B
!L× 2

· ; · ⊢ !(A ⊸ B) ⊸ (!A ⊸ !B)
⊸R× 2

LECTURE NOTES SEPTEMBER 26, 2023

Validity L9.5

This illustrates a practical shortcoming of this system: since right and left rules are
applied only to linear propositions, we frequently have to move structural propo-
sitions into and out of the linear antecedents, using validL and !L.

We can consider other questions. For example, does the exponential distribute
over the tensor? Let’s try:

...
A⊗B ; · ⊢ !A⊗ !B

· ; !(A⊗B) ⊢ !A⊗ !B
!L

At this point we could try ⊗R or validL. After ⊗R there are two remaining sym-
metric subgoals.

fails
A⊗B ; · ⊢ A

A⊗B ; · ⊢ !A
!R′

...
A⊗B ; · ⊢ !B

A⊗B ; · ⊢ !A⊗ !B
⊗R

· ; !(A⊗B) ⊢ !A⊗ !B
!L

We can prove neither of them, because whenever we copy A ⊗ B into the linear
zone, followed by ⊗L, we get both A and B, linearly, but we only have A to prove.

If we try validL first, we also get stuck because we have linear A and B but the
ultimately succedents are !A and !B.

fails
A⊗B ; A ⊢ !A

fails
A⊗B ; B ⊢ !B

A⊗B ; A,B ⊢ !A⊗ !B
⊗R

A⊗B ; A⊗B ⊢ !A⊗ !B
⊗L

A⊗B ; · ⊢ !A⊗ !B
validL

· ; !(A⊗B) ⊢ !A⊗ !B
!L

The failure of these attempts doesn’t mean much, but since this logic satisfies cut
and identity elimination (see Section 6) it takes just a little more work to show that
these are in fact not provable.

Perhaps we should have even seen intuitively that this entailment does not
hold. It says that if we have both A and B together, as many times as we want,
we can get, independently, A as often as we want and B as often as we want. That
just couldn’t be true.

But the exponential distributes over the additive conjunction A N B in an in-
teresting way. Intuitively, !(A N B) means that we arbitrarily often have a choice
between A and B. and !A⊗ !B means that we have both A and B arbitrarily often,

LECTURE NOTES SEPTEMBER 26, 2023

Validity L9.6

separately. These are equivalent.

A N B ; A ⊢ A
id

A N B ; A N B ⊢ A
NL1

A N B ; · ⊢ A
validL

A N B ; · ⊢ !A
!R′

A N B ; B ⊢ B
id

A N B ; A N B ⊢ B
NL2

A N B ; · ⊢ B
validL

A N B ; · ⊢ !B
!R′

A N B ; · ⊢ !A⊗ !B
⊗R

· ; !(A N B) ⊢ !A⊗ !B
!L

The other direction, · ; !A⊗ !B ⊢ !(A N B) is perhaps even more straightforward.

5 Translation from Structural into Linear Logic

The whole endeavor of linear logic is to add expressive power to structural logic.
This is clearly not the case without either recursion (which jeopardizes the logical
reading altogether) or the exponential. Now that we have validity (which is struc-
tural) and the exponential modality, how do we translate ordinary intuitionistic
logic into linear logic?

There seem to be fundamentally two translations, one “by name” and one “by
value”. They are so named because of what they mean operationally, under a func-
tional interpretation. Girard [1987] provides a “by value” translation, so we de-
velop that.

The basic idea guiding the translation (A)∨ is that if Γ ⊢ A then (Γ)∨ ; · ⊢ (A)∨.
Using one of the judgments we have introduced, we could also have said (Γ)∨ ⊢
(A)∨ valid . This should not be so surprising. The other direction is generally easy
because we can just ignore the strictures of linearity.

Now we examine a few connectives in turn to see how they should translate.

Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃R

Γ∨, A∨ ; · ⊢ B∨

...
Γ∨ ; · ⊢ (A ⊃ B)∨

We see that at least for the right rule, we can pick

(A ⊃ B)∨ = !A∨ ⊸ !B∨

and then apply !L and !R′ after ⊸R.

Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃R

Γ∨, A∨ ; · ⊢ B∨

Γ∨, A∨ ; · ⊢ !B∨ !R′

Γ∨ ; !A∨ ⊢ !B∨ !L

Γ∨ ; · ⊢ !A∨ ⊃ !B∨ ⊸R

LECTURE NOTES SEPTEMBER 26, 2023

Validity L9.7

What about the left rule?

Γ, A ⊃ B ⊢ A Γ, A ⊃ B,B ⊢ C

Γ, A ⊃ B ⊢ C
⊃L

Γ∨, !A∨ ⊸ !B∨ ; · ⊢ A∨ Γ∨, !A∨ ⊸ !B∨, B∨ ; · ⊢ C∨

...
Γ∨, !A∨ ⊸ !B∨ ; · ⊢ C∨

Note that because Γ and Γ∨ are both structural, we propagate them to all premises.
Then we can just copy !A∨ ⊸ !B∨ to the linear antecedent, and apply the left rule,
followed by some more administrative moves.

Γ∨, !A∨ ⊸ !B∨ ; · ⊢ A∨

Γ∨, !A∨ ⊸ !B∨ ; · ⊢ !A∨ !R
Γ∨, !A∨ ⊸ !B∨, B∨ ; · ⊢ C∨

Γ∨, !A∨ ⊸ !B∨ ; !B∨ ⊢ C∨ !L

Γ∨, !A∨ ⊸ !B∨ ; !A∨ ⊸ !B∨ ⊢ C∨ ⊸L

Γ∨, !A∨ ⊸ !B∨ ; · ⊢ C∨ validL

All the other connectives follow similar patterns, but let’s also look at identity and
cut.

Γ, A ⊢ A
id

Γ∨, A∨ ; A∨ ⊢ A∨ id

Γ∨, A∨ ; · ⊢ A∨
validL

Γ ⊢ A Γ, A ⊢ C

Γ ⊢ C
cut

Γ∨ ; · ⊢ A∨ Γ∨, A∨ ; · ⊢ C∨

...
Γ∨ ; · ⊢ C∨

We can derive the conclusion in the case of a cut by introducing and then cutting
!A∨

Γ∨ ; · ⊢ A∨

Γ∨ ; · ⊢ !A∨ !R′
Γ∨, A∨ ; · ⊢ C∨

Γ∨ ; !A∨ ⊢ C∨ !L

Γ∨ ; · ⊢ C∨
cut

As we will see in Section 6 is also makes sense to extend linear logic with additional
rule that cuts valid antecedents directly.

Γ∨ ; · ⊢ A∨ Γ∨, A∨ ; · ⊢ C∨

Γ∨ ; · ⊢ C∨ cut!

To completing the translation we map the intuitionistic (structural) connectives
to their linear counterparts and prefix every subformula with an exponential. In
the reverse direction A∧ we just map all linear connectives to their structural coun-

LECTURE NOTES SEPTEMBER 26, 2023

Validity L9.8

terparts and drop all exponentials.

(A ⊃ B)∨ = !A∨ ⊸ !B∨ (A ⊸ B)∧ = A∧ ⊃ B∧

(A ∧B)∨ = !A∨ ⊗ !B∨ (A⊗B)∧ = A∧ ∧B∧

(A N B)∧ = A∧ ∧B∧

(⊤)∨ = 1 (1)∧ = ⊤
(⊤)∧ = ⊤

(A ∨B)∨ = !A∨ ⊕ !B∨ (A⊕B)∧ = A∧ ∨B∧

(⊥)∨ = 0 (0)∧ = ⊥

(!A)∧ = A∧

(P)∨ = P (P)∧ = P

We can summarize the correctness of the translation in the following theorem.

Theorem 1 (Correctness of Translation from Structural to Linear Logic)

(i) If Γ ⊢ A then Γ∨ ; · ⊢ A∨

(ii) If Γ ; ∆ ⊢ A then Γ∧,∆∧ ⊢ A∧

Proof: Part (i) follows by structural induction over the given derivation. In each
case we directly construct the resulting derivation, preserving the essential struc-
ture while inserting rules concerning validity and the exponential. We showed
some representative cases in this section.

Part (ii) also follows by structural induction over the given derivation. Some
structural antecedents available for Γ∧,∆∧ ⊢ A∧ will be unnecessary and can be
dropped by weakening. □

There is an optimized translation where the subformulas of positive proposi-
tions (⊗, ⊕) are not preceded by an exponential. I suspect the most straightforward
way to prove the correctness of the optimized translation is to prove inversion of
the left rules on the structural side and then mimic them with the linear left rules
(which also happen to be invertible).

6 Cut and Identity Elimination1

Both cut and identity elimination carry over from the purely linear case, but with a
few new wrinkles.

1not covered in lecture

LECTURE NOTES SEPTEMBER 26, 2023

Validity L9.9

Theorem 2 (Admissibility of Identity) If we restrict the identity to atomic proposi-
tions, then

Γ ; A ⊢ A
idA

is admissible for arbitrary A.

Proof: As before, by structural induction on A. The only interesting case is A = !A′.
We construct:

Γ, A′ ; A′ ⊢ A′
idA′

Γ, A′ ; · ⊢ A′
validL

Γ, A′ ; · ⊢ !A′ !R

Γ ; !A′ ⊢ !A′ !L

□

In order to prove admissibility of cut, it is helpful to simultaneously proof the
admissibility of cut!. The induction measure is then somewhat more complicated,
as we explain below. The first premise of the cut! rule expresses that A is valid, so
we can cut out an antecedent of the form A valid from the second premise.

Theorem 3 (Admissibility of Cut) The rules

Γ ; ∆ ⊢ A Γ ; ∆′ ⊢ C

Γ ; ∆,∆′ ⊢ C
cut

Γ ; · ⊢ A Γ, A ; ∆′ ⊢ C

Γ ; ∆′ ⊢ C
cut!

are admissible.

Proof: By a simultaneous nested induction in the following order

(1) the structure of the proposition A

(2) cut!A is greater than cutA

(3) either the first or the second derivation becomes smaller while the other re-
mains the same

Item (2) is new here and necessary for the following case.

Case:

D
Γ ; · ⊢ A

E ′

Γ, A ; ∆′, A ⊢ C

Γ, A ; ∆′ ⊢ C
validL

Γ ; ∆′ ⊢ C
cut!A

LECTURE NOTES SEPTEMBER 26, 2023

Validity L9.10

We have to construct a new derivation with two cuts, because there are now
two copies of A among the antecedents of E ′.

D
Γ ; · ⊢ A

D
Γ ; · ⊢ A

E ′

Γ, A ; ∆′, A ⊢ C

Γ ; ∆′, A ⊢ C
cut!A

Γ ; ∆′ ⊢ C
cutA

The problem here is that both cutA and cut!A are on the same cut formula A.
Also, the derivation of the second premise of cutA may be much larger than
the original E , since it is the result of the induction hypothesis on cut!A. So we
need that cutA is strictly smaller than cut!A. Fortunately, the other critical case
(which necessitates cut!A in the first place) requires an appeal to the induction
hypothesis at a smaller proposition.

Case:

D′

Γ ; · ⊢ A′

Γ ; · ⊢ !A′ !R

E ′

Γ, A′ ; ∆′ ⊢ C

Γ ; ∆′, !A′ ⊢ C
!L

Γ ; ∆′ ⊢ C
cut!A′

We reduce this immediately to a cut!A′ , which is a smaller formula. So even if
cut!A is greater than cutA, the structure of the proposition takes precedence.

D′

Γ ; · ⊢ A′
E ′

Γ, A′ ; ∆′ ⊢ C

Γ ; ∆′ ⊢ C
cut!A′

□

References

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-
nal of Logic and Computation, 2(3):197–347, 1992.

Andrew Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347,
Department of Computer Science, University of Edinburgh, September 1996.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

LECTURE NOTES SEPTEMBER 26, 2023

Validity L9.11

Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In H. Ehrig,
R. Kowalski, G. Levi, and U. Montanari, editors, Proceedings of the International
Joint Conference on Theory and Practice of Software Development, volume 2, pages
52–66, Pisa, Italy, March 1987. Springer-Verlag LNCS 250.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511–540, 2001. Notes to an in-
vited talk at the Workshop on Intuitionistic Modal Logics and Applications (IMLA’99),
Trento, Italy, July 1999.

LECTURE NOTES SEPTEMBER 26, 2023

Lecture Notes on
A Mixed Linear/Nonlinear Logic

15-836: Substructural Logics
Frank Pfenning

Lecture 10
September 28, 2023

1 Introduction

As we have seen in the last lecture, introducing the judgment of validity and then
internalizing it as the exponential modality !A permits a compositional translation
of structural (intuitionistic) logic into linear logic. At this point we could declare
victory and see if similar techniques apply to other logics, e.g., if there is some
embedding of linear logic into ordered logic.

However, there are some nagging issues, despite the elegance of the cut elimi-
nation proof.

1. The exponential !A is neither positive nor negative in that it is invertible nei-
ther on the right nor on the left. On the right, in a judgment Γ ; ∆ ⊢ !A we
may have to wait until ∆ becomes empty before applying !R. On the left, we
can move the linear antecedent !A true to A valid , but we cannot necessarily
move it back immediately to A true because that renders the linear context
nonempty (thereby possibly preventing !R).

2. If we have a particular interpretation of intuitionistic (structural) logic in
mind, then translation to linear logic may mangle this interpretation. Among
other concerns, a notion of observability may not be preserved, in which case
the translation couldn’t properly serve as a compiler.

So it is worth looking for a direct combination of logics, rather than translating
one into the other. If structural logic represents functional programming, and lin-
ear logic message-passing, then we’d look for a way to combine functional and
message-passing programming.

Today, we take a first step in this direction by developing a mixed linear/non-
linear logic (mostly) following Benton [1994]. Since ours is a minor variant, we
also call it LNL. We will see that it repairs some of the noted issues. Moreover, it

LECTURE NOTES SEPTEMBER 28, 2023

A Mixed Linear/Nonlinear Logic L10.2

presents a clear path towards further generalization in the form of adjoint logic [Reed,
2009, Pruiksma et al., 2018].

2 Shifting Between Logics

Given the desire to keep the native meaning of both structural and linear logic, we
place them in two different strata and speculate that we may just go back and forth
between them using two shift operators.

Structural AS ::= PS | AS ⊃ BS | AS ∧BS | ⊤ | AS ∨BS | ⊥ | ↑AL

Linear AL ::= PL | AL ⊸ BL | AL ⊗BL | 1 | AL N BL | ⊤ | AL ⊕BL | 0 | ↓AS

We call S and L modes.
The key questions are: Which properties do we expect from the combination,

and which laws should the two shifts satisfy so that these properties hold? At least,
we the combination should satisfy cut and identity elimination. Beyond that, the
combination should be conservative over each fragment in a strong sense: not only
do we want purely structural or purely linear propositions to be true precisely if
they are true in purely structural or purely linear logic, but we also want them to
have essentially the same proofs.

A lesson from the study of validity is that we cannot allow validity (here: truth
of a structural proposition) to depend on truth (here: truth of a linear proposition).
This gives us two judgment forms for the mixed linear/nonlinear logic.

(1) ΓS ; ∆L ⊢ AL

(2) ΓS ⊢ AS

The significant differences to the judgments from dual intuitionistic linear logic is
that (a) there no longer is an exponential !A, and (b) we can apply inference rules
directly to structural propositions AS, both in the antecedent and in the succedent.

3 Rules for Implication

Because we have two judgments and also two forms of implication, there are more
rules concerning implication than one might at first suspect. This kind of redun-
dancy is unfortunate, but, as we will see in the next lecture, it can be eliminated to
obtain a quite streamlined system in which there are just a single right rule and a
single left rule for implication.

Because we can tell, by notation and by position, when antecedents are struc-
tural or linear propositions, we omit the subscription ΓS and ∆L.

LECTURE NOTES SEPTEMBER 28, 2023

A Mixed Linear/Nonlinear Logic L10.3

First, the right rules. Since the mode of the succedent is uniquely determined
by the judgment (or vice versa, depending on how you look at it), there are just
two rules.

Γ, AS ⊢ BS

Γ ⊢ AS ⊃ BS

⊃R
Γ ; ∆, AL ⊢ BL

Γ ; ∆ ⊢ AL ⊸ BL

⊸R

There is only one left rule for AL ⊸ BL because it can appear in only one of the two
judgments.

Γ ; ∆1 ⊢ AL Γ ; ∆2, BL ⊢ CL

Γ ; ∆1,∆2, AL ⊸ BL ⊢ CL

⊸L

On the other hand, structural implication can appear in both judgment forms, so
there are two left rules for AS ⊃ BS.

Γ, AS ⊃ BS ⊢ AS Γ, AS ⊃ BS, BS ; ∆ ⊢ CL

Γ, AS ⊃ BS ; ∆ ⊢ CL

⊃LSL

Γ, AS ⊃ BS ⊢ AS Γ, AS ⊃ BS, BS ⊢ CS

Γ, AS ⊃ BS ⊢ CS

⊃LSS

Note that the first premises of the two rules are the same. That’s because AS is
structural, and thereby determines the judgment form needed to prove it. It is also
forced that we sort BS into Γ, just from its mode.

4 Rules for Shifts

Besides identifying the right judgment forms, the rules for the shifts are a key to
understanding the mixed linear/nonlinear system. As guidance in this process,
let’s recall the rules in the dyadic system from last lecture. We show the original
form of !R with an explicit, albeit forced, validR rule.

Γ ; · ⊢ A true

Γ ⊢ A valid
validR

Γ, A valid ; ∆, A true ⊢ C true

Γ, A valid ; ∆ ⊢ C true
validL

Γ ⊢ A valid

Γ ; · ⊢ !A true
!R

Γ, A valid ; ∆ ⊢ C true

Γ ; ∆, !A ⊢ C true
!L

Here is a thought experiment: what if the structural layer was only occupied by
↑AL? Then for any proposition ↓AS the proposition AS must have the form ↑AL.
Then we can try to gain insight from the decomposition !AL ≜ ↓↑AL. Here, both AL

and ↓↑AL are at mode L. Therefore, AS valid corresponds to ↑AL true because this is
the only possibility for AS. From this we get the following rules (showing the prior

LECTURE NOTES SEPTEMBER 28, 2023

A Mixed Linear/Nonlinear Logic L10.4

rule on the left, the LNL rule on the right):

Γ ; · ⊢ A true

Γ ⊢ A valid
validR

Γ ; · ⊢ AL

Γ ⊢ ↑AL

↑R

Γ, A valid ; ∆, A true ⊢ C true

Γ, A valid ; ∆ ⊢ C true
validL

Γ, ↑AL ; ∆, AL ⊢ CL

Γ, ↑AL ; ∆ ⊢ CL

↑L

Γ ⊢ A valid

Γ ; · ⊢ !A true
!R

Γ ⊢ AS

Γ ; · ⊢ ↓AS

↓R

Γ, A valid ; ∆ ⊢ C true

Γ ; ∆, !A ⊢ C true
!L

Γ, AS ; ∆ ⊢ CL

Γ ; ∆, ↓AS ⊢ CL

↓L

Some of the anomalies have disappeared. For example, every rule now concerns a
particular logical connective rather than a judgment.

Furthermore, we have an explanation why !A was neither positive nor negative.
From writing out the proofs of identities we can see that ↑ is negative (invertible
on the right) and ↓ is positive (invertible on the left). So !AL = ↓↑AL is neither
positive nor negative because there is a shift in polarity between the two shifts. It
is sometimes said that ! is “positive on the outside and negative on the inside”, which
reflects this decomposition precisely.

5 Identity and Cut

In LNL we have two forms of identity, and several forms of cut. This is because we
can apply rules directly to structural propositions.

Γ, AS ⊢ AS

idS
Γ ; AL ⊢ AL

idL

For the same reason we have multiple left rules, we also get multiple versions of
cut (three, to be precise).

Γ ⊢ AS Γ, AS ⊢ CS

Γ ⊢ CS

cutSS
Γ ⊢ AS Γ, AS ; ∆

′ ⊢ CL

Γ ; ∆′ ⊢ CL

cutSL

Γ ; ∆ ⊢ AL Γ ; ∆′, AL ⊢ CL

Γ ; ∆,∆′ ⊢ CL

cutLL

The admissibility of cut and identity is not essentially different from before, and
perhaps proof are even a bit simpler since we do not need to order different forms
of cut among each other. But we need to prove it simultaneously for the two forms
of identity and three three forms of cut since shifts will move us between these
judgments.

LECTURE NOTES SEPTEMBER 28, 2023

A Mixed Linear/Nonlinear Logic L10.5

Theorem 1 (Admissibility of Identity) The rules of identity idS and idL are admissible
in the system where they are restricted to atomic propositions.

Proof: By simultaneous structural induction on AS and AL. □

Theorem 2 (Admissibility of Cut) The three rules of cut are admissible in the system
without cut.

Proof: By simultaneous nested induction on all three forms of cut, first on the cut
proposition AL and AS, and second on the first and second given derivation.

To account for the requirement that the structural context Γ be the same among
the premises of the cut we may have to apply the admissibility of weakening for
structural antecedents, that is, we can add a new antecedent BS to every sequent in
a proof. □

Once we have cut elimination, the conservative extension properties are almost
immediate.

Theorem 3 (Conservative Extension)

(i) If Γ and AS do not contain any upshift ↑ then Γ ⊢ AS if and only if Γ ⊢ AS in
structural (intuitionistic) logic.

(ii) If ∆ and AL do not contain any downshift ↓ then · ; ∆ ⊢ AL if and only if ∆ ⊢ AL in
purely linear logic.

Proof: All the rules except cut have the subformula property, and the rules can be
read as rules from the purely structural (part (i)) or purely linear (part (ii)) sequent
calculus. Therefore conservative extension follows directly from cut elimination. □

6 Examples

We can now experiment with some properties. For example, we see that ↑ dis-
tributes over implication, we just have to be careful to pick the correct kind of im-
plication. We elide some structural antecedents when they are no longer needed.

− ; AL ⊢ AL

id
− ; BL ⊢ BL

id

− ; AL ⊸ BL, AL ⊢ BL

⊸L

↑(AL ⊸ BL), ↑AL ; · ⊢ BL

↑L× 2

↑(AL ⊸ BL), ↑AL ⊢ ↑BL

↑R

· ⊢ ↑(AL ⊸ BL) ⊃ (↑AL ⊃ ↑BL)
⊃R× 2

LECTURE NOTES SEPTEMBER 28, 2023

A Mixed Linear/Nonlinear Logic L10.6

The downshift also distributes over implication.

−, AS ⊢ AS

idS −, BS ⊢ BS

idS

AS ⊃ BS, AS ⊢ BS

⊃L

AS ⊃ BS, AS ; · ⊢ ↓BS

↓R

· ; ↓(AS ⊃ BS), ↓AS ⊢ ↓BS

↓L× 2

· ; · ⊢ ↓(AS ⊃ BS) ⊸ (↓AS ⊸ ↓BS)
⊃R× 2

The properties we proved last time using !A carry over under the definition
as ↓↑A. The proofs remain essentially the same, with just a couple of additional
administrative steps and different naming of the rules.

7 A Programming Example

One advantage of LNL is more direct expression of mixed programs. As an exam-
ple that also illustrates parallelism, we show mapreduce over trees that have data
only at the leaves. mapreduce is a fold operation over such trees, so the type treeA
is replaced by a fresh type variable B.

treeA = ⊕{leaf : A, node : treeA ⊗ treeA}
mapreduceAB (r : B) (h : A ⊸ B) (f : B ⊸ (B ⊸ B)) (t : treeA) = . . . ?

In the type of mapreduce, r stands for the result, that is, the channel to deliver the
result at. We have curried the type of the function f for ease of programming.

A problem is that we will not be able to write a recursive mapreduce with this
type since h and f are channels of linear type. h will be used for every leaf, and f
will be used for every node, so both will be used multiple times. We could try to
rewrite mapreduce as an iterator—here we want to write it directly. This means that
both h and f should be structural: we need upshifts.

mapreduceAB (r : B) (h : ↑(A ⊸ B)) (f : ↑(B ⊸ (B ⊸ B))) (t : treeA) = . . .

At this point it would be relatively straightforward to write the code, if we only had
the dynamics of the shifts. Let’s develop this and then come back to the example.

8 Dynamics of the Shifts

We start with ↑A. Since it is negative it will receive, but what? Let’s look at the rule
and annotate with channels.

Γ ; · ⊢ AL

Γ ⊢ ↑AL

↑R
Γ ; · ⊢ (yL : AL)

Γ ⊢ (xS : ↑AL)
↑R

LECTURE NOTES SEPTEMBER 28, 2023

A Mixed Linear/Nonlinear Logic L10.7

We need to transition from a structural channel xS to a linear channel yL, so that’s
what we need to receive! We write ⟨y⟩ for receiving a channel of a different mode
(linear or structural). Then we have:

Γ ; · ⊢ P (yL) :: (yL : AL)

Γ ⊢ recv xS (⟨yL⟩ ⇒ P (yL)) :: (xS : ↑AL)
↑R

Next, the left rule ↑L. To match ↑R, we clearly need to send a channel but which
one? We annotate the rule and then think of a process notation.

Γ, ↑AL ; ∆, AL ⊢ CL

Γ, ↑AL ; ∆ ⊢ CL

↑L
Γ, xS : ↑AL ; ∆, yL : AL ⊢ (z : CL)

Γ, xS : ↑AL ; ∆ ⊢ (z : CL)
↑L

We see that what we have to send is a fresh linear channel yL. This is a new phe-
nomenon since there is no cut involved, and so far only cut would create a fresh
channel. So we have to make up some new form of syntax.

Γ, xS : ↑AL ; ∆, yL : AL ⊢ Q(yL) :: (z : CL)

Γ, xS : ↑AL ; ∆ ⊢ send xS (⟨yL⟩ ⇒ Q(yL)) :: (z : CL)
↑L

What happens operationally? The client sends a fresh channel and the provider
continues with the fresh channel. So the first approximation would be

proc(recv aS (⟨yL⟩ ⇒ P (yL))), proc(send aS (⟨yL⟩ ⇒ Q(yL)))
−→ proc(P (bL)), proc(Q(bL)) bL fresh

This does not quite work, however, since structural channels may have multiple
clients. In the rule above the provider of aS disappears after interacting with one
client, so the other clients will be left dangling without a provider.

A similar practically occurring scenario is a web server. When a client sends
an HTTP request, the server spawns a fresh one-to-one connection and meanwhile
continues to serve other requests. What this means here is that the provider of a
structural channel spawns a fresh linear process but remains in the configuration to
receive further requests.

We model this with a new feature of multiset rewriting: we combine linear and
structural inference. The state consists of a set (the persistent propositions) and a
multiset (the ephemeral propositions). We just underline the persistent proposition,
because the alternative notation !A may be misleading. Then the rule reads:

proc(recv aS (⟨yL⟩ ⇒ P (yL))), proc(send aS (⟨yL⟩ ⇒ Q(yL)))

−→ proc(P (bL)), proc(Q(bL)) bL fresh

The persistent semantic objects originate in the cutSL rule (we omit the cutSS rule).
With process terms:

Γ ⊢ P (xS) :: (xS : AS) Γ, xS : AS ; ∆
′ ⊢ Q(xS) :: (zL : CL)

Γ ; ∆′ ⊢ xS ← P (xS) ; Q(xS) :: (zL : CL)
cutSL

LECTURE NOTES SEPTEMBER 28, 2023

A Mixed Linear/Nonlinear Logic L10.8

And the dynamics:

proc(xS ← P (xS) ; Q(xS)) −→ proc(P (aS)), proc(QS(aS)) (aS fresh)

Because it is not needed for the example, for the downshifts we jump directly to the
annotated versions and dynamics. As with other symmetric pairs of connectives
(⊸ / ⊗ and N / ⊕) we’d like to reuse the syntax for a streamlined language, just
swapping provider and client roles.

Γ ⊢ P (yS) :: (yS : AS)

Γ ; · ⊢ send xL (⟨yS⟩ ⇒ P (yS)) :: (xL : ↓AS)
↓R

Γ, yS : AS ; ∆ ⊢ Q(yS) :: (zL :: CL)

Γ ; ∆, xL : ↓AS ⊢ recv xL (⟨yS⟩ ⇒ P (yS)) :: (zL : CL)
↓L

The dynamics is similar to the one for ↑AL, except that different processes are per-
sistent and channels go from linear to structural instead of vice versa.

proc(send aL (⟨yS⟩ ⇒ P (yS))), proc(recv aL (⟨yS⟩ ⇒ Q(yS)))
−→ proc(P (bS)), proc(Q(bS)) bS fresh

9 Example Continued

Returning to the example, we can now write the process for mapreduce. Both h and
f are structural channels; we omit the subscript on the linear channels.

treeA = ⊕{leaf : A, node : treeA ⊗ treeA}
mapreduceAB (r : B) (hS : ↑(A ⊸ B)) (fS : ↑(B ⊸ (B ⊸ B))) (t : treeA) =

recv t (leaf ⇒ send hS (⟨h′⟩ ⇒ send h′ t ; fwd r h′)
| node⇒ recv t (s⇒

x← call mapreduceAB x hS fS s ;
y ← call mapreduceAB y hS fS t ;
send fS (⟨f ′⟩ ⇒
send f ′ x ;
send f ′ y ;
fwd r f ′)))

The structural nature of hS and fS is crucial here because they are indeed used
multiple or zero times in the two branches.

This may also be a good time to think about parallelism. We see that the two
recursive calls to mapreduce proceed entirely independently. But the parallelism
even goes further: the computation of f ′ on x and y can proceed while mapreduce
is still computing. So x and y are shared between the providers (the recursive calls

LECTURE NOTES SEPTEMBER 28, 2023

A Mixed Linear/Nonlinear Logic L10.9

to mapreduce) and the client (f ′, a linear instance of fS), synchronization between
these two processes only takes place during input or output on those channels. This
phenomenon of pipelining can improve the asymptotic complexity of some parallel
algorithms, as observed by Blelloch and Reid-Miller [1999].

Since it came up during lecture: if we change the type of fS to take a pair of
channels, we have to create this pair in the code which is minimally more compli-
cated. The result is below.

treeA = ⊕{leaf : A, node : treeA ⊗ treeA}
mapreduceAB (r : B) (hS : ↑(A ⊸ B)) (fS : ↑((B ⊗B) ⊸ B))) (t : treeA) =

recv t (leaf ⇒ send hS (⟨h′⟩ ⇒ send h′ t ; fwd r h′)
| node⇒ recv t (s⇒

x← call mapreduceAB x hS fS s ;
y ← call mapreduceAB y hS fS t ;
send fS (⟨f ′⟩ ⇒
pB⊗B ← (send p x ; fwd p y) ;
send f ′ p ;
fwd r f ′)))

10 Summary

We have presented LNL [Benton, 1994], a mixed linear/nonlinear logic that arises
from the logic of validity from the last lecture by decomposing !A into two shifts:
one (↑) from linear to structural and one (↓) from structural to linear. Benton makes
the point that there is an adjunction between the two shifts, which results in their
composition ↓↑ being a comonad and the opposite composition ↑↓ being a monad.

This approach solves some small issues with the dyadic formulation from last
lecture. For example, ↑ is negative and ↓ is positive, which means their composition
! is neither.

Since we view LNL mainly as a stepping stone to full adjoint logic1 we do not
summarize the rules here.

References

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. In
Leszek Pacholski and Jerzy Tiuryn, editors, Selected Papers from the 8th Interna-
tional Workshop on Computer Science Logic (CSL’94), pages 121–135, Kazimierz,
Poland, September 1994. Springer LNCS 933. An extended version appears as
Technical Report UCAM-CL-TR-352, University of Cambridge.

1briefly previewed in this lecture, but covered in the notes for the next lecture

LECTURE NOTES SEPTEMBER 28, 2023

A Mixed Linear/Nonlinear Logic L10.10

G. E. Blelloch and M. Reid-Miller. Pipeling with futures. Theory of Computing Sys-
tems, 32:213–239, 1999.

Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. Adjoint logic.
Unpublished manuscript, April 2018. URL http://www.cs.cmu.edu/˜fp/
papers/adjoint18b.pdf.

Jason Reed. A judgmental deconstruction of modal logic. Unpublished manuscript,
May 2009. URL http://www.cs.cmu.edu/˜jcreed/papers/jdml2.pdf.

LECTURE NOTES SEPTEMBER 28, 2023

http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml2.pdf

Lecture Notes on
Adjoint Logic

15-836: Substructural Logics
Frank Pfenning

Lecture 11
October 3, 2023

1 Introduction

In the last lecture we introduced LNL, a mixed linear/nonlinear logic that directly
contains linear and nonlinear propositions instead of the exponential !A (which
could be defined as ↓↑A). This eliminates some drawbacks of coding all nonlinear
propositions via the exponential, but it has some of its own issues. For example,
we have seen that there are two right rules for implication (one for A ⊸ B and one
for A ⊃ B), and three left rules for implication (one for A ⊸ B and two for A ⊃ B).

One question is if we can streamline this so we would only have two rules im-
plication (one right and one left rule) rather than five as in LNL. Another is if we
can generalize the LNL approach to combine different logics, rather than just intu-
itionistic structural and linear logics. One answer to both questions is provided by
adjoint logic, a general schema for combining certain classes of logics based on sim-
ple principles. The idea was first sketched by Reed [2009] and further developed by
Pruiksma et al. [2018] and others (e.g., [Chargin, 2017, Licata and Shulman, 2016,
Licata et al., 2017, Pruiksma and Pfenning, 2021]).

The generality of adjoint logic then yields a number of familiar logics such as lax
logic Fairtlough and Mendler [1997] which is related to computational monads Moggi
[1991], or the intuitionistic modal logic S4 [Pfenning and Davies, 2001] which is
related to staged computation and metaprogramming [Davies and Pfenning, 2001].

In this and the following lecture we assume that exchange is always present as
a structural property, although this is not necessary. We leave further discussion of
ordered logic in the adjoint context either to a future lecture or a miniproject.

Mostly, it seems, we like to use weakening and contraction together. Occa-
sionally, it is suitable to postulate just weakening or contraction in isolation. For
example, if we want to allow failure and process cancelation, then weakening may
be appropriate (not every process providing a channel may actually be used). The
type system of Rust is also affine, that is, permits weakening but not contraction in

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.2

certain ways that are not entirely captured here, but analogous. Another example is
expressing strictness analysis in a language such as Haskell as a type system. When
a function definitely uses its argument then it is strict, that is, it can (explicitly or
implicitly) employ contraction but not weakening.

2 Adjoint Logic: The Basics

In adjoint logic every proposition has an intrinsic mode of truth, where each mode
may or may not admit weakening and contraction. We define the meaning of the
connectives uniformly at all modes by their right and left rules. So ultimately they
are distinguished only by the structural properties their mode satisfies.

As an example, LNL as an instance of the adjoint logic framework would have
two modes: S for structural propositions and L for linear propositions.

We also have a preorder m ≥ k on modes which expresses that the proof of a
proposition Ak may depend on an antecedent Bm. Conversely, when m ̸≥ k then
Bm may not be among the antecedents of a proof of m. We call this the principle
of independence. A necessary use of this is in LNL, where a proof of a structural
proposition AS may not depend on a linear proposition AL. So we have S > L as
our preorder (and, in particular L ̸≥ S).

In addition to the usual connectives, adjoint logic also generalizes the shifts
from LNL to go between two arbitrary modes. For ↑mk Ak we require m ≥ k and for
↓ℓmAℓ we require ℓ ≥ m.

Am ::= Pm | Am →Bm | Am ×Bm | 1 | Am N Bm | ⊤ | Am +Bm | 0 | ↑mk Ak | ↓ℓmAℓ

We chose a new syntax, partially based on the reading of propositions as types.
So A → B unifies A ⊃ B and A ⊸ B, A × B stands for A ∧ B and A ⊗ B, and
A + B stands for A ∨ B and A ⊕ B. Even the logical constants 1, ⊤ and 0 should
be thought of as having an intrinsic mode, even if we don’t write them this way in
the grammar.

We write σ(m) for the set of structural properties satisfied by mode m, where
σ(m) ⊆ {W,C}. As mentioned in the introduction, we always assume exchange.
Based on the experience with cut elimination and validity (or the exponential), we
require:

If m ≥ k then σ(m) ⊇ σ(k).

And, indeed cut elimination fails if we omit this requirement. Furthermore, any
dependence in a sequent must be allowed by the preorder among modes.

Whenever we write ∆ ⊢ Am we require ∆ ≥ m.

This presupposition means we can never ask a question ∆ ⊢ Am unless for all Bℓ ∈ ∆
we have ℓ ≥ m. We write ∆ here for the antecedents because we treat the an-
tecedents as a multiset. This means, weakening and contraction must be explicit
rules for those modes that permit it.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.3

Like Gentzen [1935], we read the inference rules of the sequent calculus bottom-
up, as a means to construct a proof. When viewed in this direction, we need to
ensure there are sufficient preconditions in the rule to ensure the premises satisfy
our presupposition when the conclusion does.

As a start, write out the structural rules. Weakening applies to antecedents that
permit it explicitly, and similarly for contraction.

W ∈ σ(m) ∆ ⊢ Cr

∆, Am ⊢ Cr
weaken

C ∈ σ(m) ∆, Am, Am ⊢ Cr

∆, Am ⊢ Cr

contract

Also generic are the rules of cut and identity. First, identity.

Am ⊢ Am
id

Cut requires a bit of thought. As usual, we start by writing down what we know
directly, and then think about what else may be needed.

∆ ⊢ Am ∆′, Am ⊢ Cr

∆,∆′ ⊢ Cr

cut?

At first glance it might seem this should be it, but we remember that in LNL we
needed three rules. For example, if m = S (that is, m is structural) then ∆ may
not contain any linear antecedents (that is, BL). This issue surfaces here when we
reason about our presupposition. Let’s write in blue what we know and in red
what we need to know for the premises.

∆ ≥ m?

∆ ⊢ Am

∆′ ≥ r,m ≥ r?

∆′, Am ⊢ Cr

∆,∆′ ⊢ Cr

cut?

∆,∆′ ≥ r

We see that we already know ∆′ ≥ r from the presupposition for the conclusion,
but we know neither ∆ ≥ m nor m ≥ r. These two conditions thus need to be
explicitly enforced and we obtain:

∆ ≥ m ≥ r ∆ ⊢ Am ∆′, Am ⊢ Cr

∆,∆′ ⊢ Cr

cut

You should convince yourself that in the case where we have just two modes, L and
S, this gives rise exactly to the three forms of cut in LNL.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.4

3 Logical Rules

Next we can define the logical rules, uniformly across the modes. We start with
implication, which is almost a worst case for its complexity.

∆, Am ⊢ Bm

∆ ⊢ Am →Bm
→R

The presupposition tells us that ∆ ≥ m, which is sufficient to ensure that (∆, Am) ≥
m. It is good there is no condition: since implication is negative, we would expect
it to be right invertible and therefore not be subject to any conditions. For the left
rule, matters are not quite as simple.

∆ ≥ m?

∆ ⊢ Am

∆′ ≥ r,m ≥ r?

∆′, Bm ⊢ Cr

∆,∆′, Am →Bm ⊢ Cr

→L?

(∆,∆′) ≥ r,m ≥ r

We see that ∆′ ≥ r and m ≥ r is already known, but ∆ ≥ m is not and must be
added as a condition.

∆ ≥ m ∆ ⊢ Am ∆′, Bm ⊢ Cr

∆,∆′, Am →Bm ⊢ Cr

→L

It turns out there isn’t much of interest in the other rules. We only show the ones
for tensor and unit.

∆ ⊢ Am ∆′ ⊢ Bm

∆,∆′ ⊢ Am ×Bm

×R
∆, Am, Bm ⊢ Cr

∆, Am ×Bm ⊢ Cr
×L

· ⊢ 1
1R

∆ ⊢ Cr

∆, 1 ⊢ Cr
1L

It is easy to see that for these (and the remaining rules except shifts) the presuppo-
sition for the conclusion immediately entails the presupposition for the premises
and no additional conditions are needed. The rules are summarized in Figure 1.

4 The Shifts

The shifts generalize those from LNL, where ↑ would be replaced by ↑S
L and ↓ by

↓S
L. Based on the polarity of the shifts in LNL we would expect the annotated shifts

of adjoint logic to have the same polarities: ↑ should be negative and ↓ should be
positive.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.5

We can confirm this two ways: analyze the mode constraints in detail, and also
derive the admissibility of the identity. Neither of these is proof, of course, which
will be come back to in the next lecture.

We show first the rule with the known (blue) constraints and then the necessary
constraints in red. The known constraint m ≥ k comes from the nature of the shift,
since the upper mode must always be greater or equal to the lower mode.

∆ ≥ k?

∆ ⊢ Ak

∆ ⊢ ↑mk Ak

↑R

∆ ≥ m,m ≥ k

∆ ⊢ Ak

∆ ⊢ ↑mk Ak

↑R

As we might have predicted from the negative nature of the upshift, the presuppo-
sition of the premise follows from the presupposition of the conclusion.

In contrast, we expect some mode condition on the left rule for the upshift.

∆ ≥ r, k ≥ r?

∆, Ak ⊢ Cr

∆, ↑mk Ak ⊢ Cr

↑L

∆ ≥ r,m ≥ k,m ≥ r

k ≥ r ∆, Ak ⊢ Cr

∆, ↑mk Ak ⊢ Cr

↑L

We show the rules for downshift in a similar form: collecting and checking de-
pendence constraints and synthesizing the rule from them. If you try this yourself
first, you will see that there is no leeway: the rules are uniquely determined.

∆ ≥ ℓ?

∆ ⊢ Aℓ

∆ ⊢ ↓ℓmAℓ

↓R

∆ ≥ m, ℓ ≥ m

∆ ≥ ℓ ∆ ⊢ Aℓ

∆ ⊢ ↓ℓmAℓ

↓R

And finally the ↓L rule, which requires no conditions.

∆ ≥ r, ℓ ≥ r?

∆, Aℓ ⊢ Cr

∆, ↓ℓmAℓ ⊢ Cr

↓L

∆ ≥ r, ℓ ≥ m,m ≥ r

∆, Aℓ ⊢ Cr

∆, ↓ℓmAℓ ⊢ Cr

↓L

5 Specific Logics as Instances of the Adjoint Schema

We obtain specific logics in the literature by specifying the modes, their depen-
dence relation, and their structural properties.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.6

Linear Logic. We obtain intuitionistic linear logic [Girard, 1987, Chang et al.,
2003] with two modes, S and L where S > L where σ(S) = {W,C} and σ(L) = { }.
Furthermore, we restrict the propositions at mode S as

AS ::= ↑S
LAL

Then !AL ≜ ↓S
L ↑S

LAL. We also rule out the shifts ↑mm and ↓mm.

LNL. We obtain LNL [Benton, 1994] with the same modes, but the structural layer
has a full set of connectives. We only rule out ↑mm and ↓mm.

Intuitionistic S4. We obtain intuitionistic S4 [Pfenning and Davies, 2001] with
two modes, V (validity) and T (truth), with σ(V) = σ(T) = {W,C}. The mode V is
restricted analogously to S in linear logic:

AV ::= ↑V
TAT

We also rule out ↑mm and ↓mm. We define □AT ≜ ↓V
T ↑V

TAT. As a composition of the
two adjoint shift operators, □ is a comonad.

Perhaps somewhat surprisingly, we do not obtain the monad ♢AT from a com-
position of shifts, although we can obtain ⃝AT, a strong monad and the basis for
lax logic.

Lax Logic. We obtain lax logic [Fairtlough and Mendler, 1997] with two modes, T
(truth) and X (lax truth), with T > X and σ(T) = σ(X) = {W,C}. The mode X is
restricted to

AX ::= ↓T
XAT

and then ⃝AT ≜ ↑T
X ↓T

XAT. The ⃝ modality is a (strong) monad.
It is now easy to extend and combine these. For examples, we can have a lan-

guage for staged computation [Davies and Pfenning, 2001] where quoted expres-
sions are drawn directly from the layer for validity. Or we can have a language that
has both a monad and a comonad, with different structural properties.

6 Summary

The rules for adjoint logic are summarized in Figure 1.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.7

Syntax with ℓ ≥ m ≥ k and σ(m) ⊆ {W,C}.

Am ::= Pm | Am →Bm | Am ×Bm | 1 | Am N Bm | ⊤ | Am +Bm | 0 | ↑mk Ak | ↓ℓmAℓ

Rules.

W ∈ σ(m) ∆ ⊢ Cr

∆, Am ⊢ Cr
weaken

C ∈ σ(m) ∆, Am, Am ⊢ Cr

∆, Am ⊢ Cr

contract

Am ⊢ Am
id

∆ ≥ m ≥ r ∆ ⊢ Am ∆′, Am ⊢ Cr

∆,∆′ ⊢ Cr

cut

∆ ⊢ Ak

∆ ⊢ ↑mk Ak

↑R
k ≥ r ∆, Ak ⊢ Cr

∆, ↑mk Ak ⊢ Cr

↑L

∆ ≥ ℓ ∆ ⊢ Aℓ

∆ ⊢ ↓ℓmAℓ

↓R
∆, Aℓ ⊢ Cr

∆, ↓ℓmAℓ ⊢ Cr

↓L

∆, Am ⊢ Bm

∆ ⊢ Am →Bm
→R

∆ ≥ m ∆ ⊢ Am ∆′, Bm ⊢ Cr

∆,∆′, Am →Bm ⊢ Cr

→L

∆ ⊢ Am ∆′ ⊢ Bm

∆,∆′ ⊢ Am ×Bm

×R
∆, Am, Bm ⊢ Cr

∆, Am ×Bm ⊢ Cr
×L

· ⊢ 1
1R

∆ ⊢ Cr

∆, 1 ⊢ Cr
1L

∆ ⊢ Am ∆ ⊢ Bm

∆ ⊢ Am N Bm
NR

∆, Am ⊢ Cr

∆, Am N Bm ⊢ Cr

NL1

∆, Bm ⊢ Cr

∆, Am N Bm ⊢ Cr

NL2

∆ ⊢ ⊤
⊤R

no ⊤L rule

∆ ⊢ Am

∆ ⊢ Am +Bm

+R1

∆ ⊢ Bm

∆ ⊢ Am +Bm

+R2

∆, Am ⊢ Cr ∆, Bm ⊢ Cr

∆, Am +Bm ⊢ Cr
+L

no 0R rule ∆,0 ⊢ Cr
0L

Figure 1: Adjoint Logic

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.8

References

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. In
Leszek Pacholski and Jerzy Tiuryn, editors, Selected Papers from the 8th Interna-
tional Workshop on Computer Science Logic (CSL’94), pages 121–135, Kazimierz,
Poland, September 1994. Springer LNCS 933. An extended version appears as
Technical Report UCAM-CL-TR-352, University of Cambridge.

Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental
analysis of linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon
University, Department of Computer Science, December 2003.

William Chargin. A general system of adjoint logic. Honors thesis, Carnegie Mellon
University, December 2017.

Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Jour-
nal of the ACM, 48(3):555–604, May 2001.

M. Fairtlough and M.V. Mendler. Propositional lax logic. Information and Computa-
tion, 137(1):1–33, August 1997.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Daniel R. Licata and Michael Shulman. Adjoint logic with a 2-category of modes. In
International Symposium on Logical Foundations of Computer Science (LFCS), pages
219–235. Springer LNCS 9537, January 2016.

Daniel R. Licata, Michael Shulman, and Mitchell Riley. A fibrational framework for
substructural and modal logics. In Dale Miller, editor, Proceedings of the 2nd Inter-
national Conference on Formal Structures for Computation and Deduction (FSCD’17),
pages 25:1–25:22, Oxford, UK, September 2017. LIPIcs.

Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511–540, 2001. Notes to an in-
vited talk at the Workshop on Intuitionistic Modal Logics and Applications (IMLA’99),
Trento, Italy, July 1999.

Klaas Pruiksma and Frank Pfenning. A message-passing interpretation of adjoint
logic. Journal of Logical and Algebraic Methods in Programming, 120(100637), 2021.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.9

Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. Adjoint logic.
Unpublished manuscript, April 2018. URL http://www.cs.cmu.edu/˜fp/
papers/adjoint18b.pdf.

Jason Reed. A judgmental deconstruction of modal logic. Unpublished manuscript,
May 2009. URL http://www.cs.cmu.edu/˜jcreed/papers/jdml2.pdf.

LECTURE NOTES OCTOBER 3, 2023

http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml2.pdf

Lecture Notes on
Focusing

15-836: Substructural Logics
Frank Pfenning

Lecture 12
October 5, 2023

1 Introduction

In this lecture we first revisit cut elimination by adapting it for adjoint logic. Then
we introduce Andreoli’s focusing [1992], a calculus for proof construction that ex-
ploits the negative and positive nature of the connectives to an extreme. Andreoli
calls them asynchronous and synchronous connectives, and investigates classical
linear logic, but his work seems nevertheless the beginning of the study of polarity.
This was later adapted to various other logics [Liang and Miller, 2009], including
adjoint logic [Pruiksma et al., 2018].

2 Cut Elimination Revisited

So far, we have studied cut elimination just in the ordered case, in some ways
the most particular form. The argument for the linear connectives does not differ
much, but the structural cases introduce some new considerations. Since we have
introduced adjoint logic with explicit rules for weakening and contraction (mode
permitting), we examine it in this case.

Recall the rule of cut, in this case formulated as a (hopefully) admissible prop-
erty.

∆ ≥ m ≥ r
D

∆ ⊢ Am

E
∆′, Am ⊢ Cr

∆,∆′ ⊢ Cr

cutAm

LECTURE NOTES OCTOBER 5, 2023

Focusing L12.2

The case we are interested in here is where Am is the result of contraction.

∆ ≥ m ≥ r
D

∆ ⊢ Am

C ∈ σ(m)
E ′

∆′, Am, Am ⊢ Cr

∆′, Am ⊢ Cr

contract

∆,∆′ ⊢ Cr

cutAm

A natural reduction is the cut out the two copies of Am in sequence.

−→

∆ ≥ m ≥ r
D

∆ ⊢ Am

∆ ≥ m ≥ r
D

∆ ⊢ Am

E ′

∆′, Am, Am ⊢ Cr

∆,∆′, Am ⊢ Cr

cutAm

∆,∆,∆′ ⊢ Cr

cutAm

First we see that the conditions that ∆ ≥ m ≥ r are known from the derivation
before the reduction, so they are satisfied. Second, we observe that this reduction
does not preserve the conclusion because there are now two copies of ∆!

Fortunately, the monotonicity condition on the structural properties comes to
the rescue. We know C ∈ σ(m) from the given derivation, and we also know
∆ ≥ m. This means for every Bℓ ∈ ∆ we have ℓ ≥ m and therefore C ∈ σ(ℓ). This
is sufficient to apply contraction to all antecedents in ∆.

−→

∆ ≥ m ≥ r
D

∆ ⊢ Am

∆ ≥ m ≥ r
D

∆ ⊢ Am

E ′

∆′, Am, Am ⊢ Cr

∆,∆′, Am ⊢ Cr

cutAm

∆,∆,∆′ ⊢ Cr

cutAm

∆,∆′ ⊢ Cr

contract∗

One bullet dodged!
Now the second bullet. The upper of the two cuts is a valid appeal to the induc-

tion hypothesis since the cut formula Am remains the same, D remains the same,
and E ′ < E . So the upper cut yields a derivation F of ∆,∆′, Am ⊢ Cr. Unfortu-
nately, F may be much larger that E , and the cut formula Am is still the same, so
we cannot appeal to our induction hypothesis!

While this particular reduction may have some merit if used in a process dy-
namics, it actually does not lead to a correct proof of cut admissibility.

At this point there are two main options. One is to rewrite the sequent calculus
for adjoint logic so that contraction is implicit, as in our early formulas of structural
logic. That is, antecedents subject to contraction are treated as a set. A second
option is to generalize the rule of cut to eliminate multiple antecedents at once.
We call this multicut even if this name is not universally agreed upon. We follow

LECTURE NOTES OCTOBER 5, 2023

Focusing L12.3

this latter path because it illustrates a general technique when an inference system
becomes more complex: we “absorb” additional rules into the cut by making it
more general. Of course, this means that in some way we have to start from scratch
and restart our overall proof, but the hope is we can follow the general inductive
structure from before.

Our new, more general rule uses the notation (A)n to mean n copies of A.

∆ ≥ m ≥ r n ∈ µ(m) ∆ ⊢ Am ∆′, (Am)n ⊢ Cr

∆,∆′ ⊢ Cr

multicutAm

The new condition n ∈ µ(m) ensures that neither more nor fewer copies of Am are
cut out than allowed by the mode m. It is defined by

µ(m) = {1} if σ(m) = { }
µ(m) = {0, 1} if σ(m) = {W}
µ(m) = {1, 2, . . .} if σ(m) = {C}
µ(m) = {0, 1, 2, . . .} if σ(m) = {W,C}

An interesting observation is that weakening and contraction are special cases of
multicut. For contraction, the condition that 2 ∈ µ(m) implies that C ∈ σ(m).

2 ∈ µ(m) Am ⊢ Am
id

∆′, (Am)2 ⊢ Cr

∆′, Am ⊢ Cr

multicut

Weakening uses the odd special case where n = 0. The condition 0 ∈ µ(m) implies
that W ∈ σ(m).

m ≥ r 0 ∈ µ(m) Am ⊢ Am
id

∆′, (Am)0 ⊢ Cr

∆′, Am ⊢ Cr

multicut

The rule of contraction is now a trivial case in the proof of admissibility of multicut.
In fact, due to the admissibility of contraction it wouldn’t even be necessary any
more. But if we allow it, there must be at least one copy of Am in the conclusion,
which we capture by writing (A)n+1.

∆ ≥ m ≥ r n+ 1 ∈ µ(m)
D

∆ ⊢ Am

C ∈ σ(m)
E ′

∆′, (Am)n+2 ⊢ Cr

∆′, (Am)n+1 ⊢ Cr

contract

∆,∆′ ⊢ Cr

multicut

−→

∆ ≥ m ≥ r n+ 2 ∈ µ(m)
D

∆ ⊢ Am

E ′

∆, (A)n+2 ⊢ Cr

∆,∆′ ⊢ Cr

multicut

LECTURE NOTES OCTOBER 5, 2023

Focusing L12.4

The condition that n+ 2 ∈ µ(m) follows from C ∈ σ(m).
The price for generalizing cut has to be paid somewhere, if not in contraction.

We show only one such case, which illustrates the new form of the principal cases.
We omit some conditions on dependence and multiplicity for the sake of brevity.

D1

∆ ⊢ Am

D2

∆ ⊢ Bm

∆ ⊢ Am N Bm
NR

E ′

∆′, (Am N Bm)n, Am ⊢ Cr

∆′, (Am N Bm)n+1 ⊢ Cr

NL1

∆,∆′ ⊢ Cr

multicutAmNBm

−→

D1

∆ ⊢ Am

D1

∆ ⊢ Am

D2

∆ ⊢ Bm

∆ ⊢ Am N Bm
NR E ′

∆, (Am N Bm)n, Am ⊢ Cr

∆,∆′, Am ⊢ Cr

multicutAmNBm

∆,∆,∆′ ⊢ Cr

multicutAm

What saves us here is that the upper of the two multicuts has the same proposition
(Am NBm) and the same first premise D, but a smaller second premise E ′ < E . The
lower multicut has a potentially much larger second premise, but is only on Am so
is smaller by our lexicographic induction ordering (first on the structure of the cut
formula, and then on the structure of the left and right derivations).

We see that with multicut, every left rule applies to one of n + 1 copies of a
principal proposition, after which are n copies remaining.

In the case of weakening (or cut of zero propositions) we can directly construct
a proof of the conclusion with using D.

∆ ≥ m ≥ r 0 ∈ µ(m)
D

∆ ⊢ Am

E
∆′, (Am)0 ⊢ Cr

∆,∆′ ⊢ Cr

multicutAm

−→

E
∆′, (Am)0 ⊢ Cr

∆,∆′ ⊢ Cr
weaken∗

For the correctness we see that 0 ∈ µ(m) implies that W ∈ σ(m), and since ∆ ≥ m
we also have W ∈ σ(ℓ) for every Bℓ in ∆. Furthermore, (Am)0 means zero copies
of Am.

LECTURE NOTES OCTOBER 5, 2023

Focusing L12.5

3 Inversion

We have talked about right and left invertibility of connectives a lot in this course.
Not only is it important for proof search, but it also affects the operational interpre-
tation. For example, channels of invertible type will receive under our message-
passing interpretation.

We now want to refine the proof system for the sequent calculus so that inver-
sion is forced, that is, inversion must be applied during search. This is not immedi-
ately relevant to the computational interpretation of proof reduction since it limits
program expression.

It is a recurring theme of this course that we express ideas via rules of inference.
We will do so here. Fundamentally, the idea is to take away all choice during proof
search as long as invertible rules apply. We also remind ourselves of positive and
negative proposition.

Negatives A−
m, B−

m ::= P−
m | Am →Bm | Am N Bm | ⊤ | ↑mk Ak [| ⟨P+

m⟩]
Positives A+

m, B+
m ::= P+

m | Am ×Bm | 1 | Am +Bm | 0 | ↓ℓmAℓ [| ⟨P−
m⟩]

Propositions Am, Bm ::= A−
m | B−

m

We have not fully polarized the propositions which would mean to continue with
negative or positive subformulas until there is an explicit change of polarity via
a polarity-changing modality. We do this to reduce syntactic complexity since we
already use shifts for different purpose (namely switching between modes). We
explain suspended atomic propositions ⟨P−

m⟩ and ⟨P+
m⟩ later.

We walk through the inference rules the way you might discover them. We

start with negative propositions in the succedent. We write IR−→ Am for a judgment
that forces inversion to be applied to the succedent until it is no longer possible.
We have omitted the antecedents until we see what they might need to look like.

IR−→ Am
IR−→ Bm

IR−→ Am N Bm

NR
IR−→ ⊤

⊤R

Am
IR−→ Bm

IR−→ Am →Bm

→R

We see that →R introduces an antecedent that may or may not be invertible. We
want to make sure that there is no choice so we force right inversion and accu-
mulate antecedents until right rules can no longer be applied. The accumulator
is ordered (rather than linear) so we can process it deterministically during the left

LECTURE NOTES OCTOBER 5, 2023

Focusing L12.6

inversion phase. We also add the upshift.

Ω
IR−→ Am Ω

IR−→ Bm

Ω
IR−→ Am N Bm

NR
Ω

IR−→ ⊤
⊤R

AmΩ
IR−→ Bm

Ω
IR−→ Am →Bm

→R
Ω

IR−→ Ak

Ω
IR−→ ↑mk Ak

↑R

At this point we miss negative atoms P−
m and positive propositions A+

m. In both
cases, the right inversion phase comes to an end and we switch to perform possible
inversions on Ω. For negative atoms, in a way, we should still invert but we can’t
since there are no subformulas. So we suspend this proposition and count it, for the
purpose of our judgment, as a negative proposition. It is important to recognize
that the angle brackets ⟨P−

m⟩ are only a syntactic (“judgmental”) marker and not a
propositional modality.

Ω
IL−→ C+

m

Ω
IR−→ C+

m

IL/IR+
Ω

IL−→ ⟨P−
m⟩

Ω
IR−→ P−

m

IL/IR∗

Now left inversion peels off left invertible propositions from the left end of Ω.
These are, of course, the positive propositions.

AmBmΩ
IL−→ C+

r

(Am ×Bm) Ω
IL−→ C+

r

×L
Ω

IL−→ C+
r

1Ω
IL−→ C+

r

1L

AmΩ
IL−→ C+

r BmΩ
IL−→ C+

r

(Am +Bm) Ω
IL−→ C+

r

+L
0Ω

IL−→ C+
r

0L

What happens when we reach a negative proposition or a positive atom? We have
to postpone dealing with them because we want to force inversion, so we need
another linear zone ∆− consisting only of negative propositions (including positive
atoms). We move negative propositions into ∆′ when they pop up in Ω.

∆−, A−
m ; Ω

IL−→ C+
r

∆− ; A−
mΩ

IL−→ C+
r

IL+
∆−, ⟨P+

m⟩ ; Ω IL−→ C+
r

∆− ; P+
m Ω

IL−→ C+
r

IL∗

Now we have to add ∆− to all the earlier rules and propagate them unchanged
from conclusion to premise. Sigh.

LECTURE NOTES OCTOBER 5, 2023

Focusing L12.7

When the ordered antecedents become empty the inversion phase comes to an

end and we have to make an actual choice. We represent this judgment as ∆− C−→
C+
r .

∆− C−→ C+
r

∆− ; · IL−→ C+
r

C/IL

4 Chaining

Once the inversion phase is over, we could just make a choice of applying a left
rule to a proposition in ∆− or a right rule to C+

r . This would be captured by recap-
ping all the noninvertible rules for positive propositions on the right and negative
propositions on the left.

Nondeterminism is further drastically reduced if we focus on a proposition and
then chain the rules on this particular proposition until we switch back to an in-
vertible one.

Unfortunately, I made a significant error in lecture in that the rules I showed
only work as given in the case where there are no structural rules are allowed.
Or, to put it another way, if all modes are linear and do not allow weakening or
contraction, only exchange (which is always implicit). We show these rules and fix
our mistake in a future lecture.

For the remainder of this section, all modes must be linear.

The first step is to select a negative antecedent or the succedent for focus. We
indicate focus by using [square brackets]. Note that only a single proposition can
be in focus in a given sequent.

∆− FR−→ [C+
m]

∆− C−→ C+
m

FR/C
∆− ; [A−]

FL−→ C+
m

∆−, A− C−→ C+
m

FL/C

We start with the right rules. They are the usual right rules, but they retain focus

LECTURE NOTES OCTOBER 5, 2023

Focusing L12.8

on the subformulas.

∆−
1

FR−→ [Am] ∆−
2

FR−→ [Bm]

∆−
1 ,∆

−
2

FR−→ [Am ×Bm]
×R

· FR−→ [1]
1R

∆− FR−→ [Am]

∆− FR−→ [Am +Bm]

+R1

∆− FR−→ [Bm]

∆− FR−→ [Am +Bm]

+R2

no 0R rule

∆− ≥ ℓ ∆− FR−→ [Aℓ]

∆− FR−→ [↓ℓmAℓ]

↓R

∆− ; · IR−→ A−
m

∆− FR−→ [A−
m]

FR−

⟨P+
m⟩ FR−→ [P+

m]
id+

The left rules are also the usual left rules, but the principal formula must be in
focus.

∆−
1 ≥ m ∆−

1
FR−→ [Am] ∆−

2 ; [Bm]
FL−→ C+

r

∆−
1 ,∆

−
2 ; [Am →Bm]

FL−→ C+
r

→L

∆− ; [Am]
FL−→ C+

r

∆− ; [Am N Bm]
FL−→ C+

r

NL1

∆− ; [Bm]
FL−→ C+

r

∆− ; [Am N Bm]
FL−→ C+

r

NL2

no ⊤L rule

k ≥ r ∆− ; [Ak]
FL−→ C+

r

∆− ; [↑mk Ak]
FL−→ C+

r

↑L

∆− ; A+
m

IL−→ C+
r

∆− ; [A+
m]

FL−→ C+
r

FL+

∆− ; [P−
m]

FL−→ ⟨P−
m⟩

id−

The noninvertible rules constitute a phase of chaining. Taken together with inversion
this proof search strategy is called focusing.

5 A Simple Example

As a simple example, consider

(Pm →Qm)→ ((Qm →Rm)→ (Pm →Rm))

LECTURE NOTES OCTOBER 5, 2023

Focusing L12.9

We can assign any polarity to the atoms we like and we choose all of them to be
positive. The we start with right inversion until we hit the positive atom.

...

· ; P+
m (Q+

m →R+
m) (P+

m →Q+
m)

IR−→ R+
m

· ; · IR−→ (P+
m →Q+

m)→ ((Q+
m →R+

m)→ (P+
m →R+

m))
→R× 3

Now we switch to left inversion until we complete inversion and reach a choice.

⟨P+
m⟩, Q+

m →R+
m, P+

m →Q+
m

C−→ R+
m

· ; P+
m (Q+

m →R+
m) (P+

m →Q+
m)

IL−→ R+
m

. . .

· ; P+
m (Q+

m →R+
m) (P+

m →Q+
m)

IR−→ R+
m

IL/IR

· ; · IR−→ (P+
m →Q+

m)→ ((Q+
m →R+

m)→ (P+
m →R+

m))
→R× 3

This is a critical point in the search.

1. We cannot focus on R−
m because ⟨R+

m⟩ is not among the antecedents.

2. We cannot focus on Q+
m →R+

m because Q+
m is not among the antecedents.

3. We cannot focus on ⟨P+
m⟩ because it is a suspended atom.

The only choice that remains is to focus on P+
m →Q+

m.

⟨P+
m⟩ ; · FR−→ [P+

m]
id+

...

⟨Q+
m⟩, Q+

m →R+
m

C−→ R+
m

⟨Q+
m⟩, Q+

m →R+
m ; · IL−→ R+

m

C/IL

Q+
m →R+

m ; Q+
m

IL−→ R+
m

IL∗

Q+
m →R+

m ; [Q+
m]

FL−→ R+
m

IL/FL

⟨P+
m⟩, Q+

m →R+
m ; [P+

m →Q+
m]

FL−→ R+
m

→L

⟨P+
m⟩, Q+

m →R+
m, P+

m →Q+
m

C−→ R+
m

FL/C

· ; P+
m (Q+

m →R+
m) (P+

m →Q+
m)

IL−→ R+
m

. . .

· ; P+
m (Q+

m →R+
m) (P+

m →Q+
m)

IR−→ R+
m

IL/IR

· ; · IR−→ (P+
m →Q+

m)→ ((Q+
m →R+

m)→ (P+
m →R+

m))
→R× 3

LECTURE NOTES OCTOBER 5, 2023

Focusing L12.10

At this point once again the only possibility is to focus on Q+
m → R+

m, after which
we can focus on R+

m in the succedent.
Even though it looks complex, there is just one proof and (excepting shallow

backtracking) only one way to construct this proof.
The mistake I made in lecture, by the way, is that I claimed the FL/C rule was

the only one where weakening and contraction came into play. There are actually
several others, so we postpone a full discussion to a future lecture.

References

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-
nal of Logic and Computation, 2(3):197–347, 1992.

Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic,
and classical logics. Theoretical Computer Science, 410(46):4747–4768, November
2009.

Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. Adjoint logic.
Unpublished manuscript, April 2018. URL http://www.cs.cmu.edu/˜fp/
papers/adjoint18b.pdf.

LECTURE NOTES OCTOBER 5, 2023

http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf

Lecture Notes on
Quantifiers

15-836: Substructural Logics
Frank Pfenning

Lecture 13
October 10, 2023

1 Introduction

In the development of logical inference, we used propositions such as path(x, y) or
proc(P) in the rules, but we did not explicitly quantify over them. That’s because
the schematic variables in inference rules are implicitly universally quantified. The
lack of quantifiers was then a problem when we tried to internalize the rules as
logical propositions. For example, we’d like to translate the rule on the left to the
proposition on the right.

path(x, y) path(y, z)

path(x, z) ∀x.∀y.∀z. path(x, y) ∧ path(y, z) ⊃ path(x, z)

On the logical side, introducing quantifiers is interesting and not particularly dis-
turbing. When we think of propositions as types (and proofs as programs), then
there are multiple ways to think about quantifiers, and none are particularly canon-
ical unless we go all the way to type theory in which we can talk (and therefore
quantify) over proofs. Even there, matters are complicated specifically when we
consider substructural type theories.

Today, we’ll stay comfortably in logic and logical inference. We’ll go with or-
dered logic as our base because this is the context we have thought the most about
cut elimination. Our considerations carry over to linear, structural, and adjoint
logics.

2 Universal Quantification

One tricky aspect of quantification is the domain we quantify over. For example,
in the reachability example of the introduction, the quantifiers range over nodes
in a graph. Or we may quantify over natural numbers, or trees, etc. When we go

LECTURE NOTES OCTOBER 10, 2023

Quantifiers L13.2

to a full type theory, this issue must be faced and deeply considered. In predicate
calculus (or first-order logic, as it is often called) it is convenient to consider the
laws of the quantifiers independently from the domain of quantification. In other
words, we’d like to investigate the rules of logical reasoning independently of the
individuals we quantify over. This is not unlike the step we took when we investi-
gated the logical connectives. We postulated some atomic propositions P , but the
our reasoning did not depend on them. Once we fix a domain of interest, say, the
natural numbers, we are no longer in the pure predicate calculus; instead we are
reasoning in arithmetic, or the theory of lists, or trees, etc.

Diving in now: when can we prove ∀i. A(i), not considering the domain of
quantification? We can prove it if we can prove A(a) for an arbitrary individual n.
So we could write

Ω ⊢ A(n)

Ω ⊢ ∀i. A(i)
∀Rn

where the superscript n means that n must be fresh: it cannot already occur in
Ω or ∀i. A(i). This condition is crucial. Otherwise, we could for example prove
that A(n) ⊃ ∀i. A(i), that is, if A holds for some individual n then it holds for all
individuals. This concept is so important it has its own name: n is an eigenvariable
of the inference, and the proof of the premise is parametric in n.

Similar freshness conditions applied to proof terms that introduced variables,
and we managed them through explicit naming of all antecedents. We stick here
to the same form of variable hygiene and introduce a structural context naming all
the individuals that may appear in a sequent.

i1 ind , . . . , ik ind︸ ︷︷ ︸
Γ

; Ω ⊢ A

Our presupposition is that all variables i1, . . . , ik are distinct, and that all variables
occurring in Ω and A are declared in Γ. We then obtain the rule

Γ, i ind ; Ω ⊢ A(i)

Γ ; Ω ⊢ ∀i. A(i)
∀R

Since the condition on the eigenvariable is now enforced by our presupposition we
no longer annotate the rule. As for proof terms, we write the same variable name
i, but bound variables (as in ∀i. A(i)) can be silently renamed in order to make the
rule applicable in the form presented.

Next, we need to consider the matching left rule. If we know A(i) is true for an
arbitrary individual i, we should be able to instantiate it with any individual.

Γ ⊢ t ind Γ ; ΩL A(t) ΩR ⊢ C

Γ ; ΩL (∀i. A(i)) ΩR ⊢ C
∀L

LECTURE NOTES OCTOBER 10, 2023

Quantifiers L13.3

Here, t is a term in our logical language denoting an individual that uses only vari-
able from Γ. This condition is necessary because otherwise the premise with A(t)
may no longer satisfy our presupposition. The minimal choice for the judgment Γ ⊢
t ind is that the term t is a variable declared in Γ. Depending on our intentions, we
could also have other terms denoting individuals, such as zero, succ(zero), succ(i),
etc.

Also, we see that we treat Γ structurally rather than linearly or in an ordered
fashion. Intuitively, that’s because individuals are truly used in a proof, they are
merely mentioned inside proposition. Therefore, terms that are meaningful (that
is, in scope and well-formed) can be mentioned arbitrarily and are themselves not
subject to a substructural discipline even if we are reasoning within one.

Of course, now we need to check for harmony.

D′

Γ, i ind ; Ω ⊢ A(i)

Γ ; Ω ⊢ ∀i. A(i)
∀R

E1
Γ ⊢ t ind

E2
Γ ; ΩL A(t) ΩR ⊢ C

Γ ; ΩL (∀i. A(i)) ΩR ⊢ C
∀L

Γ ⊢ ΩL Ω ΩR ⊢ C
cut∀i. A(i)

It is not immediately clear how to proceed because the propositions A(i) and A(t)
in the premises do not match. This is precisely why we had to choose i to be fresh:
so we could substitute t for i in the sequent and in fact in the whole derivation.
Assuming for the moment this is possible, we obtain

−→

[t/i]D′

Γ ; Ω ⊢ A(t)

E2
Γ ; ΩL (A(t)) ΩR ⊢ C

Γ ⊢ ΩL Ω ΩR ⊢ C
cutA(t)

First, we should see why A(t) is smaller than ∀i. A(i). The term t could contain
constructors as indicated above so it could be arbitrarily large. On the other hand,
in a predicate calculus/first-order logic we distinguish between individuals and
propositions, so the term t cannot contain any propositions. Therefore, if we count
quantifiers and logical connectives, then A(t) is smaller than ∀i. A(i).

Second, we should verify that [t/i]D′ can always be constructed as a proof of
Γ ; Ω ⊢ A(t). This follows from the substitution principle for individuals:

Γ ⊢ t ind Γ, i ind ; Ω(i) ⊢ A(i)

Γ ; Ω(t) ⊢ A(t)
subst

We call this a substitution principle because we obtain the resulting derivation sim-
ply by substituting t for i. It is proved by induction over the second given deriva-

LECTURE NOTES OCTOBER 10, 2023

Quantifiers L13.4

tion. The particular application of this rule here is:

E2
Γ ⊢ t ind

D′

Γ, i ind ; Ω ⊢ A(i)

Γ ; Ω ⊢ A(t)
subst

We know from the the shape of D and our presuppositions that the ordered an-
tecedents in D′ do not depend in i.

We can check that our transcription of the inference rules is correct. Recall that
top-down inference is turned into bottom-up inference among the antecedents. In
this example, we ignore issues of order.

path(a, b) path(b, c)

path(a, c)
trans

path(a, b) ⊢ path(a, b)
id

path(b, c) ⊢ path(b, c)
id

path(a, b), path(b, c) ⊢ path(a, b) ∧ path(b, c)
∧R

path(a, c) ⊢ C

path(a, b) ∧ path(b, c) ⊃ path(a, c), path(a, b), path(b, c),⊢ C
⊃L

∀z. path(a, b) ∧ path(b, z) ⊃ path(a, z), path(a, b), path(b, c) ⊢ C
∀L

∀y.∀z. path(a, y) ∧ path(y, z) ⊃ path(a, z), path(a, b), path(b, c),⊢ C
∀L

∀x. ∀y.∀z. path(x, y) ∧ path(y, z) ⊃ path(x, z), path(a, b), path(b, c) ⊢ C
∀L

3 Existential Quantification

We expect the rules for existential quantification to mirror those for universal quan-
tification, reversing the role of the antecedent and succedent.

Γ ⊢ t ind Γ ; Ω ⊢ A(t)

Γ ; Ω ⊢ ∃i. A(i)
∃R

Γ, i ind ; ΩL A(i) ΩR ⊢ C

Γ ; ΩL (∃i. A(i)) ΩR ⊢ C
∃L

LECTURE NOTES OCTOBER 10, 2023

Quantifiers L13.5

We show the reduction, even if it is straightforward after what we discussed for
the universal.

D1

Γ ⊢ t ind

D2

Γ ; Ω ⊢ A(t)

Γ ; Ω ⊢ ∃i. A(i)
∃R

E ′
Γ, i ind ; ΩL A(i) ΩR ⊢ C

Γ ; ΩL (∃i. A(i)) ΩR ⊢ C
∃L

Γ ; ΩL Ω ΩR ⊢ C
cut∃i. A(i)

−→

D2

Γ ; Ω ⊢ A(t)

D1

Γ ⊢ t ind
E ′

Γ, i ind ; ΩL A(i) ΩR ⊢ C

Γ ; ΩL A(t) ΩR ⊢ C
subst

Γ ; ΩL Ω ΩR ⊢ C
cutA(t)

So where do we use the existential? It turns out it allows us to express freshness
conditions in multiset rewriting rules. We consider the dynamics of cut, written

proc(x← P (x) ; Q(x))

proc(P (a)) proc(Q(a))
(a fresh)

As mentioned in an earlier lecture, the freshness condition here is somewhat strange:
a must be globally fresh for the whole configuration, not just with respect to P (x)
and Q(x). When transcribed into a logical proposition, this freshness condition
turns into an existential quantifier.

∀P.∀Q. proc(x← P (x) ; Q(x)) ⊸ ∃a. proc(P (a))⊗ proc(Q(a))

Here, P and Q act as abstractions over channels, a detail we ignore until maybe a
future lecture. The point is that when using this proposition as an antecedent, we
will arrive at a sequent

Γ ; ∃a. proc(P (a))⊗ proc(Q(a)),∆ ⊢ C

where Γ = (a1 ind , . . . , ak ind) covers all the channels that might occur in P , Q, ∆,
or C. The variable a is still bound, and now the left rule will have to pick a globally
fresh parameter for it and then break down the tensor.

Γ, a ind ; proc(P (a)), proc(Q(a)),∆ ⊢ C

Γ, a ind ; proc(P (a))⊗ proc(Q(a)),∆ ⊢ C
⊗L

Γ ; ∃a. proc(P (a))⊗ proc(Q(a)),∆ ⊢ C
∃L

This reasoning points out several things. First, the freshness condition in our dy-
namics is a manifestation of the existential quantifier at the propositional level.
Second, in our formulation of the dynamics of MPASS we could have been more
explicit by keeping, on the side, a collection of all the channels in the configuration.

LECTURE NOTES OCTOBER 10, 2023

Quantifiers L13.6

4 Polarities

We can apply our quick test for the polarities, which is to check the first step in the
identity expansion.

Γ ; ∀j. A(j) ⊢ ∀i. A(i)
id∀i. A(i)

−→E

Γ, i ind ⊢ i ind Γ, i ind ; A(i) ⊢ A(i)
idA(i)

Γ, i ind ; ∀j. A(j) ⊢ A(i)
∀L

Γ ; ∀j. A(j) ⊢ ∀i. A(i)
∀R

While not proof, this indicates that the universal quantifier is negative. It does show
that it is not positive, because the left rules for universal quantification is not in-
vertible: we cannot instantiate the quantifier in the antecedent with a term until
we have such a term.

By the way, we had to add Γ to the statement of the identity because our presup-
position requires that all free variables in the sequent are collected in Γ. Without Γ
the identity would be restricted to closed propositions A, which is far from general
enough.

We expect that the existential, somehow symmetric to the universal, would be
positive and invertible on the left, and this is indeed the case although we don’t
bother showing the details here.

LECTURE NOTES OCTOBER 10, 2023

Lecture Notes on
Semi-Axiomatic Sequent Calculus

15-836: Substructural Logics
Frank Pfenning

Lecture 14
October 26, 2023

1 Introduction

Message-passing communication in MPASS, which is based on the linear sequent
calculus, is synchronous in the sense that both sending and receiving are potentially
blocking actions. This is often a convenient abstraction, but under the hood com-
munication is usually asynchronous in the sense that sending does not block but
receiving does. In other formalisms for concurrency such as the π-calculus, we
have synchronous [Milner et al., 1992] and asynchronous [Boudol, 1992] versions.
So it is natural to look for an asynchronous calculus based on the interpretation of
linear propositions as session types. It turns out that such a calculus exists and un-
covers several new connections, in particular to futures in functional programming
languages [Halstead, 1985] that are usually thought of as a form of shared mem-
ory concurrency. In this lecture we will develop an asynchronous message-passing
calculus.

We know that in the untyped setting, the synchronous π-calculus is more ex-
pressive than the asynchronous one [Palamidessi, 2003]. In the setting of session
types, they turn out to have the same expressive power [Pfenning and Griffith,
2015], so we have to decide which formulation we would like to take as funda-
mental. Because of its (relative) proximity to an implementation and its connection
to futures, we prefer the asynchronous version as long as we can still relate it to
proof theory. It turns out that going down this path will also allow us to generalize
from linear to structural and then general adjoint types, which seems difficult to do
directly for the synchronous version.

LECTURE NOTES OCTOBER 26, 2023

Semi-Axiomatic Sequent Calculus L14.2

2 The Origin of Synchronous Communication

We refresh our memory about synchronous communication in MPASS. We use
internal choice as an example. When the provider sends a label k, the type of the
channel changes from ⊕{ℓ : Aℓ}ℓ∈L to Ak.

proc(send a k ; P), proc(recv a (ℓ⇒ Qℓ)ℓ∈L)
−→ proc(P) proc(Qk) (k ∈ L)

This communication is synchronous because sender and receive proceed to their
respective continuations at once. This ultimately comes from the linear sequent
calculus where the principal cases of cut reduction replace a cut of proposition
A⊕B either by a cut of A or of B, with subderivations on both premises of the cut.

Let’s also recall the typing rules where the change in type of the communication
channel is clearly visible.

k ∈ L ∆ ⊢ P :: (x : Ak)

∆ ⊢ send x k ; P :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕R

∆, x : Aℓ ⊢ Qℓ (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ recv k (ℓ⇒ Qℓ)ℓ∈L :: (z : C)
⊕L

We confirm that the synchronous nature of communication directly derives from
the synchronous nature of cut reduction. Writing out a binary case (as is customary
in logic):

D′

∆ ⊢ A

∆ ⊢ A⊕B
⊕R1

E1
∆′, A ⊢ C

E2
∆′, B ⊢ C

∆′, A⊕B ⊢ C
⊕L

∆,∆′ ⊢ C
cutA⊕B

−→

D′

∆ ⊢ A

E1
∆′, A ⊢ C

∆,∆′ ⊢ C
cutA

3 Continuation Channels instead of Continuation Processes

We cannot simply drop the continuation process P to make communication asyn-
chronous, because messages could be received out of order and progress would be
violated. For example:

bin = ⊕{b0 : bin, b1 : bin, e : 1}
one (x : bin) = send x b1 ; send x e ; send x ()

LECTURE NOTES OCTOBER 26, 2023

Semi-Axiomatic Sequent Calculus L14.3

If we now match up a process that sends a binary 1 and one that receives a binary
number, all several kinds of mismatches can occur.

proc(call one a), proc(recv a (b0⇒ Q0 | b1⇒ Q1 | e⇒ Qe)
−→∗ proc(send a b1), proc(send a e), proc(send a ()),

proc(recv a (b0⇒ Q0 | b1⇒ Q1 | e⇒ Qe))

Each of the messages could interact with the receiver, which could be an immediate
“message not understood” problem (when the message is ()), or a later one (when
the message is e).

The way we solve this problem is to replace the continuation process of the sender
by a continuation channel. Ignoring for the moment where these continuation chan-
nels would come from, we might write

bin = ⊕{b0 : bin, b1 : bin, e : 1}
one (x : bin) = send x b1(x′) ; send x′ e(x′′) ; send x′′ () % approximately

We need to fix this later to account for the creation of the continuation channels.
The receiver then not only selects the branch, but also receives a continuation chan-
nel for further communication.

proc(recv x (b0(x′)⇒ Q0(x
′) | b1(x′)⇒ Q1(x

′) | e(x′)⇒ Qe(x
′))

The idea is that x is used in only one place, and then x′ next, and then x′′, etc. so
channels and their types cannot be confused. This technique is due to Kobayashi
et al. [1996].

Revisiting our rules, they now become:

k ∈ L

x′ : Ak ⊢ send x k(x′) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕X

∆, x′ : Aℓ ⊢ Qℓ(x
′) (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ recv k (ℓ(x′)⇒ Qℓ(x
′))ℓ∈L :: (z : C)

⊕L

Note that the right rule has become an axiom, that is, it has no logical premises.
This makes sense intuitively because when a message is received it should be
consumed by the recipient. The left rule only changes in the sense that x in the
premises has become the continuation channel x′.

In the reduction rule we see that the channel a no longer changes type, but
communication is transferred from a : ⊕{ℓ : Aℓ}ℓ∈L to the continuation channel
a′ : Ak.

proc(send a k(a′)), proc(recv a (ℓ(x′)⇒ Qℓ(x
′))ℓ∈L)

−→ proc(Qk(a
′)) (k ∈ L)

LECTURE NOTES OCTOBER 26, 2023

Semi-Axiomatic Sequent Calculus L14.4

4 Back to Logic

We have seen that the dynamics, if it holds up to scrutiny in the logic, would allow
for asynchronous communication. Extracting the binary logical rules we have:

A ⊢ A⊕B
⊕X1

B ⊢ A⊕B
⊕X2

∆, A ⊢ C ∆, B ⊢ C

∆, A⊕B ⊢ C
⊕L

The reductions:

A ⊢ A⊕B
⊕X1

E1
∆′, A ⊢ C

E2
∆′, B ⊢ C

∆′, A⊕B ⊢ C
⊕L

∆′, A ⊢ C
cutA⊕B

−→
E1

∆′, A ⊢ C

B ⊢ A⊕B
⊕X2

E1
∆′, A ⊢ C

E2
∆′, B ⊢ C

∆′, A⊕B ⊢ C
⊕L

∆′, A ⊢ C
cutA⊕B

−→
E2

∆′, B ⊢ C

In both cases, the cut disappears (which corresponds to a message receipt) and
only the recipient continues computation. The channel substitution is hidden in
this proof notation. For example, in first of the two reduction we would replace the
x : A resulting from the case split by the x′ : A label in the conclusion which is the
same as in the first premise. A symmetric case arises for the second reduction.

5 Generalizing to Other Connectives

We have seen that for internal choice the right rules turned into axioms (repre-
senting messages) and the left rule remained unchanged. In general, those rules
that carry information should become messages (and thus axioms) while invertible
rules should remain as they are. This means for positive connectives the right rules
become axioms while the left rules remain.

We call the result the semi-axiomatic sequent calculus (SAX) because half the rules
are turned into axioms while the other half remains the same.

A,B ⊢ A⊗B
⊗X

∆, A,B ⊢ C

∆, A⊗B ⊢ C
⊗L

· ⊢ 1
1X

∆ ⊢ C

∆,1 ⊢ C
1L

LECTURE NOTES OCTOBER 26, 2023

Semi-Axiomatic Sequent Calculus L14.5

Because 1R is already an axiom, it does not change but we have given it a new
name, for uniformity. The negatives are symmetric in the sense that the left rules
become axioms (they are the ones carrying information) while the right rules re-
main (they are invertible).

∆ ⊢ A ∆ ⊢ B

∆ ⊢ A N B
NR

A N B ⊢ A
NX1

A N B ⊢ B
NX2

∆, A ⊢ B

∆ ⊢ A ⊸ B
⊸R

A,A ⊸ B ⊢ B
⊸X

We also have identity and cut as usual.

A ⊢ A
id

∆ ⊢ A ∆′, A ⊢ C

∆,∆′ ⊢ C
cut

Before we return to the computational meaning of these rules, we should ask the
obvious questions: (1) if we replace the positive right and negative left rules by
axioms do the same judgments hold, and (2) do cut and identity elimination still
hold?

6 Relating Sequent Calculus to SAX

We conjecture that the ordinary and semi-axiomatic sequent calculi prove the same
sequents. To show this, we will demonstrate how to derive the rules of each calcu-
lus in the other.

First, translating from SAX to the sequent calculus. By showing that the SAX
rules are derivable in the sequent calculus we can conclude that SAX is sound. We
only show two examples.

A ⊢ A
idA

A ⊢ A⊕B
⊕R1

A ⊢ A
idA

B ⊢ B
idB

A,A ⊸ B ⊢ B
⊸L

So, in general to derive the new axioms we just need identity, while the negative
right and positive left rules remain unchanged.

Second, translating from the sequent calculus to SAX. We show that the sequent
calculus rules are derivable in SAX. Again the rules that don’t change are trivial.
We show two other examples.

∆ ⊢ A A ⊢ A⊕B
⊕X1

∆ ⊢ A⊕B
cutA

∆ ⊢ A A,A ⊸ B ⊢ B
⊸X

∆, A ⊸ B ⊢ B
cutA

∆′, B ⊢ C

∆,∆′, A ⊸ B ⊢ C
cutB

So for this direction we need cut. We formulate this as a theorem.

LECTURE NOTES OCTOBER 26, 2023

Semi-Axiomatic Sequent Calculus L14.6

Theorem 1 (Soundness and Completeness of SAX) ∆ ⊢ A in the sequent calculus
iff ∆ ⊢ A in SAX.

Proof: We prove in each direction that the rules in the other calculus are derivable.
This could be formalized as in induction over the structure of the given derivation.

From left to right we insert suitable cuts (as exemplified above) and from right
to left we insert suitable identities (as exemplified above). □

7 Cut Elimination for SAX

The fact that the translation requires us to insert cuts suggests that SAX does not
satisfy a traditional cut elimination result. You may want to construct a counterex-
ample for yourself before moving on.

LECTURE NOTES OCTOBER 26, 2023

Semi-Axiomatic Sequent Calculus L14.7

Here is a simple one for distinct atoms P , Q, and R.

Q ⊢ (P ⊕Q)⊕R

While easily provable in the sequent calculus, in SAX we are stuck right away. It is
not the form of an axiom, so we can only proceed with cut.

This is profoundly saddening if you are a logical fundamentalist and proof-
theorist. But it turns out that it is also an opportunity for new discoveries!

If you look at the sample cases where cut had to be inserted in the previous sec-
tion, you see that the cuts have a special form: they only eliminate a subformula of
the sequent we are trying to prove. In the first example we have A as a subformula
of A⊕B, in the second we have both A and B as subformulas of A ⊸ B. In general
such cuts are called analytic cuts. Here we call them snips, which is an even more
restricted class than analytic cuts in the sense that one of the two premises of a snip
must be an axiom or another snip. We elide a precise definition for now, but we
will come back to it in a future lecture.

We can easily see that we can eliminate all cuts that are not snips. We do this
by translating a SAX derivation to the sequent calculus, eliminating cut, and then
translating back. This back translation will only require snips if the given sequent
derivation is cut-free to start with.

This, however, is not fully satisfying since we would like to relate the rules of
computation to cut reduction. Looking ahead, there is indeed a direct cut elimina-
tion algorithm utilizing the cut reductions in SAX that we have shown, leaving only
snips. For a structural version of SAX, this is proved by DeYoung et al. [2020]—the
linear version is significantly easier.

8 Completing Process Assignment and Dynamics

We now take the logical rules back into typing rules, adding continuation channels
to all messages. Our convention to assign the name x′ to the continuation of a

LECTURE NOTES OCTOBER 26, 2023

Semi-Axiomatic Sequent Calculus L14.8

channel x. First, the positive connectives.

k ∈ L

x′ : Ak ⊢ send x k(x′) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕X

∆, x′ : Aℓ ⊢ Qℓ(x
′) (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ recv x (ℓ(x′)⇒ Qℓ(x
′))ℓ∈L :: (z : C)

⊕L

y : A, x′ : B ⊢ send x (y, x′) :: (x : A⊗B)
⊗X

∆, y : A, x′ : B ⊢ Q(y, x′) :: (z : C)

∆, x : A⊗B ⊢ recv x ((y, x′)⇒ Q(y, x′)) :: (z : C)
⊗L

· ⊢ send x () :: (x : 1)
1X

∆ ⊢ Q :: (z : C)

∆, x : 1 ⊢ recv x (()⇒ Q) :: (z : C)
1L

Now the negatives.

∆ ⊢ Pℓ(x
′) :: (x′ : Aℓ) (∀ℓ ∈ L)

∆ ⊢ recv x (ℓ(x′)⇒ Pℓ(x
′)) :: (x : N{ℓ : Aℓ}ℓ∈L)

NR

k ∈ L

x : N{ℓ : Aℓ}ℓ∈L ⊢ send x k(x′) :: (x′ : Ak)
NX

∆, y : A ⊢ P (y, x′) :: (x′ : B)

∆ ⊢ recv x ((y, x′)⇒ P (y, x′)) :: (x : A ⊸ B)
⊸R

y : A, x : A ⊸ B ⊢ send x (y, x′) :: (x′ : B)
⊸X

Cut and identity do not change from the sequent calculus.

y : A ⊢ fwd x y :: (x : A)
id

∆ ⊢ P (x) :: (x : A) ∆′, x : A ⊢ Q(x) :: (z : C)

∆,∆′ ⊢ xA ← P (x) ; Q(x) :: (z : C)
cut

LECTURE NOTES OCTOBER 26, 2023

Semi-Axiomatic Sequent Calculus L14.9

We refactor the dynamics as before.

Messages M ::= k(x′) | (y, x′) | ()

Continuations K ::= (ℓ(x′)⇒ Pℓ(x
′))ℓ∈L (⊕,N)

| ((y, x′)⇒ P (y, x′)) (⊗,⊸)
| (()⇒ P) (1)

Processes P ::= x← P (x) ; Q(x) cut
| fwd x y id
| send x M
| recv x K
| call p x y1 . . . yn

The dynamics in this refactored form relies on the M ▷ K operation defined just
below. Recall that a global signature Σ contains (possibly mutually recursive) type
and process definitions.

proc(x← P (x) ; Q(x)) −→ proc(P (a)), proc(Q(a)) (a fresh)
proc(P (b)), proc(fwd a b) −→ proc(P (a))
proc(send a M), proc(recv a K) −→ proc(M ▷K)
proc(call p a b1 . . . bn) −→ proc(P (a, b1, . . . , bn))

for p x y1 . . . yn = P (x, y1, . . . , yn) ∈ Σ

k(a′)▷ (ℓ(x′)⇒ Pℓ(x
′))ℓ∈L = Pk(a

′) (k ∈ L)
(b, a′)▷ ((y, x′)⇒ P (y, x′)) = P (b, a′)
()▷ (()⇒ P) = P

9 Example Revisited

Recall the earlier example, which wasn’t quite right because we could not explain
where the continuation channels would come from.

bin = ⊕{b0 : bin, b1 : bin, e : 1}
one (x : bin) = send x b1(x′) ; send x′ e(x′′) ; send x′′ () % approximately

In SAX we have to explicitly allocate the continuation channels via cut. Because of
the orientation of the cut, this requires us to reverse the textual order of the send
actions.

one (x : bin) = x′′ ← send x′′ () ;
x′ ← send x′ e(x′′) ;
send x b1(x′)

LECTURE NOTES OCTOBER 26, 2023

Semi-Axiomatic Sequent Calculus L14.10

Because of the concurrent nature of cut, the order is not significant for the compu-
tation of this process and we are left with three messages. These messages form a
queue, with the continuation channels acting as “pointers”.

proc(call one a) −→∗ proc(send a′′ ()), proc(send a′ e(a′′)), proc(send a b1(a′))

Syntactically, the opposite order of sends in the definition would be closer to MPASS.
This can be achieved with a “reverse cut” where the client Q(x) precedes the provider
P (x).

∆′, x : A ⊢ Q(x) :: (z : C) ∆ ⊢ P (x) :: (x : A)

∆,∆′ ⊢ x→ Q(x) ; P (x) :: (z : C)
cutR

Since we just reverse the premises of the cut, this is just a syntactic convenience
and does not change the essence of the language. Then we could write:

one (x : bin) = x′ → send x b1(x′) ;
x′′ → send x′ e(x′′) ;
send x′′ ()

We might decide to pick a different concrete syntax for this, to be discussed in the
next lecture.

During lecture, we also briefly discussed an alternative where x′ is somehow
computed from x, and that the sender and recipient agree on this computation.
This could be concrete “address arithmetic” (like: from x we go to x + 1) or more
abstract (like: from x we go to x.b1). This actually has a quite sensible logical inter-
pretation in terms of snips from Section 7 so we will come back to it, probably two
lectures from now. With this case we might write the process one as follows:

one (x : bin) = send x b1(_) ; send x.b1 e(_) ; send x.b1.e () % with snips

We have elided the continuation channels in the send actions because they can be
computed from the channel x.

References

Gérard Boudol. Asynchrony and the π-calculus. Rapport de Recherche 1702, IN-
RIA, Sophia-Antipolis, 1992.

Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-axiomatic sequent
calculus. In Z. Ariola, editor, 5th International Conference on Formal Structures
for Computation and Deduction (FSCD 2020), pages 29:1–29:22, Paris, France, June
2020. LIPIcs 167.

Robert H. Halstead. Multilisp: A language for parallel symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501–539, October
1985.

LECTURE NOTES OCTOBER 26, 2023

Semi-Axiomatic Sequent Calculus L14.11

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-
calculus. In H.-J. Boehm and G. Steele, editors, Proceedings of the 23rd Symposium
on Principles of Programming Languages (POPL’96), pages 358–371, St. Petersburg
Beach, Florida, USA, January 1996. ACM.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes.
Information and Computation, 100(1):1–77, September 1992. Parts I and II.

Catuscia Palamidessi. Comparing the expressive power of the synchronous and
the asynchronous π-calculus. Mathematical Structures in Computer Science, 13(5):
685–719, 2003.

Frank Pfenning and Dennis Griffith. Polarized substructural session types. In
A. Pitts, editor, Proceedings of the 18th International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS 2015), pages 3–22, London,
England, April 2015. Springer LNCS 9034. Invited talk.

LECTURE NOTES OCTOBER 26, 2023

Lecture Notes on
Adjoint SAX

15-836: Substructural Logics
Frank Pfenning

Lecture 15
October 31, 2023

1 Introduction

The version of SAX we introduced in the last lecture is still purely linear, although
with recursion available when considered as a programming language. Not every
function we want to write is linear, however, so we pursue the adjoint approach to
mix linear with nonlinear types. This can be generalized further to a preorder of
modes as in Lecture 11. With nonlinear types we can then express multicast (one
message is sent to multiple recipients) and shared servers (a provider has multiple
clients). Making communication asynchronous is a critical to this generalization. For
example, it is difficult to conceptualize what synchronous delivery of a message to
multiple clients might mean without at least a notion of (logical) time.

In MPASS we had a natural notion of channel that remained stable throughout
communication, with a changing type. In SAX all messages (except unit) contain
a continuation channel. Is there still a stable underlying notion of channel? We
explore this using messages sequences that avoid many instances of allocating fresh
continuation channels. While not formalized in this lecture, message sequences al-
low us implement channels as queues and, in some cases, calculate a precise bound
on maximal size of queue [Willsey et al., 2016]. Message sequences in the syntax
also allow some programs to be written more compactly.

2 Adding Adjoint Modalities to SAX

We recall the syntax of of SAX; the typing rules and dynamics can be found at
the end of Lecture 14. Even if not formally distinguished, we use x′ to denote a

LECTURE NOTES OCTOBER 31, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/11-adjoint.pdf
http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/14-sax.pdf

Adjoint SAX L15.2

continuation channel.

Messages M ::= k(x′) (⊕,N)
| (y, x′) (⊗,⊸)
| () (1)

Continuations K ::= (ℓ(x′)⇒ Pℓ(x
′))ℓ∈L (⊕,N)

| ((y, x′)⇒ P (y, x′)) (⊗,⊸)
| (()⇒ P) (1)

Processes P ::= x← P (x) ; Q(x) cut
| fwd x y id
| send x M
| recv x K
| call p x y1 . . . yn

We see that messages and continuations do double-duty for a pair of dual types.
But here is no dual to 1—why? Actually, there is one we just haven’t used it. See
Section 4 for what it would mean.

To generalize to mixed linear/nonlinear logic we introduce a second layer of
types and shifts that go between them.

Structural Types AS ::= . . . | ↑AL

Linear Types AL ::= . . . | ↓AS

Based on the symmetries we have seen so far, we might conjecture that they are
dual in a way so that we just need a single new form of message and continuation,
respectively, for both of these constructs. And that’s indeed the case. We write the
logical rules in the form of SAX based on their polarity and then assign program
terms. How does this work? Recall that in the move from the sequent calculus to
its semi-axiomatic form, the invertible rules remain the same and the noninvert-
ible ones are turned into axioms. The up shift is negative, so its right rule stays
intact. By our presupposition, ∆ consists only of structural propositions. The left
rule is turned into an axiom. We use here the implicit form without explicit rules
for weaakening and contraction, so we allow structural antecedents in the axioms,
denoted by ∆S.

∆ ⊢ AL

∆ ⊢ ↑AL

↑R
∆S, ↑AL ⊢ AL

↑L

The rules suggest a transition from a channel to its continuation channel at a dif-
ferent mode. We write ⟨x′⟩ for this form message.

∆ ⊢ P (x′L) :: (x
′
L : AL)

∆ ⊢ recv xS (⟨x′L⟩ ⇒ P (x′L)) :: (xS : ↑AL)
↑R

∆S, xS : ↑AL ⊢ send xS ⟨x′L⟩ :: (x′L : AL)
↑L

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.3

The downshift works out symmetrically. First, the logical rules.

∆S, AS ⊢ ↓AS

↓R
∆, AS ⊢ Cr

∆, ↓AS ⊢ Cr

↓L

In the left rule, the succedent Cr could be linear or structural. Annotating it with
processes:

∆S, x
′
S : AS ⊢ send xL ⟨x′S⟩ :: (xL :: ↓AS)

↓R

∆, x′S : AS ⊢ Q(x′S) :: (zr : Cr)

∆, xL : ↓AS ⊢ recv xL (⟨x′S⟩ ⇒ Q(x′S)) :: (zr : Cr)
↓L

The cut rule may introduce either a linear or a structural channel and structural
channels may be shared between the two branches. Since we have just two modes,
L and S with S > L, there are three versions of cut and only two versions of the
identity.

(∆ ≥ m ≥ r) ∆S,∆ ⊢ Am ∆S,∆
′, Am ⊢ Cr

∆S,∆,∆′ ⊢ Cr

cut
∆S, Am ⊢ Am

id

We retain a nice symmetry and language for messages, continuations, and chan-
nels. However, the dynamics becomes more complicated because some messages
along shared channels should be persistent, and shared services may also need to
be persistent. You can find the rules in a recent paper [Pfenning and Pruiksma,
2023]1. We will come back to the mixed linear/nonlinear programs in the next
lecture when we talk about futures.

3 An Example: mapreduce

As an example of a mixed linear/nonlinear program we write mapreduce on linear
trees with data at the leaves.

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (r : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) = . . .

Here, fS and hS are variables of structural type because f is used at every node and
h is used at every leaf. We omit the annotation of the linear variables. The type
parameters A and B themselves are linear so we did not write fS : B × B→ B but
There is a corresponding version where A and B are structural types (which would
require changing the type for trees). We start by receiving from t.

1Available at https://www.cs.cmu.edu/˜fp/papers/coordination23.pdf

LECTURE NOTES OCTOBER 31, 2023

https://www.cs.cmu.edu/~fp/papers/coordination23.pdf

Adjoint SAX L15.4

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (y : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) =
recv t (node(l, r)⇒ . . .

| leaf(x)⇒ . . .)

In the case of a node we need to make two (hopefully parallel!) recursive calls. In
order to type them it is important that fS and hS can be shared. And, yes, these two
calls proceed independently, each given a fresh destination yi.

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (y : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) =
recv t (node(l, r)⇒ y1 ← call mapreduceAB y1 fS hS l ;

y2 ← call mapreduceAB y2 fS hS r ;
. . .

| leaf(x)⇒ . . .)

Next, we’d like to call f on y1 and y2 but before we do we need to “unwrap” fS to
obtain the underlying linear function fL. For this purpose we need a send action
because ↑(B ⊗B ⊸ B) is a negative type. The process providing fS is waiting first
for a linear continuation channel fL and then a pair of following that.

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (y : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) =
recv t (node(l, r)⇒ y1 ← call mapreduceAB y1 fS hS l ;

y2 ← call mapreduceAB y2 fS hS r ;
p : B ⊗B ← send p (y1, y2) ;
fL ← send fS ⟨fL⟩ ;
. . .

| leaf(x)⇒ . . .)

Now we can send the pair p to fL, but we also need to pass it a destination. But
that’s just the overall output channel y.

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (y : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) =
recv t (node(l, r)⇒ y1 ← call mapreduceAB y1 fS hS l ;

y2 ← call mapreduceAB y2 fS hS r ;
p : B ⊗B ← send p (y1, y2) ;
fL ← send fS ⟨fL⟩ ;
send fL (p, y)

| leaf(x)⇒ . . .)

The case of a leaf is simpler: we just unwrap the function hS and apply it to the data
of type A.

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.5

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (y : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) =
recv t (node(l, r)⇒ y1 ← call mapreduceAB y1 fS hS l ;

y2 ← call mapreduceAB y2 fS hS r ;
p : B ⊗B ← send p (y1, y2) ;
fL ← send fS ⟨fL⟩ ;
send fL (p, y)

| leaf(x)⇒ hL ← send hS ⟨hL⟩ ;
send hL (x, y))

This process has significant parallelism beyond just the two recursive calls. The
process f receives the results from the recursive calls and a destination and it can
run in parallel with the recursive calls! This is a difference between fork/join par-
allelism and futures (to be explored in the next lecture). In fork/join we’d have to
synchronize when the pair p is formed; here synchronization occurs when f needs
to receive from its argument channels.

4 Bottom

What is dual to 1? Presumably, since 1 is positive, it would be negative. Let’s recall
the rules for the unit.

· ⊢ 1
1R

∆ ⊢ C

∆,1 ⊢ C
1L

If we flip sides, we see that the succedent needs to be empty for the right rule.

∆ ⊢ ·
∆ ⊢ ⊥

⊥R
⊥ ⊢ ·

⊥L

We know how to check that these are correct: cut reduction and identity expansion
(locally), and cut and identity elimination globally. Locally, everything is fine.

D′

∆ ⊢ ·
∆ ⊢ ⊥

⊥R
⊥ ⊢ ·

⊥L

∆ ⊢ ·
cut⊥

−→R

D′

∆ ⊢ ·

⊥ ⊢ ⊥
id⊥ −→E

⊥ ⊢ ·
⊥L

⊥ ⊢ ⊥
⊥R

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.6

As expected, the process assignment doesn’t require anything new. We observe
that the left rule is just renamed into an axiom, but doesn’t change.

∆ ⊢ P :: ·
∆ ⊢ recv x (()⇒ P) :: (x : ⊥)

⊥R
x : ⊥ ⊢ send x () :: ·

⊥X

The way we have biased the intuitionistic judgments, a process ∆ ⊢ P :: · computes
for its own sake, without a client. And it could not be closed · ⊢ P :: · is not
provable (except perhaps by abusing recursion in some way) so it doesn’t fit well
into our applications.

5 Message Sequences

As mentioned in the introduction, when we moved from synchronous to asyn-
chronous communication, we needed to introduce continuation channels. Creating
fresh channels for every message is a good model for the theory, but not plausible
for an implementation. Could we introduce message sequences that appear on the
same channel as a way not only to make the communication model more realistic,
but also write more compact programs?

Intuitively, a message sequence just replaces the continuation channel with an-
other message. Conversely, when receiving along a channel we no longer match
against a single message at a time, but a whole message sequence.

Message Sequence M ::= k(M) (⊕,N)

| (y,M) (⊗,⊸)
| () (1)
| x′ cont. channel

Continuations K ::= (M ⇒ P | K) | ·

Processes P ::= x← P (x) ; Q(x) cut
| fwd x y id
| send x M

| recv x K
| call p x y1 . . . yn

Before we formalize that statics and dynamics of this extended language, we
consider two examples to see where the formal development should lead us. We
begin with append, which has a relatively simple use of pattern matching.

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.7

type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}
type list = +{’cons : bin * list, ’nil : 1}

proc append (R : list) (L : list) (K : list) =
recv L (’cons(x,L’) => R’ <- call append R’ L’ K ;

send R ’cons(x,R’)
| ’nil() => fwd R K)

This might expand to

proc append (R : list) (L : list) (K : list) =
recv L (’cons(p) => recv p ((x,L’) =>

R’ <- call append R’ L’ K ;
p’ : bin * list <- send p’ (x,R’) ;
send R ’cons(p’))

| ’nil(u) => recv u (() => fwd R K))

The second is process to compute ⌊x2 ⌋ for x in unary form.

type nat = +{’zero : 1, ’succ : nat}

proc half (r : nat) (x : nat) =
recv x (’zero() => send r ’zero()

| ’succ(’zero()) => send r ’zero()
| ’succ(’succ(y)) => h <- call half h y ;

send r ’succ(h))

This might expand to

proc half (r : nat) (x : nat) =
recv x (’zero(x’) =>

recv x’ (() => u : 1 <- send u () ;
send r ’zero(u))

| ’succ(x’) =>
recv x’ (’zero(x’’) =>

recv x’’ (() => u : 1 <- send u () ;
send r ’zero(u))

| ’succ(y) => h <- call half’ h y ;
send r ’succ(h)))

We now have to update the statics and dynamics for this enriched language in a
way that is consistent with SAX. As we often do, we start with the statics. Message
sequences seem more manageable than the more general form of pattern matching,
so we start with them. There are two classes of rules, one for positive types that
send to a client and one for negative types that sends to a provider. In the premise,
we have to check that the message sequence fits the type of the channel, but the
original channel is no longer needed.

∆ ⊢M : ⌊A⌋

∆ ⊢ send x M :: (x : A)
send+

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.8

Now we have rules for each of the positive types with the corresponding messages.

∆ ⊢M : ⌊Ak⌋

∆ ⊢ k(M) : ⌊⊕{ℓ : Aℓ}ℓ∈L⌋
⊕R

∆ ⊢M : ⌊B⌋

∆, y : A ⊢ (y,M) : ⌊A⊗B⌋
⊗R

· ⊢ () : ⌊1⌋
1R

When we encounter an actual continuation channel rather than a message, we use
an instance of the identity.

x′ : A ⊢ x′ : ⌊A⌋
idR

Do these rules look familiar? They should! Think about it before you read on.

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.9

These are almost the rules for right focus except that we can apply the identity
to finish the focusing phase for any proposition A, not just for atoms and negative
propositions. Similar, the premise antecedent y : A in ⊗R arises from the identity
on A, rather than focusing on ⌊A⌋ on the right.

These differences reflects differences between proof construction, where we would
like to chain together inferences as much as possible to minimize nondeterminism,
and proof reduction where we would like the freedom to write sequences as long or
as short as we would like to. We therefore call this partial focusing which is also
reflected in the notation ⌊A⌋. An interesting property of partial focusing is that the
right rules that had become axioms have turned back into right rules!

To complete this thought, message sequences of negative type correspond to
partial left focus! We use a new notation here, writing δ for a singleton succedent
z : C.

∆, ⌊A⌋ ⊢M :: δ

∆, x : A ⊢ send x M :: δ
sendL

∆, ⌊Ak⌋ ⊢M :: δ

∆, ⌊N{ℓ : Aℓ}ℓ∈L⌋ ⊢ k(M) :: δ
NL

∆, ⌊B⌋ ⊢M :: δ

∆, y : A, ⌊A ⊸ B⌋ ⊢ (y,M) :: δ
⊸L

⌊A⌋ ⊢ x′ :: (x′ : A)
idL

6 Pattern Matching

Along with sequences of messages, we also changed continuations so they can
receive and discriminate whole message sequences. This looks more complicated
than message sequences themselves since patterns can be nested and appear in
different orders and to different depths. To allow this we define the operation of
projection that filters out cases from a complex pattern match.

We might conjecture that since message sequences correspond to (partial) fo-
cusing that pattern matching will correspond to (partial) inversion. That’s not far-
fetched since the corresponding logical connectives are indeed invertible!

We start on the right.

∆ ; A ⊢ K :: δ

∆, x : A ⊢ recv x K :: δ
recvL

The judgment form ∆ ; A ⊢ K :: δ is inspired by the notation for inversion on the
left, ∆ ; Ω ⊢ C. In the case of message sequences, the ordered inversion context Ω
will always be a singleton.

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.10

We construct the rules such that K in the judgment ∆ ; A ⊢ K :: δ and later
∆ ⊢ K : A cannot be empty. This rules out the case where the there is no branch
for a (well-typed) message received.

We start with conjunction this time. When the antecedent is A⊗B then we need
to receive a channel of type A and then B has to be matched against the remaining
continuations.

∆, y : A ; B ⊢ K @ (y,_) :: δ

∆ ; A⊗B ⊢ K :: δ
⊗L

The projection is only defined if all patterns are pairs, and rule can only be applied
if the projection K @ (y,_) is nonempty. Projection also instantiates the variable
bound in the patterns with y so that all branches in K @ (y,_) use the same vari-
able. The fact that y : A is added to the antecedents and not to the ordered context
is a departure from the usual inversion, but important to enforce matching against
message sequences (not trees).

(z,M)⇒ P (z) | K @ (y,_) = M ⇒ P (y) | K @ (y,_)
(z,M)⇒ P (z) @ (y,_) = M ⇒ P (y)

K @ (y,_) undefined otherwise

Here we have abbreviated M ⇒ P | · as M ⇒ P . Since we would like the language
to remain deterministic, at the unit type there must only be a single branch and we
revert back to the ordinary typing judgment for processes.

∆ ⊢ K @ () :: δ

∆ ; 1 ⊢ K :: δ
1L

(()⇒ P) @ () = P

K @ () undefined otherwise
Finally we come to external choice. The patterns must all start with a label, so we
project onto each label of the external choice.

∆ ; Aℓ ⊢ K @ ℓ(_) :: δ (∀ℓ ∈ L)

∆ ; ⊕{ℓ : Aℓ}ℓ∈L ⊢ K :: δ
⊕L

If K @ ℓ(_) is empty then this means the label ℓ is not accounted for among the
patterns even though it should be. In this case we won’t be able to complete the
typing derivation because the other rules ⊕L, 1L, and cont/var+ (see below) all
require the continuation to have at least one branch. Furthermore, we enforce that
all branches start with a label in L. This latter condition is not strictly necessary for
progress and preservation but retains the connection to the logical inference rules.

(ℓ(M)⇒ P | K) @ ℓ(_) = M ⇒ P | (K @ ℓ(_))
(k(M)⇒ P | K) @ ℓ(_) = K @ ℓ(_) for k ̸= ℓ and k ∈ L
(·) @ ℓ(_) = ·
K @ ℓ(_) undefined otherwise

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.11

The last case arises when the pattern consists of a single branch with a single vari-
able. We just revert to the usual typing judgment.

∆, x′ : A ⊢ P (x′) :: δ

∆ ; A ⊢ (x′ ⇒ P (x′)) :: δ
cont/var+

This rule also marks a difference to full inversion: A does not need to be a negative
type.

We show the remaining rules for right inversion on negative types without fur-
ther discussion since we have seen all the necessary ideas already.

∆ ⊢ K : A

∆ ⊢ recv x K :: (x : A)
recvR

∆, y : A ⊢ K @ (y,_) : B

∆ ⊢ K : A ⊸ B
⊸R

∆ ⊢ K @ ℓ(_) : Aℓ (∀ℓ ∈ L)

∆ ⊢ K : N{ℓ : Aℓ}ℓ∈L
NR

∆ ⊢ P (x′) :: (x′ : A)

∆ ⊢ (x′ ⇒ P (x′)) : A
cont/var−

7 Dynamics for Message Sequences

We could give a dynamics for message sequences and general pattern matching
directly on the extended syntax. We pursue here a different approach where the
dynamics is defined by translation into the SAX core language. This translation
has to create fresh channels for the middle of message sequences, and has to break
up complex patterns into a nested matches of simple patterns.

The translations are type-directed, so we translate send x M with metalevel
function send∗ (x : A) M = P where P uses only simple messages. Similarly, a
recv x K is translated by recv∗ (x : A) K = P . We keep in mind the following
properties (becoming theorems) where the conclusion is typed in the original SAX
system.

1. If ∆ ⊢ send x M :: (x : A) then ∆ ⊢ (send∗ (x : A) M) :: (x : A)

2. If ∆, x : A ⊢ send x M :: δ then ∆ ⊢ (send∗ (x : A) M) :: δ

3. If ∆, x : A ⊢ recv x K :: δ then ∆, x : A ⊢ (recv∗ x K) :: δ

4. If ∆ ⊢ recv x K :: (x : A) then ∆ ⊢ (recv∗ x K) :: (x : A)

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.12

We have to generalize these properties to talk about partial focusing, which we
leave as an exercise

send∗ (x : ⊕{ℓ : Aℓ}) k(M) = x′ ← send∗ (x′ : Ak) M ; send x k(x′)

send∗ (x : A⊗B) (y,M) = x′ ← send∗ x′B M ; send x (y, x′)
send∗ (x : 1) () = send x ()
send∗ (x : A) x′ = fwd x x′

send∗ (x : N{ℓ : Aℓ}) k(M) = x′ ← send x k(x′) ; send∗ (x′ : Ak) M

send∗ (x : A ⊸ B) (y,M) = x′ ← send x (y, x′) ; send∗ (x′ : B) M
send∗ (x : A) x′ = fwd x′ x

recv∗ (x : ⊕{ℓ : Aℓ}ℓ∈L) K = recv x (ℓ(x′)⇒ recv∗ (x : Aℓ) (K @ ℓ(_)))ℓ∈L
recv∗ (x : A⊗B) K = recv x ((y, x′)⇒ recv∗ (x : B) (K @ (y,_)))
recv∗ (x : 1) K = recv x (()⇒ K @ ())
recv∗ (x : A) (x′ ⇒ P (x′)) = P (x)

recv∗ (x : N{ℓ : Aℓ}ℓ∈L) K = recv x (ℓ(x′)⇒ recv∗ (x : Aℓ) (K @ ℓ(_)))ℓ∈L
recv∗ (x : A ⊸ B) K = recv x ((y, x′)⇒ recv∗ (x : B) (K @ (y,_)))
recv∗ (x : A) (x′ ⇒ P (x′)) = P (x)

References

Frank Pfenning and Klaas Pruiksma. Relating message passing and shared mem-
ory, proof-theoretically. In S. Jongmans and A. Lopes, editors, 25th International
Conference on Coordination Models and Languages (COORDINATION 2023), pages
3–27, Lisbon, Portugal, June 2023. Springer LNCS 13908. Notes to an invited talk.

Max Willsey, Rokhini Prabhu, and Frank Pfenning. Design and implementation of
Concurrent C0. In Fourth International Workshop on Linearity, pages 73–82. EPTCS
238, June 2016.

LECTURE NOTES OCTOBER 31, 2023

Lecture Notes on
Futures

15-836: Substructural Logics
Frank Pfenning

Lecture 16
November 2, 2023

1 Introduction

In many ways the border between message passing and shared memory concur-
rency is fluid. We can think of a message passing language as implemented using
shared memory, or shared memory representing messages passed between threads.
So far, we have taken the message passing view of communication, we will now
take the shared memory view.

Shared memory comes in several forms. We strive to find the right level of ab-
straction to retain the close connection to logic and also illuminate the correspon-
dence to message passing. It turns out that futures [Halstead, 1985] are the perfect
fit. They were first developed for Lisp, a dynamically typed language, but are en-
tirely compatible with static typing [Pruiksma and Pfenning, 2022, Somayyajula
and Pfenning, 2022, 2023].

What are futures? Consider the construct

let x = future e1 in e2(x)

in a functional language. The idea is the future e1 immediately returns a promise
p. Then we evaluate e1 and e2(p) in parallel. If evaluation of e2(p) requires the
value of p it blocks until the evaluation of e1 has fulfilled the promise by providing
a value and e2(p) can continue.

The analogy with message passing should be clear: a promise acts as a channel
of communication between e1and e2. We think of the future as being a designated
shared memory location where the value of the promise can eventually be found.
This point of view has several advantages. For one, it is quite close to an imple-
mentation. For another, it quite naturally lends itself to a sequential implementation
which is less apparent under message passing. Finally, it allows us to investigate,
formally, the connection to message passing [Pfenning and Pruiksma, 2023].

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.2

While futures aren’t intrinsically substructural (and certainly weren’t conceived
as such), it turns out that a substructural version has been proposed [Blelloch and
Reid-Miller, 1999] and can have advantages in asymptotic complexity over nonlin-
ear ones. Our development in this lecture starts with the linear version and then
generalizes it by adding structural types.

This form of shared memory of write-once shared memory: once written, it can
be read by multiple consumers but it can not be modified. Allowing this would
require an imperative language with mutable shared memory. Such languages (or
libraries in imperative host languages) certainly exist (including, for example, Hal-
stead’s original Multilisp) and programs in them are subject to reasoning via ex-
ternal means. For example, we may want to reason about programs in Rust using
concurrent separation logic [Brookes, 2007, O’Hearn, 2007, Jung et al., 2018], a sub-
structural logic in a different mold from the ones we have been discussing. In this
case the programming language and logic are not related by a proofs-as-programs
correspondence.

2 Reinterpreting SAX: Positive Types

The fundamental idea is that in a sequent each variable stands for a memory ad-
dress. A process P reads from the addresses among the antecedents and writes to
the address labeling the succedent.

x1 : A1, . . . , xn : An︸ ︷︷ ︸
read

⊢ P :: (x : A)︸ ︷︷ ︸
write

If everything is linear the process P should definitely read from all the xi and write
to x. However, in the presence of recursion the mere type system does not guaran-
tee that and we need some additional reasoning [Somayyajula and Pfenning, 2022].

Under message passing, the type A described the type of message exchanged.
Here, it describes the contents of the memory cell. What was a continuation chan-
nel now becomes an address of further data. Cut now allocates a new shared cell,
while the identity moves the contents of one cell to another. We first focus on posi-

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.3

tive types.

Values V ::= k(x) (⊕)
| (x1, x2) (⊗)
| () (1)

Continuations K ::= (ℓ(x)⇒ Pℓ(x))ℓ∈L (⊕)
| ((x1, x2)⇒ P (x1, x2)) (⊗)
| (()⇒ P) (1)

Processes P ::= x← P (x) ; Q(x) cut
| move x y id
| write x V
| read x K
| call p x y1 . . . yn

At runtime, we think of tagged value such as k(a) as a pair consisting of a tag k
and an address a, a value (a1, a2) as a pair of addresses a1 and a2, and () as a unit
value. Continuations branch based on a value read from memory.

We have replaced send and recv with read and write. Also, instead of for-
warding between channels we move the contents of one memory location to an-
other.

Both statics and dynamics for the positive types are straightforward.

k ∈ L

y : Ak ⊢ write x k(y) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕X

∆, y : Aℓ ⊢ Qℓ(y) (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ read k (ℓ(y)⇒ Qℓ(y))ℓ∈L :: (z : C)
⊕L

x1 : A, x2 : B ⊢ write x (x1, x2) :: (x : A⊗B)
⊗X

∆, x1 : A, x2 : B ⊢ Q(x1, x2) :: δ

∆, x1 : A⊗B ⊢ recv x ((x1, x2)⇒ Q(x1, x2)) :: δ
⊗L

· ⊢ write x () :: (x : 1)
1X

∆ ⊢ Q :: δ

∆, x : 1 ⊢ read x (()⇒ Q) :: δ
1L

Cut and identity do not change from the sequent calculus.

y : A ⊢move x y :: (x : A)
id

∆ ⊢ P (x) :: (x : A) ∆′, x : A ⊢ Q(x) :: δ

∆,∆′ ⊢ xA ← P (x) ; Q(x) :: δ
cut

The dynamics relies on the V ▷K operation carried over from the message passing
setting. However, we differentiate memory cells at address a containing value V ,

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.4

written cell(a, V), from processes. This will give us properties such as: a configura-
tion is final if it contains only memory cells and no processes.

proc(x← P (x) ; Q(x)) −→ proc(P (a)), proc(Q(a)) (a fresh)
cell(b, V), proc(move a b) −→ cell(a, V)
proc(write a V) −→ cell(a, V)
cell(a, V), proc(read a K) −→ proc(V ▷K)
proc(call p a b1 . . . bn) −→ proc(P (a, b1, . . . , bn))

for p x y1 . . . yn = P (x, y1, . . . , yn) ∈ Σ

k(a)▷ (ℓ(x)⇒ Pℓ(x))ℓ∈L = Pk(a) (k ∈ L)
(a1, a2)▷ ((x1, x2)⇒ P (x1, x2)) = P (a1, a2)
()▷ (()⇒ P) = P

Here is a simple program we can write already, reversing a list.

type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}
type list = +{’cons : bin * list, ’nil : 1}

proc rev (R : list) (L : list) (K : list) =
read L (’cons(p) => read p ((x,L’) =>

p’ : bin * list <- write p’ (x,K) ;
K’ : list <- write K’ ’cons(p’) ;
call R L’ K’)

| ’nil(u) => read u (() =>
move R K))

proc reverse (R : list) (L : list) =
u : 1 <- write u () ;
K : list <- write K ’nil() ;
call rev R L K

Using the equivalent of message sequences, this could be more compact—something
we’ll get back to in the next lecture.

3 Reinterpreting SAX: Negative Types

So far, things worked out as one might expect: on positive types, receives become
reads and sends become writes. Negative types present a surprise because every
action on the succedent is a write! This means that cells no longer just contain small
values V , but they also have to contain continuations. We will shortly write this
out. But first the rules: right rules write, left rules (even in the form of axioms)

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.5

read.
∆ ⊢ Pℓ(y) :: (y : Aℓ) (∀ℓ ∈ L)

∆ ⊢ write x (ℓ(y)⇒ Pℓ(y)) :: (x : N{ℓ : Aℓ}ℓ∈L)
NR

k ∈ L

x : N{ℓ : Aℓ}ℓ∈L ⊢ read x k(y) :: (y : Ak)
NX

∆, x1 : A ⊢ P (x1, x2) :: (x2 : B)

∆ ⊢ write x ((x1, x2)⇒ P (x1, x2)) :: (x : A ⊸ B)
⊸R

x1 : A, x : A ⊸ B ⊢ read x (x1, x2) :: (x2 : B)
⊸X

Let’s take a closer look at the meaning of linear functions. write a ((x1, x2) ⇒
P (x1, x2)) will write the continuation (x1, x2)⇒ P (x1, x2) to the cell at address a.

Conversely, read a (a1, a2) will read the continuation and pass it a1 and a2,
where a1 : A is the “actual argument” of the function and a2 : B is the destination
for the result.

Our syntax is now:

Values V ::= k(x) (⊕,N)
| (x1, x2) (⊗,⊸)
| () (1)

Continuations K ::= (ℓ(x)⇒ Pℓ(x))ℓ∈L (⊕,N)
| ((x1, x2)⇒ P (x1, x2)) (⊗,⊸)
| (()⇒ P) (1)

Storable S ::= V | K

Processes P ::= x← P (x) ; Q(x) cut
| move x y id
| write x S
| read x S
| call p x y1 . . . yn

The dynamics also changes subtly from purely positive types. We add the follow-
ing two, while the remaining ones remain the same.

proc(write a K) −→ cell(a,K)
cell(a,K), proc(read a V) −→ proc(V ▷K)

We use map as iteration as an example. First, the message passing version.

type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}
type list = +{’cons : bin * list, ’nil : 1}

type iter = &{’next : bin -o bin * iter, ’done : 1}

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.6

proc map (R : list) (i : iterm) (L : list) =
recv L (’cons(p) => recv p ((x,L’) =>

f : bin -o bin * iter <- send i ’next(f) ;
p : bin * iter <- send f (x, p) ;
recv p ((y, i’) => R’ <- call map R’ i’ L’ ;

q : bin * list <- send q (y, R’) ;
send R ’cons(q)))

| ’nil(u) => recv u (() =>
v : 1 <- send i ’done(v)
send R ’nil(v)))

To convert this to a program using futures, positive send/receive become read-
/write, respectively, while the this correspondence is switched for negative types.

read L (’cons(p) => read p ((x,L’) =>
f : bin -o bin * iter <- read i ’next(f) ;
p : bin * iter <- read f (x, p) ;
read p ((y, i’) => R’ <- call map R’ i’ L’ ;

q : bin * list <- write q (y, R’) ;
write R ’cons(q)))

| ’nil(u) => read u (() =>
v : 1 <- read i ’done(v)
write R ’nil(v)))

4 Mixed Linear/Structural Futures

We have our recipe: We combine linear and structural types by adding appropri-
ate shifts. The upshift is intrinsically negative, while the downshift is intrinsically
positive. We have already assigned a syntax to the processes for these shifts that

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.7

we reuse.

Values V ::= k(x) (⊕,N)
| (x1, x2) (⊗,⊸)
| () (1)
| ⟨x⟩ (↓, ↑)

Continuations K ::= (ℓ(x)⇒ Pℓ(x))ℓ∈L (⊕,N)
| ((x1, x2)⇒ P (x1, x2)) (⊗,⊸)
| (()⇒ P) (1)
| (⟨x⟩ ⇒ P (x)) (↓, ↑)

Storable S ::= V | K

Processes P ::= x← P (x) ; Q(x) cut
| move x y id
| write x S
| read x S
| call p x y1 . . . yn

In the typing rules we just have to replace send and receive by write and read, as
appropriate.

∆S, yS : AS ⊢ write xL ⟨yS⟩ :: (xL :: ↓AS)
↓R

∆, yS : AS ⊢ Q(yS) :: δ

∆, xL : ↓AS ⊢ read xL (⟨yS⟩ ⇒ Q(yS)) :: δ
↓L

∆ ⊢ P (yL) :: (yL : AL)

∆ ⊢ write xS (⟨yL⟩ ⇒ P (yL)) :: (xS : ↑AL)
↑R

∆S, xS : ↑AL ⊢ read xS ⟨yL⟩ :: (yL : AL)
↑L

In the dynamics, the changes are a little less straightforward. For addresses of
structural type we need to create persistent cells in the dynamics. We write !cell(aS, S)
for a persistent cell. This means when it is read it remains in configuration rather
than being consumed. The rules before remain what they are, assuming all the
addresses are linear. In addition we have:

proc(write aS S) −→ !cell(aS, S)
!cell(aS, S), proc(read aS S

′) −→ proc(S ▷◁ S′)

!cell(bS, S), proc(move aS bS) −→ !cell(aS, S)

Here S ▷◁ S′ is defined by K ▷◁ V = V ▷◁ K = V ▷K, accounting for both positive
and negative types.

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.8

As an example, consider a map over a linear list with shared binary numbers.
We write A[m] for a type of mode m and (S)AS for ↓AS, signifying that the scope is
shared. The code uses some compound values, analogous to message sequences.
We will return to them in the next lecture.

type bin[m] = +{’b0 : bin[m], ’b1 : bin[m], ’e : 1}
type bin_s = bin[S]
type list = +{’cons : (S)bin_s * list, ’nil : 1} % linear

proc map (R : list) (F : bin_s -> bin_s) (L : list) =
read L (’cons(<x>,L’) => y : bin_s <- read F (x, y) ;

R’ <- call map R’ F L’ ;
write R ’cons(<y>,R’)

| ’nil() => write R ’nil())

It is of course possible to give other modes to map.

References

G. E. Blelloch and M. Reid-Miller. Pipeling with futures. Theory of Computing Sys-
tems, 32:213–239, 1999.

Stephen Brookes. A semantics for concurrent separation logic. Theoretical Computer
Science, 365(1–3):227–270, 2007.

Robert H. Halstead. Multilisp: A language for parallel symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501–539, October
1985.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales̆ Bizjak, Lars Birkedal,
and Derek Dreyer. Iris from the ground up: A modular foundation of higher-
order concurrent separation logic. Journal of Functional Programming, 29:e20,
November 2018.

Peter O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1–3):271–307, 2007.

Frank Pfenning and Klaas Pruiksma. Relating message passing and shared mem-
ory, proof-theoretically. In S. Jongmans and A. Lopes, editors, 25th International
Conference on Coordination Models and Languages (COORDINATION 2023), pages
3–27, Lisbon, Portugal, June 2023. Springer LNCS 13908. Notes to an invited talk.

Klaas Pruiksma and Frank Pfenning. Back to futures. Journal of Functional Program-
ming, 32:e6, 2022.

Siva Somayyajula and Frank Pfenning. Type-based termination for futures. In 7th
International Conference on Formal Structures for Computation and Deduction (FSCD
2022), pages 12:1–12:21, Haifa, Israel, August 2022. LIPIcs 228.

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.9

Siva Somayyajula and Frank Pfenning. Dependent type refinements for futures.
In M. Kerjean and P. Levy, editors, 39th International Conference on Mathematical
Foundations of Programming Semantics (MFPS 2023), Bloomington, Indiana, USA,
June 2023. Preliminary version.

LECTURE NOTES NOVEMBER 2, 2023

Lecture Notes on
Data Layout

15-836: Substructural Logics
Frank Pfenning

Lecture 17
November 9, 2023

1 Introduction

Data layout is a critical component in the efficient compilation of functional lan-
guages (see, for example, [Morrisett, 1995, Weeks, 2006, Vollmer et al., 2017, 2019]).
Yet, in implementations of functional languages data layout decisions are left to
the compiler rather than being available to the programmer. In today’s lecture we
design a type system in which certain high-level data layout decisions are explicit
in the types, while lower-level details are still left to a compiler.

The surprising property of the type system is that it corresponds directly to a
fragment of adjoint logic in its semi-axiomatic formulation which we call SNAX.
In other words, SNAX provides a logical explanation for issues of data layout! Pe-
tersen et al. [2003] was an early attempt at characterizing data layout using an or-
dered type system. While this worked as far as it went, it did not generalize further.
The root cause seems to be that the proofs-as-programs interpretation for ordered
logic does not capture adjacency because the general rule of cut must apply to a
proposition in the middle of ordered antecedents.

The line of research on SAX provided a surprising twist. SAX itself does not
satisfy traditional cut elimination, as explained in a prior lecture. Certain cuts may
be allowed if the cut formula arises from a use of a new axiom and is therefore a
subformula of the goal sequent. We call these cuts snips and prove a new version
of cut elimination [DeYoung et al., 2020] in which snips are allowed to remain. But
we didn’t tackle the question what the computational meaning of snips might be. It
turns out that while a cut allocates a new memory cell, a snip merely computes an
address relative to an existing address.

The fundamental connection between semi-axiomatic proofs and data layout
is developed for nonlinear futures by DeYoung and Pfenning [2022]. Since this is
largely consistent with the approach and notation of this course, we will not repeat

LECTURE NOTES NOVEMBER 9, 2023

Data Layout L17.2

repeat it in these notes but provide a link to the extended version of the paper
paper.1

These notes then will cover only the connection between partial focusing and
data layout in the SNAX source language under the shared memory interpretation,
which was discovered (during this course) in analogy to message sequences.

2 Data Layout: Compound Values

Message sequences were defined to model asynchronous communication along
buffered channels. We just consider the positive types, because we won’t be spe-
cific about how negative types are laid out (they are not directly observable, after
all).

Messages Sequences M ::= k(M) (⊕)

| (y,M) (⊗)
| () (1)
| ⟨x′⟩ (↓)
| x′ cont. channel

When we think about memory layout, we do not need the first component of a
pair to be an address—it could just be another value. The continuation channel x′

is replaced by an address x, but in the typing rules to come later we will restrict
such address to be of negative type. The reason is that we would like to statically
allocate the space for a value. We just write V and K instead of V and K since the
restricted case is just a special case.

Values V ::= k(V) (⊕)
| (V1, V2) (⊗)
| () (1)
| ⟨x⟩ (↓)
| x (⊸,N, ↑)

We picture the layout as follows:

k(V) k · · ·V · · ·

(V1, V2) · · ·V1 · · · · · ·V2 · · ·

()

⟨a⟩ a

a a

1https://arxiv.org/abs/2212.06321v3.pdf

LECTURE NOTES NOVEMBER 9, 2023

https://arxiv.org/abs/2212.06321v3.pdf

Data Layout L17.3

We imagine that the unit doesn’t actually take any space, but we still display it as
a narrow box.

Let’s look at two recursive types:

nat = ⊕{zero : 1, succ : nat}
list = ⊕{nil : 1, cons : nat⊗ list}

Because these types are recursive and purely positive, their layout would be un-
bounded in size. This is the same problem as posed by (possibly mutually) re-
cursive structs in C. In C, as here, the solution is to require an indirection via a
pointer/address, which has a fixed size representation.

The indirection can be either through a downshift ↓A or through a negative
type A−. For natural numbers, there are two obvious options:

nat = ⊕{zero : 1, succ : ↓nat} % eager
nat = ⊕{zero : 1, succ : ↑nat} % lazy

The first would be the ordinary (eager) natural numbers, observable in their en-
tirety. The second would be the lazy natural numbers because the successor a num-
ber would be succ ⟨a⟩ where at the address is a continuation that can compute the
tail.

But something doesn’t seem right, because shifts in mixed linear/nonlinear
logic go between structural and linear types. We are saved by the generality of
adjoint logic, where ↓ℓmA only requires that ℓ ≥ m. If we are working just with
linear natural numbers, the downshift would be ↓L

Lnat. For structural natural num-
bers it would probably ↓S

Snat. Since for the moment we are just working in purely
linear logic, we just write ↓A for ↓L

LA.
The ordinary eager lists might have pointers to natural numbers.

list = ⊕{nil : 1, cons : ↓nat⊗ ↓list}

The representation might be more compact for lists of booleans by “inlining” them
instead of having a pointer to a Boolean.

bool = ⊕{false : 1, true : 1}
listbool = ⊕{nil : 1, cons : bool⊗ ↓listbool}

When a pointer to the element is embedded in a list it is called a boxed representation;
otherwise it is said to be unboxed. Data of the unboxed type listbool might be layed
out as on of the following, where a is the address for the tail of the list.

nil X X X X

cons false a

cons true a

LECTURE NOTES NOVEMBER 9, 2023

Data Layout L17.4

The extra unused space for nil is there because all values of type listbool should be
laid out with the same width.

3 Partial Focusing Revisited

As can be seen from the development above, values still arise from partial focusing
but with slightly different criteria for partiality. We begin with the rules for writing
with positive types.

∆ ⊢ V : ⌈A⌉

∆ ⊢ write x V :: (x : A)
write

Now we have rules for each of the positive types with the corresponding values.

∆ ⊢ V : ⌈Ak⌉

∆ ⊢ k(V) : ⌈⊕{ℓ : Aℓ}ℓ∈L⌉
⊕R

∆1 ⊢ V1 : ⌈A⌉ ∆ ⊢ V2 : ⌈B⌉

∆1,∆2 ⊢ (V1, V2) : ⌈A⊗B⌉
⊗R

· ⊢ () : ⌈1⌉
1R

When we encounter a downshift or a negative type we end the partial focusing
phase, either with the corresponding axiom or an identity.

x : A ⊢ ⟨x⟩ : ⌈↓A⌉
downX

x : A− ⊢ x : ⌈A−⌉
id−

Pattern matching works symmetrically. The pattern has to be deep enough to cover
all well-typed values of a given type. Inversion now has to continue on both sides
of a pair, so we need to generalize to allow the patterns to be nested.

Pattern Sequence V ::= V · V | (·)
Continuations K ::= (V ⇒ P | K) | ·

The sequence of nested patterns match the ordered context in ∆ ; Ω ⊢ K :: δ. The
judgment is started with Ω being a singleton.

∆ ; ⌈A⌉ ⊢ K :: δ

∆, x : A ⊢ read x K :: δ
read

LECTURE NOTES NOVEMBER 9, 2023

Data Layout L17.5

∆ ; A B Ω ⊢ K @ (_,_) :: δ

∆ ; (A⊗B) Ω ⊢ K :: δ
⊗L

∆ ; Ω ⊢ K @ () :: δ

∆ ; 1 Ω ⊢ K :: δ
1L

∆ ; Aℓ Ω ⊢ K @ ℓ(_) :: δ (∀ℓ ∈ L)

∆ ; ⊕{ℓ : Aℓ}ℓ∈L Ω ⊢ K :: δ
⊕L

∆, x : A ; Ω ⊢ K @ ⟨x⟩ :: δ

∆ ; (↓A) Ω ⊢ K :: δ
↓L

∆, x : A− ; Ω ⊢ K @ x :: δ

∆ ; A− Ω ⊢ K :: δ

∆ ⊢ P :: δ

∆ ; · ⊢ (·) ⇒ P :: δ

In the definition below we don’t explicate failure conditions (for example, if there
no branches for a given tag, or if there is a mismatch between the projection p and
the pattern).

((V1, V2) · V ⇒ P | K) @ (_,_) = (V1 · V2 · V ⇒ P) | (K @ (_,_))

(() · V ⇒ P | K) @ () = (V ⇒ P) | (K @ ())

(ℓ(V) · V ⇒ P | K) @ ℓ(_) = (V · V ⇒ P) | (K @ ℓ(_))
(k(V) · V ⇒ P | K) @ ℓ(_) = K @ ℓ(_) for k ̸= ℓ and k ∈ L

(⟨x⟩ · V ⇒ P (x) | K) @ ⟨y⟩ = (V ⇒ P (y)) | (K @ ⟨y⟩)

(x · V ⇒ P (x) | K) @ y = (V ⇒ P (y)) | (K @ y)

(·) @ p = (·)

4 Example: Append with Three Types

We give three different examples, one for appending two lists of pointers to natural
numbers, and one for appending lists of (unboxed) booleans.

In the first example we pass memory contents directly instead of pointers.

type nat = +{’zero : 1, ’succ : <down> nat}
type list = +{’nil : 1, ’cons : <down> nat * <down> list}

proc append (R : list) (L : list) (K : list) =
read L (’nil() => move R K

| ’cons(<x>, <L’>) => R’ : list <- call append R’ L’ K
write R ’cons(<x>, <R’>))

In the next version, we pass pointers instead of the layout structures. Because in
this version we have to match all the way until we encounter an address, there is a
slight awkwardness in the recursive calls: we might prefer not to decompose and
recompose the tail of the list.

LECTURE NOTES NOVEMBER 9, 2023

Data Layout L17.6

type nat = +{’zero : 1, ’succ : nat_ptr}
type nat_ptr = <down> nat

type list = +{’nil : 1, ’cons : <down> nat * list_ptr}
type list_ptr = <down> list

proc append (R : list_ptr) (L : list_ptr) (K : list_ptr) =
read L (<’nil()> => move R K

| <’cons(<x>,<L’>)> => R’ : list_ptr <- call append R’ <L’> K
write R ’cons(<x>, R’))

In the unboxed example we see that partial matching could be quite helpful, be-
cause without that we need to match the entirety of the boolean instead of being
able to leave it as a variable.

type bool = +{’false : 1, ’true : 1}
type boollist = +{’nil : 1, ’cons : bool * <down>boollist}

proc append (R : boollist) (L : boollist) (K : boollist) =
read L (’nil() => move R K

| ’cons(’false(),<L’>) => R’ : list <- call append R’ L’ K
write R ’cons(’false(), <R’>)

| ’cons(’true(),<L’>) => R’ : list <- call append R’ L’ K
write R ’cons(’true(), <R’>))

It would be easy to accommodate partial matches by removing the restriction on
variables in values to be of negative type.

References

Henry DeYoung and Frank Pfenning. Data layout from a type-theoretic perspec-
tive. In 38th Conference on the Mathematical Foundations of Programming Semantics
(MFPS 2022). Electronic Notes in Theoretical Informatics and Computer Science
1, 2022. URL https://arxiv.org/abs/2212.06321v6. Invited paper. Ex-
tended version available at https://arxiv.org/abs/2212.06321v3.pdf.

Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-axiomatic sequent
calculus. In Z. Ariola, editor, 5th International Conference on Formal Structures
for Computation and Deduction (FSCD 2020), pages 29:1–29:22, Paris, France, June
2020. LIPIcs 167.

Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University,
December 1995. Available as Technical Report CMU-CS-95-226.

Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for
memory allocation and data layout. In G. Morrisett, editor, Conference Record
of the 30th Annual Symposium on Principles of Programming Languages (POPL’03),

LECTURE NOTES NOVEMBER 9, 2023

https://arxiv.org/abs/2212.06321v6
https://arxiv.org/abs/2212.06321v3.pdf

Data Layout L17.7

pages 172–184, New Orleans, Louisiana, January 2003. ACM Press. Extended
version available as Technical Report CMU-CS-02-171, December 2002.

Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith Sakka, Chaitanya
Koparkar, Milind Kulkarni, Sam Tobin-Hochstadt, and Ryan R. Newton. Com-
piling tree transformas to operate on packed representations. In Peter Müller,
editor, 31st European Conference on Object-Oriented Programming (ECOOP 2017),
pages 26:1–26:29, Barcelona, Spain, June 2017. LIPIcs 745.

Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, and Milind
Kulkarni. LoCal: A language for programs operating in serialized data. In
Kathryn McKinley and Kathleen Fisher, editors, 40th Conference on Programming
Language Design and Implementation (PLDI 2019), pages 48–62, Phoenix, Arizona,
June 2019. ACM.

Stephen Weeks. Whole-program compilation in MLton. In Andrew Kennedy
and Frano̧is Pottier, editors, Proceedings of the Workshop on ML, Portland, Ore-
gon, September 2006. ACM. Slides available at http://www.mlton.org/
References.attachments/060916-mlton.pdf.

LECTURE NOTES NOVEMBER 9, 2023

http://www.mlton.org/References.attachments/060916-mlton.pdf
http://www.mlton.org/References.attachments/060916-mlton.pdf

Lecture Notes on
The Inverse Method

15-836: Substructural Logics
Frank Pfenning

Lecture 18
November 15, 2023

1 Introduction

In this lecture we return to an early theme, namely forward inference. We also
switch gears from the proofs-as-programs interpretation of substructural logic in
terms of message passing and shared memory to general theorem proving.

Why would we want to prove theorems in substructural logics? First, we have
already seen that forward inference (which is a particular form of theorem prov-
ing) can be used to model various algorithmic problems, like parsing, subtyping,
planning, or graph algorithms. Second, there are a logics for reasoning about pro-
grams, specifically separation logic [Reynolds, 2002] and concurrent separation
logic [O’Hearn, 2007, Brookes, 2007], both of which substructural. Proving cor-
rectness of imperative programs in such logics ultimately comes down to theorem
proving in substructural logic. Third, the problem of program synthesis that has
recently garnered much attention can be simplified if we know, for example, that
the programs we want to synthesize have substructural types because it drasti-
cally reduces the search space [Hughes and Orchard, 2020, Melo e Sousa, 2021].
Fourth, a structured form of proof search is the basis for substructural logic pro-
gramming [Hodas and Miller, 1994, López et al., 2005] that allows yet another class
of algorithms to be expressed at a high level of abstraction.

In a way there is an “obvious” method to do theorem proving: we use the
rules of the cut-free sequent calculus for bottom-up proof construction. Once theo-
rems become even somewhat complex, this is no longer feasible because there are
too many choices and therefore too much backtracking. We can use inversion to
reduce the number of choices, but there remains much nondeterminism. Chain-
ing together rules with focusing [Andreoli, 1992, 2001] makes this even better, but
proof search continues to suffer from the difficulty of learning from failure on some
branches while searching others. As far as I am aware, clause learning for SAT has

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.2

not yet been understood at a sufficiently fundamental level to effectively apply to
nonclassical and substructural logics.

An alternative approach is to use Maslov’s inverse method [Maslov, 1964]. It is
called “inverse” because it proceeds from identity sequents towards the goal in-
stead of from the goal towards identity sequents. At first this might seem a crazy
idea because the universe of theorems we generate is infinite and poorly struc-
tured, but as we will see it works! The inverse method is quite beautiful because
it applies essentially to any logic that admits a cut-free sequent calculus, with par-
ticular logic-specific considerations in each case [Voronkov, 1992, Degtyarev and
Voronkov, 2001]. Other techniques such as resolution are tied specifically to clas-
sical logic, so they don’t seem as useful for substructural logics. Applications of
the inverse method to substructural logic have also been devised [Chaudhuri and
Pfenning, 2005a,b, Chaudhuri, 2006] and generalize the material in these notes fur-
ther.

2 The Basic Idea

Let’s look at the example

A ⊸ (B N C) ⊢ (A ⊸ B) N (A ⊸ C)

which we should be able to prove. In today’s lecture, we use A, B, C, etc. to stand
for atomic proposition rather than P , Q, R. It seems clear (more later) that the
possible identities at the leaves of a proof tree for this sequent should be

A ⊢ A
idA

B ⊢ B
idB

C ⊢ C
idC

The space of possible forward inferences here seems huge! For example, we might
deduce

A ⊢ A
idA

⊢ A ⊸ A
⊸R

It is easy to see that this will not get us anywhere, keep in mind our overall goals.
Why is that? Before you read on, think about this and see if you can extend a
tentative answer to a more general idea how to make forward inference plausible.

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.3

The reason this inference is useless is because A ⊸ A is not a subformula that
occurs in our goal sequent. In the cut-free sequent calculus, though, all proposi-
tions that occur in a proof are subformulas of the final goal sequent.

The idea then is to specialize the inference rules so they can be applied in the
forward direction but to infer subformulas of the goal sequent! Before we do this,
let’s examine the subformula property more precisely. By looking at the goal se-
quent, we can not only predict which subformulas might occur in a proof, but also
on which side of a sequent they will be. Except for implication, all the rules keep
formulas on the same side of the sequent. And the antecedent of an implication is
always on the opposite side of the sequent from the implication itself.

Let’s apply this idea, naming the subformulas according to the side of the se-
quent they may appear on, using Li for left and Rj for right subformulas.

AR ⊸ (BL N CL)︸ ︷︷ ︸
= L1︸ ︷︷ ︸

= L0

⊢ (AL ⊸ BR)︸ ︷︷ ︸
= R1

N (AL ⊸ CR)︸ ︷︷ ︸
= R2︸ ︷︷ ︸

= R0

First, the possible identities that might be used. We see that all three atoms, A,
B, and C may appear on the left as well as on the right in a sequent, so all three
identities are possible.

AL ⊢ AR
idA

BL ⊢ BR
idB

CL ⊢ CR
idC

Next, consider R0 = R1NR2. Since this is a right formula, there is only one possible
specialized rule to infer R0.

∆ ⊢ R1 ∆ ⊢ R2

∆ ⊢ R0

NR0

For R1 = AL ⊸ BR and R2 = AL ⊢ CR we also get just a single rule each, that is,
two instances of ⊸R.

∆, AL ⊢ BR

∆ ⊢ R1

⊸R1

∆, AL ⊢ CR

∆ ⊢ R2

⊸R2

For L0 there is a single instance of the ⊸L rule.

∆1 ⊢ AR ∆2, L1 ⊢ δ

∆1,∆2, L0 ⊢ δ
⊸L0

The last remaining subformula is L1 = BL N CL has two specialized left rules.

∆, BL ⊢ δ

∆, L1 ⊢ δ
NL1

1

∆, CL ⊢ δ

∆, L1 ⊢ δ
NL2

1

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.4

A ⊢ A
idA

B ⊢ B
idB

C ⊢ C
idC

∆ ⊢ R1 ∆ ⊢ R2

∆ ⊢ R0

NR0

∆, A ⊢ B

∆ ⊢ R1

⊸R1

∆, A ⊢ C

∆ ⊢ R2

⊸R2

∆1 ⊢ A ∆2, L1 ⊢ δ

∆1,∆2, L0 ⊢ δ
⊸L0

∆, B ⊢ δ

∆, L1 ⊢ δ
NL1

1

∆, C ⊢ δ

∆, L1 ⊢ δ
NL2

1

Figure 1: Specialized rules for A ⊸ (B N C) ⊢ (A ⊸ B) N (A ⊸ C), goal sequent
L0 ⊢ R0

The rules are summarized in Figure 1. We have dropped the superscripts on the
atoms since they are determined by their position. An interesting observation is
that there are no longer any logical connectives! So during inference we do not
consider any of the usual sequent calculus rules, just these specialized ones. Be-
cause of the (side-aware) subformula property, there is a proof of our goal sequent
if and only if we can infer L0 ⊢ R0 with these rules.

We proceed in a breadth first fashion, always applying all possible rules con-
sidering the “facts” already in our database, where the facts are sequents that can
be derived. Note that even though our logic is linear, this inference is a structural
inference so we may hope that it saturates. We start with the first round, in which
only two rules can be applied.

(1) A ⊢ A (idA)
(2) B ⊢ B (idB)
(3) C ⊢ C (idC)

(4) L1 ⊢ B (NL1
1 1)

(5) L1 ⊢ C (NL2
1 2)

Since L1 = B N C, we see that sequents (4) and (5) make sense after we expand
the definitions. Besides inferences that only give us sequents we already know, the
only new ones are two applications of ⊸L0.

(1) A ⊢ A (idA)
(2) B ⊢ B (idB)
(3) C ⊢ C (idC)

(4) L1 ⊢ B (NL1
1 1)

(5) L1 ⊢ C (NL2
1 2)

(6) A,L0 ⊢ B (⊸L0 1 4)
(7) A,L0 ⊢ C (⊸L0 1 5)

Now we can apply ⊸R1 and ⊸R2, followed by NR0.

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.5

(1) A ⊢ A (idA)
(2) B ⊢ B (idB)
(3) C ⊢ C (idC)

(4) L1 ⊢ B (NL1
1 1)

(5) L1 ⊢ C (NL2
1 2)

(6) A,L0 ⊢ B (⊸L0 1 4)
(7) A,L0 ⊢ C (⊸L0 1 5)

(8) L0 ⊢ R1 (⊸R1 6)
(9) L0 ⊢ R2 (⊸R2 7)

(10) L0 ⊢ R0 (NR0 8 9)

We have to be careful about the final inference because both premises must have
the same antecedent ∆. Fortunately, that is the case with ∆ = L0.

The sequent (10) is also our goal sequent, but we also have reached a point of
saturation: any further inferences would only yield sequents we already have.

Next we do an example that is not provable:

A ⊸ (B ⊗ C) ⊢ (A ⊸ B)⊗ (A ⊸ C)

As before, we label subformulas.

AR ⊸ (BL ⊗ CL)︸ ︷︷ ︸
= L1︸ ︷︷ ︸

= L0

⊢ (AL ⊸ BR)︸ ︷︷ ︸
= R1

⊗ (AL ⊸ CR)︸ ︷︷ ︸
= R2︸ ︷︷ ︸

= R0

Instances of the identity as the same as before.

AL ⊢ AR
idA

BL ⊢ BR
idB

CL ⊢ CR
idC

For the left propositions we generate:

∆1 ⊢ A ∆2, L1 ⊢ δ

∆1,∆2, L0 ⊢ δ
⊸L0

∆, A,B ⊢ δ

∆, L1 ⊢ δ
⊗L1

And for the right propositions:

∆1 ⊢ R1 ∆2 ⊢ R2

∆1,∆2 ⊢ R0

⊗R0

∆, A ⊢ B

∆ ⊢ R1

⊸R1

∆, A ⊢ C

∆ ⊢ R2

⊸R2

Now we throw away the general rules and start with

(1) A ⊢ A (idA)
(2) B ⊢ B (idB)
(3) C ⊢ C (idC)

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.6

At this point we realize that no rule is applicable! Therefore we know the goal se-
quent is not provable.

The same style of rule generations applies to most of the connectives of linear
logic (A ⊸ B, A N B, A ⊗ B, 1, A ⊕ B) but has to be modified when we consider
the exponential !A = ↓↑A or the additive units 0 and ⊤. We’ll return to them in
Section 5.

3 The Inverse Method with Focusing

We can exploit focusing to create fewer rules and take bigger steps. The only se-
quents that will explicitly appear in a focused inverse method proof are stable se-
quents, which are those where no invertible rule can be applied and proof must
proceed by focusing either on the right or left.

Stable antecedents are either negative propositions A− or suspended positive
atoms ⟨P+⟩. Stable succedents are either positive propositions A+ or suspended
negative atoms ⟨P−⟩. We purposely omit 0 and ⊤ for now.

Negative Propositions A− ::= A ⊸ B | A N B
Stable Antecedents ∆ ::= · | ∆, ⟨P+⟩ | ∆, A−

Positive Propositions A+ ::= A⊗B | 1 | A⊕B
Stable Succedents δ ::= ⟨P−⟩ | A+

We just use letters ∆ and δ for the stable antecedents and succedents, since only
those are of interest in this section.

This time, we do not introduce intermediate names ahead of time, but will do
so during the rule generation process. Our goal is

A ⊸ (B N C) ⊢ (A ⊸ B) N (A ⊸ C)

This is not stable, so we have to apply inversion until we have reached one more
more stable sequent. For this purpose we have to decide which atoms should be
positive and which negative. For simplicity, we make them all positive. You may
want to review the rules for focusing from Lecture 12. We reach two stable se-
quents:

A+ ⊸ (B+ N C+), ⟨A+⟩ ⊢ C+

A+ ⊸ (B+ N C+), ⟨B+⟩ ⊢ C+

We have to prove both of these to verify our goal sequent. Let’s take the first one
(the second one will be symmetric). We can only focus on A+ ⊸ (B+ N C+) on
the left or on C+ on the right, since we cannot focus on suspended atom. Let’s
try the first one, defining L0 = A+ ⊸ (B+ N C+). We don’t know under which
circumstances we might focus on this proposition, but if we do the proof will start

LECTURE NOTES NOVEMBER 15, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/12-focusing.pdf

The Inverse Method L18.7

as follows (omitting other antecedents and succedents for now):

...
⊢ [A+]

...
[B+ N C+] ⊢

[A+ ⊸ (B+ N C+)] ⊢

L0 ⊢

There is only one way to proceed with the first open subgoal: right focus on A+

only succeeds if ⟨A+⟩ is among the antecedents. That is, for focusing to succeed,
such an antecedent must have been in the conclusion.

⟨A+⟩ ⊢ [A+]
id+

...
[B+ N C+] ⊢

⟨A+⟩, [A+ ⊸ (B+ N C+)] ⊢

⟨A+⟩, L0 ⊢

In the remaining open subproof we could proceed with focus on B+ or focus on
C+. As a next step in either of these we lose focus and then have to apply inversion.
This inversion will immediately suspect B+ and C+, respectively. We show the first
version:

⟨A+⟩ ⊢ [A+]
id+

...
⟨B+⟩ ⊢

⟨B+⟩ ; · ⊢

· ; B+ ⊢

[B+] ⊢

[B+ N C+] ⊢
NL1

⟨A+⟩, [A+ ⊸ (B+ N C+)] ⊢

⟨A+⟩, L0 ⊢

The sequent at the top of this rather bureaucratic chain of reasoning is stable. We

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.8

can fill in some additional (stable) antecedents and succedents.

⟨A+⟩ ⊢ [A+]
id+

...
∆, ⟨B+⟩ ⊢ δ

∆, ⟨B+⟩ ; · ⊢ δ

∆ ; B+ ⊢ δ

∆[B+] ⊢ δ

∆, [B+ N C+] ⊢ δ
NL1

∆, ⟨A+⟩, [A+ ⊸ (B+ N C+)] ⊢ δ

∆, ⟨A+⟩, L0 ⊢ δ

From this, and its symmetric variant with C+ instad of B+ we extract two big-step
rules between stable sequents.

∆, ⟨B+⟩ ⊢ δ

∆, ⟨A+⟩, L0 ⊢ δ
L1
0

∆, ⟨C+⟩ ⊢ δ

∆, ⟨A+⟩, L0 ⊢ δ
L2
0

Interestingly, this does not expose any new subformulas we have to focus on since
suspended atoms cannot be the subject of focusing. We still have the succedent C+

in our original goal sequent.
...

⊢ [C+]

⊢ C+

This can only succeed if C+ is a suspended antecedent, so we obtain the rule

⟨C+⟩ ⊢ C+
idC

Due to focusing we only obtain 3 rules compared to 8 before. We can only perform
one step:

(1) ⟨C+⟩ ⊢ C+ (idC)

(2) ⟨A+⟩, L0 ⊢ C+ (L2
0 1)

The sequent (2) is already our goal sequent, so we are done in 2 steps (and two
more for symmetric conjunct that arose from the initial inversion). Compare this to
the 10 sequents we derived before hitting our goal without the benefit of focusing!

As an example of something that cannot be proven we consider the type of the
S combinator. This is true only if the logic admits contraction.

⊢ (A ⊸ (B ⊸ C)) ⊸ ((A ⊸ B) ⊸ (A ⊸ C)

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.9

This is not a stable sequent, so deciding once again that all atoms should be positive
we get

A+ ⊸ (B+ ⊸ C+), A+ ⊸ B+, ⟨A+⟩ ⊢ C+

There are three propositions we could focus on, two on the left and one on the
right.

...
⊢ [A+]

...
⊢ [B+]

...
⟨C+⟩ ⊢

C+ ⊢
[C+] ⊢

[B+ ⊸ C+] ⊢

[A+ ⊸ (B+ ⊸ C+)] ⊢

L0 ⊢
L0

The first two open subgoal can only be closed with identities, as in the last example.
After filling in missing antecedents and succedents, we obtain:

∆, ⟨C+⟩ ⊢ δ

∆, ⟨A+⟩, ⟨B+⟩, L0 ⊢ δ
L0

Focusing on the left on A+ ⊸ B+ and on the right on C+ similarly give us the
following two rules:

∆, ⟨B+⟩ ⊢ δ

∆, ⟨A+⟩, L1 ⊢ δ
L1

⟨C+⟩ ⊢ C+
id+C

Our goal sequent is
L0, L1, ⟨A+⟩ ⊢ C+

Initially, we have only one sequent, and only L0 applies.

(1) ⟨C+⟩ ⊢ C+ (idC)

(2) ⟨A+⟩, ⟨B+⟩, L0 ⊢ C+ (L0 1)

Now we can apply L1, where ∆ = ⟨A+⟩, L0 and δ = C+. We get:

(1) ⟨C+⟩ ⊢ C+ (idC)

(2) ⟨A+⟩, ⟨B+⟩, L0 ⊢ C+ (L0 1)

(3) ⟨A+⟩, L0, ⟨A+⟩, L1 ⊢ C+ (L1 2)

At this point we have reached saturation and almost proved our goal sequent.
The only problem is that we have two copies of ⟨A+⟩. If we go back and look at the

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.10

original goal we see that this makes sense: if we had two copies of ⟨A+⟩ it would
indeed be provable linearly.

This points out another important observation: if we think about the linear
sequent (without the exponential or shifts), as we go up we never duplicate any
propositions. The goal sequent has only one left occurrence of A+, so a sequent
with two left occurrences of A+ as the one labeled (3) could not occur. So we should
reject it and (in this example), we reach saturation essentially one step earlier.

The insight here is to obtain an inverse method for a given logic we follow these
steps (first without focusing):

1. Obtain the usual backwards sequent calculus without cut, and identity lim-
ited to atoms (and prove the admissibility of cut and general identity).

2. Label the left- and right-subformulas of the goal sequent.

3. Derive specialized inference rules for each label, and then discard the general
rules.

4. Consider any logic-specific additions or modifications of the specialized rules.

5. Saturate the space of sequents derivable with the specialized rules. Even if
the logic is undecidable, we can explore the search space by forward reason-
ing although it may not saturate.

6. If we find a proof of the goal sequent, we succeed.

7. If we saturate without generating the goal sequent, we fail

This is modified slightly for focusing, because we need to generate (and prove!) a
focused version of our logic first. Then we generate “big-step” rules that go from
stable sequent to stable sequent. The (non-atomic) propositions in the new stable
sequent are then named and according to their sidedness focused on to derive more
rules.

4 Strict, Affine, and Structural Logic

Assume we have a logic with contraction, such as strict logic. Then we just add the
rule of contraction

∆, A,A ⊢ C

∆, A ⊢ C
contract

In this system, because we apply the rules from the premises to the conclusion this
actually is contraction—usually we use it to achieve duplication of a proposition.
In the absence of quantifiers (as in this lecture), we could also just treat antecedents
as set and write ∆1∪∆2 instead of ∆1,∆2 whenever they are combined. We would

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.11

then never have more than one copy of a contractible proposition in a stable se-
quent.

If we have weakening, matters are a bit more complicated. For example, we
should not have rules such as

∆, ⟨A+⟩ ⊢ A+
id+A

That’s because even if we have a finite set of labels, there are still many possibilities
for ∆. We don’t want to enumerate them. We can think of it this way: in backward
reasoning, we postpone weakening all the way to the leaves of the proof tree (id or
1R). In forward reasoning, we also postpone weakening, but downwards, towards
the root of the proof tree.

So where exactly do we finally need to apply weakening? One situation is
where we have derived something that can be weakened to our goal sequent. We
capture this with a subsumption relation: (∆ ⊢ A) ≤ (∆′ ⊢ A′) if ∆ ⊆ ∆′ and
A = A′. Whenever we apply an inference, we can check three properties:

Forward Subsumption: If inference yields ∆′ ⊢ A′ and there is a sequent ∆ ⊢ A in
our database such that ∆ ⊢ A ≤ ∆′ ⊢ A′ then we do not add the new sequent.
We already know something stronger.

Backward Subsumption: If the inference yields ∆ ⊢ A and there is a sequent ∆′ ⊢
A′ in our database such that ∆ ⊢ A ≤ ∆′ ⊢ A′ then we replace the old sequent
by the newer (stronger) one.

If inference yields ∆ ⊢ A and (∆ ⊢ A) ≤ G where G is the goal sequent, we
succeed.

This is an example of the general principle of subsumption in forward inference.
Towards saturation, we don’t check facts in the database for equality, but a more
general subsumption criterion for redundancy. What that might be may change from
inference system to inference system.

Let’s try this with the quintessential property that is true in affine logic but not
in linear logic (writing A−B for affine implication):

⊢ A− (B −A)

In the small-step system, we introduce two names

R0 = AL −R1

R1 = BL −AR

We generate the rules below. There is no identity for B because it occurs only as
BL and not BR.

A ⊢ A
idA

∆, A ⊢ R1

∆ ⊢ R0

−R0

∆, B ⊢ A

∆ ⊢ R1

−R1

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.12

From A ⊢ A we cannot apply a single rule! That’s problematics because our propo-
sition actually holds in affine logic. In this example it happens that A ⊢ A can be
weakened to ∆, B ⊢ A with ∆ = A.

We can rectify this by allowing weakening when matching against the premises
of rules: B doesn’t have to be in the sequent. Allowing this we would derive
A ⊢ R1 and then · ⊢ R0, which is our goal sequent. We could also generate another
rule that accounts for B being absent.

∆ ⊢ A

∆ ⊢ R1

−R′
1

This would get awkward however when we move to focusing since there might be
too many variants of the rules.

Returning to our example, if we apply inversion we obtain the stable goal se-
quent

⟨A+⟩, ⟨B+⟩ ⊢ A+

We can only focus on A+ on the right, which gives us

⟨A+⟩ ⊢ A+
id+A

and (⟨A+⟩ ⊢ A+) ≤ (⟨A+⟩, ⟨B+⟩ ⊢ A+).
Also, if we generate a right rule for external choice A N B we can no longer

require the two branches to have the same antecedents. We define ∆1 max ∆2

for multisets to take the maximum of the multiplicity of each element in the two
multisets. Then we have the forward rule

∆1 ⊢ A ∆2 ⊢ B

∆1 max ∆2 ⊢ A N B
NR

When mixing logics, for example, in the adjoint framework, we have to combine
the various considerations.

5 ⊤ and 0 Revisited

We didn’t cover this in lecture, but how would we handle

∆,0 ⊢ δ
0L

in the forward direction? We do not want to enumerate possible antecedents or
succedents, we want to leave them open. Then we would have something like

0 ⊢W ·
0L

· ⊢W ⊤
⊤R

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.13

where the W on the sequent indicates that the sequent can be weakenend (in an-
tecedent or succedent). Then we precise sequents and weakenable sequents and
we have to carefully define rule application in the mixed case and investigate how
this attribute of sequents propagates.

Alternatively, we might be able to introduce metavariables D and d to stand for
an arbitrary ∆ and δ respectively and write these as

D,0 ⊢ d
0L

D ⊢ ⊤
⊤R

and instantiate them as part of the rule application process.

References

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-
nal of Logic and Computation, 2(3):197–347, 1992.

Jean-Marc Andreoli. Focussing and proof construction. Annals of Pure and Applied
Logic, 107(1–3):131–163, 2001.

Stephen Brookes. A semantics for concurrent separation logic. Theoretical Computer
Science, 365(1–3):227–270, 2007.

Kaustuv Chaudhuri. The Focused Inverse Method for Linear Logic. PhD thesis,
Carnegie Mellon University, December 2006. Available as technical report CMU-
CS-06-162.

Kaustuv Chaudhuri and Frank Pfenning. A focusing inverse method prover for
first-order linear logic. In R.Nieuwenhuis, editor, Proceedings of the 20th Interna-
tional Conference on Automated Deduction (CADE-20), pages 69–83, Tallinn, Esto-
nia, July 2005a. Springer Verlag LNCS 3632.

Kaustuv Chaudhuri and Frank Pfenning. Focusing the inverse method for linear
logic. In L.Ong, editor, Proceedings of the 14th Annual Conference on Computer
Science Logic (CSL’05), pages 200–215, Oxford, England, August 2005b. Springer
Verlag LNCS 3634.

Anatoli Degtyarev and Andrei Voronkov. The inverse method. In Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 1,
chapter 4, pages 181–272. Elsevier Science and MIT Press, 2001.

Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionis-
tic linear logic. Information and Computation, 110(2):327–365, 1994. A prelimi-
nary version appeared in the Proceedings of the Sixth Annual IEEE Symposium
on Logic in Computer Science, pages 32–42, Amsterdam, The Netherlands, July
1991.

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.14

Jack Hughes and Dominic Orchard. Resourceful program synthesis from graded
linear types. In Maribel Fernández, editor, 30th International Symposium on
Logic-Based Program Synthesis and Transformation (LOPSTR 2020), pages 151–170,
Bologna, Italy, September 2020. LNCS 12561.

Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concur-
rent linear logic programming. In A.Felty, editor, Proceedings of the 7th Interna-
tional Symposium on Principles and Practice of Declarative Programming (PPDP’05),
pages 35–46, Lisbon, Portugal, July 2005. ACM Press.

Sergei Maslov. The inverse method of establishing deducibility in the classical
predicate calculus. Soviet Mathematical Doklady, 5:1420–1424, 1964.

Maria Inês Melo e Sousa. Synthesis of Programs from Linear Types. M.Sc. thesis,
University of Porto, 2021.

Peter O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1–3):271–307, 2007.

John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proceedings of the 17th Symposium on Logic in Computer Science, pages 55–74,
Copenhagen, Denmark, July 2002. IEEE Computer Society.

Andrei Voronkov. Theorem proving in non-standard logics based on the inverse
method. In Deepak Kapur, editor, 11th International Conference on Automated De-
duction (CADE 1992), pages 648–662, Saratoga Springs, New York, 1992. Springer
LNAI 607.

LECTURE NOTES NOVEMBER 15, 2023

Lecture Notes on
Resource Semantics

15-836: Substructural Logics
Frank Pfenning

Lecture 19
November 16, 2023

1 Introduction

When researchers use the term “programming language semantics” they usually ei-
ther mean a dynamic semantics (also referred to as an operational semantics) or a deno-
tational semantics, that is, an interpretation into a mathematical domain. Meaning
is given to programs either by how they execute or by what they denote in some
abstract domain. These are both respectable and valuable notions to study. As
an intuitionist, though, I find it difficult myself to follow the domain-theoretic ap-
proach since it is mostly carried out in classical mathematics.

In logic, a similar divide exists. Semantics (usually credited to Tarski [1956])
interprets the syntax of logic in classical mathematics. In contrast, proof theory
studies the notions of truth and consequence via the structure of proofs. Much
(but certainly not all) of proof theory is carried out using constructive means, as
exemplified by Gentzen’s [1935] proof of cut elimination.

One thing I can do, as an intuitionist, is to interpret one constructive language
in another and thereby gain a deeper understanding. For example, in Assignment
5 you are asked to interpret affine logic in linear logic. Previously, we have shown
(following Girard [1987]) how to interpret (structural) intuitionistic logic in linear
logic.

Can we go the other way? Is there, for example, an interpretation of linear
logic in (structural) intuitionistic logic? A first answer to the question is “No!”.
For example, we know via a variety of different proofs that structural intuitionistic
logic is decidable. Take, for example, the inverse method from the previous lecture.
Because of the presence of contraction, the space of possible sequents we can derive
is finite and saturation is assured. On the other hand, linear logic that includes the
exponential (!A) or the adjoint modalities ↑↓A) is undecidable since it can interpret
Minsky machines [Lincoln et al., 1992]. This may be surprising, since linear logic
without the exponential is decidable. As an example proof, in backward search for

LECTURE NOTES NOVEMBER 16, 2023

https://www.cs.cmu.edu/~fp/courses/15836-f23/assignments/hw5.pdf
https://www.cs.cmu.edu/~fp/courses/15836-f23/assignments/hw5.pdf

Resource Semantics L19.2

a cut-free sequent proof, each premise of each rule is smaller than the conclusion
in a simple multiset ordering based on counting the number of connectives.

Since we cannot interpret an undecidable problem in a decidable one, what is
left? We can look for an interpretation into an intuitionistic predicate calculus, which
is certainly also undecidable. This is indeed illuminating since it clarifies a resource
interpretation of substructural logics that is also applicable to others such as ordered
logic.

We start with a preliminary study by giving a structural set of rules in which
the use of antecedents as resources is explicit. We then follow it by an explicit
translation, following Reed and Pfenning [2010]. Related material is also in Reed’s
Ph.D. Thesis [Reed, 2009].

2 A Sequent Calculus with Explicit Resources

In this formulation of substructural logics we think of each antecedent as a resource
and the succedent as a goal to be achieved using an explicit stated collection of
resources. We write

A1[α1], . . . , An[αn] ⊢ C[p]

where p is a combination of the resource variables α1, . . . , αn.
For the moment, we focus on linear logic. We write p ∗ q for the combination of

the resources denoted by p and q, and ϵ for the absence of resources.

P [α], Q[β] ⊢ P ⊗Q[α ∗ β] holds
P [α], Q[β] ⊢ P ⊗Q[β ∗ α] holds
P [α], Q[β] ⊢ P ⊗Q[α] does not hold
P [α], Q[β], R[γ] ⊢ P ⊗Q[α ∗ β] holds
P [α], Q[β], R[α] ⊢ P ⊗Q[α ∗ β] holds?

We can argue if the last one should be allowed, because α does not stand for a
unique resource but for two different ones. In our first system we make a pre-
supposition that resource labelings are unique and the last sequent would not be
well-formed. In Section 4 we will generalize our point of view. We will stick to the
“no repetition in p” mantra because we are not interested in this lecture to capture
that a specific resource may be used a fixed number of times.

Since we are modeling linear logic, resource combination p ∗ q should satisfy
the following laws:

Associativity (p ∗ q) ∗ r = p ∗ (q ∗ r)
Unit ϵ ∗ p = p = p ∗ ϵ
Commutativity p ∗ q = q ∗ p

We can recognize this as a commutative monoid which, not surprisingly, is also the
structure of the antecedents in linear logic. Because we have no other equations,

LECTURE NOTES NOVEMBER 16, 2023

Resource Semantics L19.3

we can also say it is the free commutative monoid over the variables denoted by α, β,
etc.

Before we give the rules, it is easy to conjecture how we might, for example,
capture ordered logic: we drop commutativity of the resource combination operator.
For affine logic, we would need a partial order to capture that some resources may
not need to be used.

Starting on formal rules, the identity is easy with weakening implicit.

Γ, A[α] ⊢ A[α]
id

The cut rule is a bit tricky because of the asymmetry between antecedents and
succedents. But we are used to that by now. We start by writing the rule without the
resources on the way to deriving what they should be.

Γ ⊢ A[] Γ, A[] ⊢ C[]

Γ ⊢ C[]
cut

We know that the antecedent A[] should be labeled with a fresh resource variable,
and that the proof of C in the second premise should be able to use it.

Γ ⊢ A[] Γ, A[α] ⊢ C[∗ α]

Γ ⊢ C[]
cut

Next we know that the proof of A in the first premise will use some resources q.
These will be required for C as well.

Γ ⊢ A[q] Γ, A[α] ⊢ C[∗ α]

Γ ⊢ C[∗ q]
cut

Finally, we see that there may be some resources p besides q that are required in the
second premise.

Γ ⊢ A[q] Γ, A[α] ⊢ C[p ∗ α]

Γ ⊢ C[p ∗ q]
cutα

Of course, they can’t be used in the first premise. We also annotate the rule with α
to remind ourselves that α in the premise must be fresh, that is, not already occur
in Γ or p ∗ q.

Based on similar considerations we get the following rules for conjunction.

Γ ⊢ A[p] Γ ⊢ B[q]

Γ ⊢ A⊗B[p ∗ q]
⊗R

Γ, A⊗B[γ], A[α], B[β] ⊢ C[p ∗ α ∗ β]

Γ, A⊗B[γ] ⊢ C[p ∗ γ]
⊗Lα,β

Because our logic is structural we retain a copy of A ⊗ B[γ]. However, if there
is no repetition in the resources of the succedent, we can no longer use it in the
premise—it is carried along but no longer usable.

LECTURE NOTES NOVEMBER 16, 2023

Resource Semantics L19.4

Besides a theorem to come (we can go back and forth between linear logic and
resource logic), we also check identity expansion and cut reduction.

Γ, A⊗B[γ] ⊢ A⊗B[γ]
idA⊗B

−→E

Γ, A⊗B[γ], A[α] ⊢ A[α]
idA

Γ, A⊗B[γ], B[β] ⊢ B[β]
idB

Γ, A⊗B[γ], A[α], B[β] ⊢ A⊗B[α ∗ β]
⊗R

Γ, A⊗B[γ] ⊢ A⊗B[γ]
⊗Lα,β

and

D1

Γ ⊢ A[p]

D2

Γ ⊢ B[q]

Γ ⊢ A⊗B[p ∗ q]
⊗R

E ′

Γ, A⊗B[γ], A[α], B[β] ⊢ C[α ∗ β ∗ r]

Γ, A⊗B[γ] ⊢ C[γ ∗ r]
⊗Lα,β

Γ ⊢ C[p ∗ q ∗ r]
cutγA⊗B

Now γ is fresh in the cut, so it does not appear in α ∗ β ∗ r. So we can apply
strengthening to eliminate it from E ′. Then we can have two appeals to cut at smaller
propositions.

D1

Γ ⊢ A[p]

D2

Γ ⊢ B[q]

Γ ⊢ A⊗B[p ∗ q]
⊗R

E ′

Γ, A⊗B[γ], A[α], B[β] ⊢ C[α ∗ β ∗ r]

Γ, A⊗B[γ] ⊢ C[γ ∗ r]
⊗Lα,β

Γ ⊢ C[p ∗ q ∗ r]
cutγA⊗B

−→R

D2

Γ ⊢ B[q]

D1

Γ ⊢ A[p]

Γ, B[β] ⊢ A[p]
weaken

E ′

Γ, A⊗B[γ], A[α], B[β] ⊢ C[α ∗ β ∗ r]

Γ, A[α], B[β] ⊢ C[α ∗ β ∗ r]
strengthen

Γ, B[β] ⊢ C[p ∗ β ∗ r]
cutαA

Γ ⊢ C[p ∗ q ∗ r]
cutβB

There is an implicit use of weakening to equalize the antecedents in the two premises
in the cut on A.

Lemma 1 (Strengthening and Weakening)

(i) If Γ, A[α] ⊢ C[p] where α is not in p, then Γ ⊢ C[p] with the same derivation.

(ii) If Γ ⊢ C[p] then Γ, A[α] ⊢ C[p] when α is not in p, with the same derivation.

LECTURE NOTES NOVEMBER 16, 2023

Resource Semantics L19.5

Because they follow largely similar considerations, we just show the rules for
implication and external choice. Note how in external choice the same resources
are required for both branches. The left rule for disjunction will have a similar
property.

Γ, A[α] ⊢ B[p ∗ α]

Γ ⊢ A ⊸ B[p]
⊸Rα

Γ, A ⊸ B[γ] ⊢ A[p] Γ, A ⊸ B[γ], B[β] ⊢ C[q ∗ β]

Γ, A ⊸ B[γ] ⊢ C[p ∗ q ∗ γ] ⊸Lβ

Γ ⊢ A[p] Γ ⊢ B[p]

Γ ⊢ A N B[p]
NR

Γ, A N B[γ], A[α] ⊢ [p ∗ α]

Γ, A N B[γ] ⊢ C[p ∗ γ]
NLα

1

Γ, A N B[γ], B[β] ⊢ [p ∗ β]

Γ, A N B[γ] ⊢ C[p ∗ γ]
NLβ

2

The system has been carefully designed to preserve the structure of proofs as
much as possible. This makes the proof of adequacy relatively easy.

The first direction states that if A1, . . . , An ⊢ A then A1[α1], . . . , An[αn] ⊢ A[α1 ∗
· · · ∗ αn] where for distinct variable αi. This is proved by induction over the given
derivation, taking advantage of weakening to add on the antecedents that remain
in the premises of the target calculus.

For the other direction, we go from Γ ⊢ A[p] to Γ|p ⊢ A, where Γ|p is the restric-
tion of Γ to the resource variables in p. For this direction, we assume that p does
not have any repeated resource variables—if it did, we would not be able to model
the structural proof with a linear one.

3 Adding Validity

Perhaps surprisingly, we already have all the expressive power we need in the
target calculus to model at least !A = ↓↑A. The key idea is that a structural propo-
sition AS corresponds to a new kind of antecedent A[ϵ]. This expresses that A can
be proved without the use of any resources, which is precisely our definition of
validity in linear logic!

We restrict ourselves to the single structural proposition ↑AL but we believe it
should easily extend to allow further structural propositions (after all, our target
calculus is structural).

We look at the rules for the shifts of the mixed linear/nonlinear logic and derive
the corresponding resource-aware rules.

We start with the right rule for ↓AS, which is not invertible since ↓ is a positive
connective.

∆S ⊢ AS

∆S ⊢ ↓AS

↓R
Γ ⊢ A[ϵ]

Γ ⊢ ↓A[ϵ]
↓R

LECTURE NOTES NOVEMBER 16, 2023

Resource Semantics L19.6

The restriction that ∆ consists only of structural propositions is represented here
by the fact that ↓A must be true without any resource (ϵ). If there were usable
resources in Γ, the would show up in the resources for the succedent.

In the left rule (which is invertible), α must be an available resource, but that the
only requirement. In the mixed linear/nonlinear system this means the succedent
must be linear.

∆, AS ⊢ CL

∆, ↓AS ⊢ CL

↓L
Γ, ↓A[α], A[ϵ] ⊢ C[p]

Γ, ↓A[α] ⊢ C[p ∗ α]
↓L

Next, we come to ↑R. In mixed linear/nonlinear logic, the presupposition of
independence ensures that the antecedents in the conclusion are all structural, in-
dicated by writing ∆S. In the corresponding rule in resource logic there may be
antecedents B[β], but they cannot be used because the the succedent has the empty
set of resources ϵ.

∆S ⊢ AL

∆S ⊢ ↑AL

↑R
Γ ⊢ A[ϵ]

Γ ⊢ ↑A[ϵ]
↑R

The left rule codifies the idea that if ↑A[ϵ] we can obtain a copy of the resource A
without using any resources. After all, it doesn’t cost any resources to do so!

∆, ↑AL, AL ⊢ CL

∆, ↑AL ⊢ CL

↑L
Γ, ↑A[ϵ], A[α] ⊢ C[p ∗ α]

Γ, ↑A[ϵ] ⊢ C[p]
↑Lα

At this point in lecture we were concerned about ↑R and ↑L. Because ↑ is negative,
the right rule should be invertible and the left rule should not. We therefore applied
our identity expansion test. First, the correct proof that starts with the right rule.

Γ, ↑A[ϵ], A[α] ⊢ A[α]
idA

Γ, ↑A[ϵ] ⊢ A[ϵ]
↑Lα

Γ, ↑A[ϵ] ⊢ ↑A[ϵ]
↑R

We would not expect the opposite order to work out, which would be evidence
that ↑L is not invertible.

??
↑A[ϵ], A[α] ⊢ ↑A[α]

↑A[ϵ] ⊢ ↑A[ϵ]
↑Lα

Luckily we do get stuck here, because we can not apply the ↑R rule. If A is atomic,
the only option is to apply ↑L again and again, obtaining many copies of A but
never being able to apply the right rule.

In order to account for this we have to update our adequacy proof for the trans-
lation. In the first direction:

LECTURE NOTES NOVEMBER 16, 2023

Resource Semantics L19.7

(i) If ∆S,∆L ⊢ AL then ∆S[ϵ],∆L[α] ⊢ AL[α]

(ii) If ∆S ⊢ AS then ∆S[ϵ] ⊢ AS[ϵ]

This direction takes advantage of weakening in resource logic (Lemma 1).
For the other direction, we have:

If Γ ⊢ A[p] with Γ = Γ1[ϵ],Γ2[α] then Γ|p ⊢ A.

Here, Γ|p restricts Γ to antecedents B[ϵ] and B[αi] for αi in p. For this direction we
use strengthening which applies due to our presuppositions on antecedents and
resource terms.

4 Untethering

All left rules for linear antecedents refer to the resources annotating the succedent.
We say the left rules are tethered to the succedent. This is by design, since we would
like to model the rules of linear logic as closely as possible. This feature makes it
somewhat difficult to turn the system into a translation from propositional linear
logic to intuitionistic logic.

As a step in the direction of a translation we’ll untether the rules for the neg-
ative connectives. We don’t investigate this system in its own right, just using it
for intuition. The first step is untethering is to allow complex resource terms for
antecedents. We think of A[p] as saying that the justification of the antecedent A
requires resources p.

The identity is straightforward; it is where the resources among the antecedents
are eventually tied to the succedent.

Γ, A[p] ⊢ A[p]
id

Next consider implication. While the right rule is unchanged, the new left rule is
untethered.

Γ, A[α] ⊢ B[p ∗ α]

Γ ⊢ A ⊸ B[p]
⊸Rα

Γ ⊢ A[q] Γ, B[p ∗ q] ⊢ C[r]

Γ, A ⊸ B[p] ⊢ C[r]
⊸L

We can read the left rule as: “if the implication A ⊸ B requires resources p and A
requires resources q, then B requires resources p ∗ q”. Thinking about the cut reduction
(in a new form), we would instantiate the α in ⊸Rα with q so we can reduce the
cut between ⊸R and ⊸L.

External choice can be untethered more directly.

Γ ⊢ A[p] Γ ⊢ B[p]

Γ ⊢ A N B[p]
NR

Γ, A N B[p], A[p] ⊢ C[r]

Γ, A N B[p] ⊢ C[r]
NL1

Γ, A N B[p], B[p] ⊢ C[r]

Γ, A N B[p] ⊢ C[r]
NL2

LECTURE NOTES NOVEMBER 16, 2023

Resource Semantics L19.8

It is interesting to consider what happens if, say, p = α. In that case, after the NL1

rule, we have both A N B[α] and A[α] among the antecedents. But eventually the
connection to the resources in the succedent will have to made, and then only one
of these two can be used. We could even take it a step further, applying NL2 so we
have both A[α] and B[α] among the antecedents, but only one of them can be used
because of resource constraints. From these considerations is should be clear that
the structure of the proofs no longer matches up so directly.

We now turn the idea of untethering into a translation A @ p.

(P) @ p = P (p)
(A ⊸ B) @ p = ∀α.(A @ α) ⊃ (B @ (p ∗ α))
(A N B) @ p = (A @ p) ∧ (B @ p)

Recall also the equations on resource terms:

Associativity (p ∗ q) ∗ r = p ∗ (q ∗ r)
Unit ϵ ∗ p = p = p ∗ ϵ
Commutativity p ∗ q = q ∗ p

As a simple example, (P N Q) ⊸ P @ ϵ is translated to ∀α. P (α) ∧ Q(α) ⊃ P (α)
(which is true). P ⊸ (Q ⊸ P) @ ϵ is ∀α.P (α) ⊃ ∀β.Q(β) ⊃ P (α ∗ β) which is not
true.

The adequacy theorem states that · ⊢ A if and only if · ⊢ A @ ϵ in first-order
intuitionistic logic with the stated laws of equality. These laws, plus reflexivity,
symmetry, transitivity, and congruence can be written as axioms in the predicate
calculus to complete this translation. The proof roughly models the untethered
rules given earlier in this section.

You can find an extension to the positive connectives and a proof of adequacy in
an unpublished paper by Reed and Pfenning [2010]. This paper further shows that
the same recipe applies to ordered logic, and that one can organize the translation
so that focusing phases are preserved across the translation. The close relationship
to hybrid logic is further explored by Reed [2009].

References

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Patrick Lincoln, John Mitchell, Andre Scedrov, and Natarajan Shankar. Decision
problems for propositional linear logic. Annals of Pure and Applied Logic, 56:239–
311, April 1992.

LECTURE NOTES NOVEMBER 16, 2023

Resource Semantics L19.9

Jason C. Reed. A Hybrid Logical Framework. PhD thesis, Carnegie Mellon University,
September 2009. Available as Technical Report CMU-CS-09-155.

Jason C. Reed and Frank Pfenning. Focus-preserving embeddings of substructural
logics in intuitionistic logic. Unpublished Manuscript, January 2010. URL http:
//www.cs.cmu.edu/˜fp/papers/substruct10.pdf.

Alfred Tarski. The concept of truth in formalized languages. In John Corcoran and
J. H. Woodger, editors, Logic, Semantics, Metamathematics, pages 152–278. Claren-
don Press, Oxford, 1956. Translation of a paper from 1931.

LECTURE NOTES NOVEMBER 16, 2023

http://www.cs.cmu.edu/~fp/papers/substruct10.pdf
http://www.cs.cmu.edu/~fp/papers/substruct10.pdf

Lecture Notes on
Logical Frameworks

15-836: Substructural Logics
Frank Pfenning

Lecture 20
November 28, 2023

1 Introduction

A logical framework consists of a formal metalanguage for the definition of logics and
other deductive systems and a representation methodology. The seminal work on log-
ical frameworks is LF [Harper et al., 1987, 1993], with a full-scale implementation in
the Twelf system [Pfenning and Schürmann, 1999], available at www.twelf.org.
Logical frameworks distill the essence of the conceptual notions that are used to
define logics and other deductive systems, such as the statics and dynamics of pro-
gramming languages. They are distinguished from general type theories and their
implementations in systems such as Agda1 and Coq2 in that they designed for the
specific domain of deductive systems rather than general (constructive or classical)
mathematics.

LF itself is structural, and this limitation has led to substructural generaliza-
tions in the form of Linear LF (LLF) [Cervesato and Pfenning, 1996, 2002]3 and
Concurrent LF (CLF) [Watkins et al., 2002, Cervesato et al., 2002, Schack-Nielsen
and Schürmann, 2008, Schack-Nielsen, 2011]4 Each of these is designed to address
some shortcomings of its predecessors, suitably extending both the formal meta-
language and the representation methodology.

We will follow a similar path, introducing LF in today’s lecture and then con-
sider substructural extensions in the next two lectures. We emphasize the univer-
sality of the underlying principles, which mirror the principles we have employed
throughout in this course. One might even say that these principles are manifest in
the design of the logical frameworks we represent.

1https://wiki.portal.chalmers.se/agda/pmwiki.php
2https://coq.inria.fr/
3https://github.com/clf/llf
4https://github.com/clf/celf

LECTURE NOTES NOVEMBER 28, 2023

www.twelf.org
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://coq.inria.fr/
https://github.com/clf/llf
https://github.com/clf/celf

Logical Frameworks L20.2

What is a logical framework used for? In this and the three remaining lectures
we don’t have the time to cover the full rangle of applications, but we can broadly
categorize them as follows:

Definition: Logical frameworks are used to define logics and other deductive sys-
tems under consideration, ideally at a very high level of abstraction. Logics
are generally characterized by propositions and rules of inference, program-
ming languages by programs, type systems, and rules of computation. The
main principle used in the definition of logics is summarized as judgments as
types and proofs as objects.

Algorithms: The most fundamental algorithm is that of proof checking for an ob-
ject logic represented in a logical framework, but there are many others such
as proof search, proof reduction, translations between logics, type checking,
or evaluation of programs on an object language. The logical frameworks
we consider support algorithms via computation as proof construction which
encompasses both backward [Miller et al., 1991, Miller and Nadathur, 2012]
and forward proof construction [López et al., 2005].

Metareasoning: Once a deductive system has been defined, we usually prove a
number of important properties of it. For logics, these include cut elimina-
tion, identity elimination, focusing, soundness and completeness of trans-
lations, etc. For programming languages they are progress and preserva-
tion, soundness and completeness of type-checking algorithms, compiler cor-
rectness, etc. We can exploit the nature of representations in logical frame-
work to formally prove such metatheorems Pfenning and Schürmann [1999],
Schürmann [2000]. The general methodology is to represent that computa-
tional content of proof of the metatheorem algorithmically and then verify
its totality. There are some gaps in our understanding of how to achieve
this for substructural frameworks (see some approaches by McCreight and
Schürmann [2008], Reed [2009], Georges et al. [2017])

For today’s lecture where we only consider LF we will focus on logic definition
and proof checking.

2 Judgments as Types

One of the fundamental representation techniques is judgments as types. A judgment
in this context are what is subject to deductive inference, as mapped out by Martin-
Löf [1983]. Common judgments are A true or A false or A valid . We use the very
simply example from Lecture 1 of defining a path through a directed graph.

edge(x, y)

path(x, y)
step

path(x, y) path(y, z)

path(x, z)
trans

LECTURE NOTES NOVEMBER 28, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/01-ephemeral.pdf

Logical Frameworks L20.3

We previously thought of edge(x, y) and path(x, y) as propositions, but we will now
think of them as judgments since they are directly subject to inference. This means
that edge(x, y) and path(x, y) for vertices x and y should be represented by types in
our formal metalanguage (which we have yet to define). We think of both edge and
path as constructors for types, taking vertices as arguments. So we have

vertex : type.
edge : vertex -> vertex -> type.
path : vertex -> vertex -> type.

In the terminology of logical frameworks we call edge and path type families, each
indexed by two vertices.

It is easy to see what the type vertex represents. Here is the example from Lec-
ture 1: Our initial state of knowledge is edge(a, b), edge(b, c), edge(b, d) for some
vertices a, b, c, and d. Therefore:

a : vertex.
b : vertex.
c : vertex.
d : vertex.

We also have to have objects of type edge a b, edge b c and edge b d. These are
constants represent (trivial) proofs of these judgments.

eab : edge a b.
ebc : edge b c.
ebd : edge b d.

What happens to the inference rules? They become proof constructors. As a first
approximation, we might write

step : edge x y -> path x y.
trans : path x y -> path y z -> path x z.

It remains to clarify the status of x, y and z. Somehow we have to express that any
instantiation of the constructor with vertices x, y and z is a valid instance of the
rule.

When we developed predicate calculus, we used universal quantification to
express this, where we purposely let the quantifier range over arbitrary “individu-
als”. In LF we would like to be more precise and specify that they must be vertices.
Syntactically, we just replace ∀x.B(x) with Πx:A.B(x) where A is a type. Our con-
crete syntax for this is {x : A}B.

step : {x:vertex} {y:vertex} edge x y -> path x y.
trans : {x:vertex} {y:vertex} {z:vertex}

path x y -> path y z -> path x z.

LECTURE NOTES NOVEMBER 28, 2023

Logical Frameworks L20.4

Now we can show a little example of a proof representation. We represent

edge(a, b)
eab

path(a, b)
step

as

step a b eab : path a b

Here is a slightly larger proof:

edge(a, b)
eab

path(a, b)
step

edge(b, c)
ebc

path(b, c)
step

path(a, c)
trans

which becomes

trans a b c (step a b eab) (step b c ebc) : path a c

3 The Formal Metalanguage

So far, we have learned about “judgments as types” and “proofs as objects” through
a very simple example. A proof of a judgment is represented by an object of the
corresponding type. Clearly, this should be a bijection: every valid proof should be
an object that has the expected type, and every object that has a given type should
represent a type. If typing in the framework is decidable (which it will be) this
means we can model proof checking by type checking.

Before we go further, we should be more precise about the metalanguage that
we have written some code in without actually defining it. Even though LF was
not originally conceived this way, we think of it as arising from [drum roll] focusing.
This point of view is helpful because it will extend to the substructural frameworks
we start discussing in the next lecture.

What have we used to far? We have used atomic types vertex, edge x y and
path x y. We have also used function types A → B and quantification Πx:A.B(x)
that generalizes ∀x.B(x). We observe that all of these are negative! This also al-
leviates any stress regarding atoms: let’s just be consistent and also make them
negative. Here is what we have so far.

Negative types A,B ::= P | A→B | Πx:A.B(x)
Atoms P ::= . . .
Objects M ::= . . .
Kinds K ::= type | A→K | . . .
Signatures Σ ::= · | Σ, a : K | Σ, c : A

LECTURE NOTES NOVEMBER 28, 2023

Logical Frameworks L20.5

A signature has declarations for term constructors c and also for type families a that
may depend on objects like edge and path.

The language of objects (and, by analogy, the language of types) is now de-
termined by what it means to focus on a type among the antecedents and what it
means to invert a type as a succedent. The declarations c : A in signature Σ (which
is generally fixed for a particular encoding) act as antecedents.

We start with left focus, first the rules that starts left focus from a stable sequent.
At the end of this section we will see what the succedent δ of a stable sequent must
look like.

c : A ∈ Σ Γ, [A] ⊢Σ δ

Γ ⊢Σ δ
FL/C

c : A ∈ Σ Γ, [A] ⊢Σ S : δ

Γ ⊢Σ c S : δ
FL/C

The kind of proof term to we assign to the left focus judgment is called a spine
[Cervesato and Pfenning, 2003], which we write as S. This harkens back to earlier
term assignments, although with a different purpose.

We now omit the signature Σ from the turnstile for brevity since it never changes
in the typing of objects and spines.

Γ ⊢ [A] Γ, [B] ⊢ δ

Γ, [A→B] ⊢ δ
→L

Γ ⊢ M : A

Γ ⊢ M : [A]
IR/FR

Γ, [B] ⊢ S : δ

Γ, [A→B] ⊢ (M ; S) : δ
→L

Since A is negative, we will lose focus on [A] in the first premise and start inversion
which is the judgment to type objects (not spines).

Universal quantification is interesting. Recall that a proof of ∀x.B(x) was a
function which for every individual t returned a proof of B(t). So both quantifi-
cation and implication correspond to functions. Here, there is no separate class of
terms t—we just use objects M .

Γ ⊢ M : A

Γ ⊢ M : [A]
IR/FR

Γ, [B(M)] ⊢ S : δ

Γ, [Πx:A.B(x)] ⊢ (M ; S) : δ
ΠL

The tricky part of this rule is the substitution B(M). So the only difference between
A → B and Πx:A.B(x) that in the latter, B may depend on x, while not so in the
former. We discuss this operation further in Section 4.

For the final left rule, we consider atoms, which in LF are all considered neg-
ative. The left focus only succeeds if the succedent is the same suspended atom.
Because of this, there is no real information content in the rule and the spine is just
empty.

Γ, [P] ⊢ ⟨P ⟩
id−

Γ, [P] ⊢ () : ⟨P ⟩
id−

LECTURE NOTES NOVEMBER 28, 2023

Logical Frameworks L20.6

We revisit our grammar. Atoms are just like constants applied to spines, except that
the constant itself is a type family. Also, variables can be used just like constants.

Negative types A,B ::= P | A→B | Πx:A.B(x)
Atoms P ::= a S
Objects M ::= c S | x S | . . .
Spines S ::= (M ; S) | ()
Kinds K ::= type | A→K | . . .
Signatures Σ ::= · | Σ, a : K | Σ, c : A

With this, we can give a formal representation of our earlier example, abbreviating
c () and x () as just c and x. We also omit trailing empty spines and write (M1 ;
. . . ; Mn ; ()) as (M1 ; . . . ; Mn).

vertex : type
edge : vertex→ vertex→ type
path : vertex→ vertex→ type
step : Πx:vertex.Πy:vertex. edge (x ; y)→ path (x ; y)
trans : Πx:vertex.Πy:vertex.Πz:vertex.

path (x ; y)→ path (y ; z)→ path (x ; z)

a : vertex
b : vertex
c : vertex
d : vertex

eab : edge (a ; b)
ebc : edge (b ; c)
ebd : edge (b ; d)

⊢ trans (a ; b ; c ; (step (a ; b ; eab)) ; (step (b ; c ; ebc))) : path (a ; b)

There is still a lot of redundancy in this representation with multiple occurrences
of a, b, and c, but implementations can further mitigate this by allowing the user to
elide some of these, and in some cases even eliminate them from the representation
altogether.

Even if it is only needed to suspend atoms in this example, we should return
to the inversion phase of focusing. Since all constructors are negative, these will
be the right rules. For the same reason, we can dispense with the usual ordered
antecedents Ω. For example, the right rule for A → B would add A to the or-
dered context, but since A is negative and therefore stable, it will be immediately
transferred to the structural context Γ that consists entirely of negative types (since
suspended positive atoms are not part of the language).

Γ, A ⊢ B

Γ ⊢ A→B
→R

Γ, x : A ⊢ M(x) : B

Γ ⊢ λx.M(x) : A→B
→R

LECTURE NOTES NOVEMBER 28, 2023

Logical Frameworks L20.7

As we might expect by now, quantifiers are just dependent function types can be-
have the same.

Γ, x : A ⊢ M(x) : B(x)

Γ ⊢ λx.M(x) : Πx:A.B(x)
ΠR

Finally, atoms on the right are suspended because their are negative.

Γ ⊢ ⟨P ⟩

Γ ⊢ P
C/IR

Γ ⊢ M : ⟨P ⟩

Γ ⊢ M : P
C/IR

We see that in stable sequents the succedent δ always has the form ⟨P ⟩ for some
atom P .

This allows us to complete the grammar, where we additional allow kinds to be
dependent.

Negative types A,B ::= P | A→B | Πx:A.B(x)
Atoms P ::= a S
Objects M ::= c S | x S | λx.M(x)
Spines S ::= (M ; S) | ()
Kinds K ::= type | A→K | Πx:A.B(x)
Stable antecedents Γ ::= · | Γ, x : A
Stable succedents δ ::= ⟨P ⟩
Signatures Σ ::= · | Σ, a : K | Σ, c : A

We have already seen the most critical typing rules; they are summarized in Fig-
ure 1. Others are similar and elided and can be found in the literature. Still missing
is the definition of B(M), which looks like ordinary substitution but is more com-
plicated.

In the next lecture we will extend the representation methodology and show
some representations of the sequent calculus and the semi-axiomatic sequent cal-
culus.

4 Hereditary Substitution

Consider a type Πx:A.B(x). When typing an application we need to substitute a
term M : A for x, written so far as B(M). But does this substitution actually make
sense? Consider the term x () that is typed from x : P with left focus. Just plugging
in the object M : P would be M (), but that’s not actually a valid object. Similarly,
if A = P →Q then the term will be λy.N(y) and after just plugging into x (M ; ())
we would have (λy.N(y)) (M ; ()), again not even syntactically valid.

We use a more traditional notation [M/x]AB(x) instead of B(M), indexing the
operation also with the type A of x. This quickly reduces to [M/x]AN and [M/x]AS.
The idea is that if x is at the head of a spine we then reduce further, initiating more

LECTURE NOTES NOVEMBER 28, 2023

Logical Frameworks L20.8

c : A ∈ Σ Γ, [A] ⊢ S : δ

Γ ⊢ c S : δ
FL/C

x : A ∈ Γ Γ, [A] ⊢ S : δ

Γ ⊢ c S : δ
FL/C/

Γ ⊢ M : A Γ, [B] ⊢ S : δ

Γ, [A→B] ⊢ (M ; S) : δ
→L

Γ ⊢ M : A Γ, [B(M)] ⊢ S : δ

Γ, [Πx:A.B(x)] ⊢ (M ; S) : δ
ΠL

Γ, [P] ⊢ () : ⟨P ⟩
id−

Γ, x : A ⊢ M(x) : B

Γ ⊢ λx.M(x) : A→B
→R

Γ, x : A ⊢ M(x) : B(x)

Γ ⊢ λx.M(x) : Πx:A.B(x)
ΠR

Γ ⊢ M : ⟨P ⟩

Γ ⊢ M : P
C/IR

Figure 1: LF Type Theory (excerpt), given a fixed signature Σ

substitutions and so on. Why does this terminate? Similar to cut elimination, it is
by a nested induction first on the type A and second on the object M and spine S
we substitute into. In fact, it is the operational reading of cut elimination for the
focusing calculus on negative types.

We write h for a head, that is, a constant c or a variable y.

[M/x]A(λy.N) = λy. [M/x]AN y not free in M
[M/x]A(h S) = h [M/x]AS where x ̸= h
[M/x]A(x S) = M |A [M/x]AS (application)

[M/x]A(N ; S) = [M/x]AN ; [M/x]AS
[M/x]A() = ()

(h S) |P () = h S
(λx.M) |A→B (N ; S) = [N/x]AM |B S
(λx.M) |Πx:A.B(x) (N ; S) = [N/x]AM |B(x) S

The condition in the first case can be satisfied by renaming the bound variable
y, which is always (silently) possible. For the purpose of hereditary substitution,
ordinary and dependent function types are treated identically; the free variable x
in B(x) is not relevant to the termination argument.

Another interesting point is that hereditary substitution may be undefined, but
is always computable by the nested induction argument. The notion of heredi-
tary substitution was originally developed for a substructural logical framework
[Watkins et al., 2002] which contains LF as a fragment.

LECTURE NOTES NOVEMBER 28, 2023

Logical Frameworks L20.9

References

Iliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke,
editor, Proceedings of the Eleventh Annual Symposium on Logic in Computer Science,
pages 264–275, New Brunswick, New Jersey, July 1996. IEEE Computer Society
Press.

Iliano Cervesato and Frank Pfenning. A linear logical framework. Information &
Computation, 179(1):19–75, November 2002. Revised and expanded version of an
extended abstract, LICS 1996, pp. 264-275.

Iliano Cervesato and Frank Pfenning. A linear spine calculus. Journal of Logic and
Computation, 13(5):639–688, 2003.

Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concur-
rent logical framework II: Examples and applications. Technical Report CMU-
CS-02-102, Department of Computer Science, Carnegie Mellon University, 2002.
Revised May 2003.

Aı̈na Linn Georges, Agata Murawska, Shawn Otis, and Brigitte Pientka. LINCX:
A linear logical frameworks with first-class contexts. In Hongseok Yang, editor,
26th European Symposium on Programming (ESOP 2017), pages 530–555, Uppsala,
Sweden, April 2017. Springer LNCS 10201.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining log-
ics. In Symposium on Logic in Computer Science, pages 194–204. IEEE Computer
Society Press, June 1987.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining log-
ics. Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concur-
rent linear logic programming. In A.Felty, editor, Proceedings of the 7th Interna-
tional Symposium on Principles and Practice of Declarative Programming (PPDP’05),
pages 35–46, Lisbon, Portugal, July 2005. ACM Press.

Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Notes for three lectures given in
Siena, Italy. Published in Nordic Journal of Philosophical Logic, 1(1):11-60,
1996, April 1983. URL http://www.hf.uio.no/ifikk/forskning/
publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf.

Andrew McCreight and Carsten Schürmann. A meta linear logical framework. In
4th International Workshop on Logical Frameworks and Meta-Languages (LFM 2004),
volume 199 of Electronic Notes in Theoretical Computer Science, pages 129–147,
February 2008.

LECTURE NOTES NOVEMBER 28, 2023

http://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf
http://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf

Logical Frameworks L20.10

Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cam-
bridge University Press, 2012.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceedings of
the 16th International Conference on Automated Deduction (CADE-16), pages 202–
206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

Jason C. Reed. A Hybrid Logical Framework. PhD thesis, Carnegie Mellon University,
September 2009. Available as Technical Report CMU-CS-09-155.

Anders Schack-Nielsen. Implementing Substructural Logical Frameworks. PhD thesis,
IT University of Copenhagen, January 2011.

Anders Schack-Nielsen and Carsten Schürmann. Celf - a logical framework for de-
ductive and concurrent systems. In A. Armando, P. Baumgartner, and G. Dowek,
editors, Proceedings of the 4th International Joint Conference on Automated Reasoning
(IJCAR’08), pages 320–326, Sydney, Australia, August 2008. Springer LNCS 5195.

Carsten Schürmann. Automating the Meta Theory of Deductive Systems. PhD the-
sis, Department of Computer Science, Carnegie Mellon University, August 2000.
Available as Technical Report CMU-CS-00-146.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent
logical framework I: Judgments and properties. Technical Report CMU-CS-02-
101, Department of Computer Science, Carnegie Mellon University, 2002. Re-
vised May 2003.

LECTURE NOTES NOVEMBER 28, 2023

Lecture Notes on
Substructural Frameworks

15-836: Substructural Logics
Frank Pfenning

Lecture 21
November 30, 2023

1 Introduction

In the last lecture we introduced LF, although we only started to talk about the rep-
resentation methodology. We continue this today, discuss some of the shortcom-
ings, and explore how they might be addressed in a substructural logical frame-
work. References to LF and its implementation in Twelf are provided in the previ-
ous lecture.

2 Representing Sequent Derivations

A more typical example for the use of a logical framework is the representation
of a logic. Actually, we should be more precise: it is not a logic we represent but a
specific inference system. So, for example, sequent calculus and the semi-axiomatic
sequent calculus will have different representations.

First, we start with the representation of the propositions of (intuitionistic) logic.
That’s straightforward:

prop : type.
and : prop -> prop -> prop.
or : prop -> prop -> prop.
imp : prop -> prop -> prop.

Atomic propositions are either variables of type prop, or declared in addition to the
logical connectives we already have.

For different constituents of an object logic like propositions or proofs, we have
an (overloaded) representation function ⌜−⌝. For example, for propositions we
have

P1:prop, . . . , Pk:prop ⊢ ⌜A⌝ : prop

LECTURE NOTES NOVEMBER 30, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/20-frameworks.pdf
http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/20-frameworks.pdf

Substructural Frameworks L21.2

defined by
⌜P ⌝ = P
⌜A ∧B⌝ = and ⌜A⌝ ⌜B⌝

⌜A ∨B⌝ = or ⌜A⌝ ⌜B⌝

⌜A ⊃ B⌝ = imp ⌜A⌝ ⌜B⌝

Here, instead of c (M1 ; . . . ; Mn) from focusing we write c M1 . . .Mn, which is the
familiar source-level syntax from logical frameworks based on natural deduction.

When it comes to judgments, recall that basic judgments are represented as
types. But what are the basic judgments here? It turns out the correct represen-
tation uses two: “A is an antecedent” and “A is a succedent”, which we write as
ante ⌜A⌝ and succ ⌜A⌝ respectively. A proof

D
A1, . . . , An ⊢ C

is then represented by the LF sequent

x1 : ante
⌜A1

⌝, . . . xn : ante ⌜An
⌝ ⊢

Σ
⌜D⌝ : succ ⌜C⌝

where ⌜D⌝ is an object of LF and the signature Σ contains the constructors for propo-
sitions and proofs. Actually, we have to modify this slightly if A1, . . . , An, C contain
propositional variables Pi, in which case it becomes

P1 : prop, . . . , Pk : prop, x1 : ante
⌜A1

⌝, . . . xn : ante ⌜An
⌝ ⊢

Σ
⌜D⌝ : succ ⌜C⌝

Since atomic propositions may also be represented as constants in the signature,
we’ll ignore this detail and focus on the representation of proofs.

Let’s start with the right rule for implication.

D =

D′

Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃R

Writing out the representation of the two sequents in LF:

⌜Γ⌝, x : ante ⌜A⌝ ⊢ ⌜D′⌝ : succ ⌜B⌝

⌜Γ⌝ ⊢ ⌜D⌝ : succ (imp ⌜A⌝ ⌜B⌝)

We might conjecture we could achieve that if

⌜D⌝ = impR (λx. ⌜D′⌝)

so that

LECTURE NOTES NOVEMBER 30, 2023

Substructural Frameworks L21.3

impR : (ante ⌜A⌝ → succ ⌜B⌝)
→ succ (imp ⌜A⌝ ⌜B⌝)

but we also need to abstract over the propositions A and B:

impR : ΠA : prop.ΠB : prop.
(ante A→ succ B)
→ succ (imp A B)

We play through what happens if we focus on this on the left, writing ?A and ?B
for an as yet unknown object of type prop and omitting contexts ⌜Γ⌝.

...
⊢ ?A : prop

...
⊢ ?B : prop

ante ?A ⊢ ⟨succ ?B⟩

ante ?A ⊢ succ ?B

⊢ ante ?A→ succ ?B
→R

δ = ⟨succ (imp ?A ?B)⟩

[succ (imp ?A ?B)] ⊢ δ
id−

[(ante ?A→ succ ?B)→ succ (imp ?A ?B)] ⊢ δ
→L

[ΠB:prop. (ante ?A→ succ B)→ succ (imp ?A B)] ⊢ δ
ΠL

[ΠA:prop.ΠB:prop. (ante A→ succ B)→ succ (imp A B)] ⊢ δ
ΠL

Due to the restriction on focusing with negative atoms, we see that focusing on
impR can only succeed if the (metalevel) succedent has the form ⟨succ (imp ⌜A⌝ ⌜B⌝)⟩
for some propositions A and B. Applying this throughout, we get the derived rule

⌜Γ⌝, ante ⌜A⌝ ⊢ ⟨succ ⌜B⌝⟩
⌜Γ⌝ ⊢ ⟨succ (imp ⌜A⌝ ⌜B⌝)⟩

which is exactly what we were aiming for. If we add proof terms we get

⌜Γ⌝, ante ⌜A⌝ ⊢ M : ⟨succ ⌜B⌝⟩
⌜Γ⌝ ⊢ (impR ⌜A⌝ ⌜B⌝ (λx.M(x))) : ⟨succ (imp ⌜A⌝ ⌜B⌝)⟩

Using focusing in this manner allows us to establish a bijection: If M is the repre-
sentation of a proof D, then impR ⌜A⌝ ⌜B⌝ (λx.M(x)) will also be one. Conversely,
if ⌜Γ⌝ ⊢ M : ⟨succ C⟩ then M must be the proof term for one of the inference rules
encoded in the signature Σ. In each case, the same must be true for the unknown
object in the premise(s), and we can systematically translate well-typed terms to
sequent calculus proofs.

Let’s look at the left rule for implication as one more example.

Γ ⊢ A Γ, B ⊢ C

Γ, A ⊃ B ⊢ C
⊃L

We conjecture

LECTURE NOTES NOVEMBER 30, 2023

Substructural Frameworks L21.4

impL : ΠA : prop.ΠB : prop.ΠC : prop.
succ A→ (ante B → succ C)
→ (ante (imp A B)→ succ C)

We won’t go through the details of focusing, but what we arrive at is

⌜Γ⌝ ⊢ M : ⟨succ ⌜A⌝⟩ ⌜Γ⌝, y : ante ⌜B⌝ ⊢ N(y) : ⟨succ ⌜C⌝⟩
⌜Γ⌝, x : ante ⌜A ⊃ B⌝ ⊢ impL ⌜A⌝ ⌜B⌝ ⌜C⌝ M (λy.N(y)) x : ⟨succ ⌜C⌝⟩

We see here that the encoding for a structural sequent calculus critically relies on
the fact that the LF metalanguage is also structural. So there may be occurrences of
x in M and N , just like the hypothesis A ⊃ B can be used again in both premises
of the sequent calculus rule.

You might also notice that modulo the explicit propositions and the argument
order, this is exactly the proof term representation we used in Assignment 2 for
ordered proofs. This is, of course, no coincidence. In practical implementations
of logical frameworks such as LF, the arguments of type prop to the constructors
can be omitted and will be determined by the implementation from context. In
general, this problem is undecidable for LF and may require more information from
the programmer, but in the vast majority of the cases the constraints on them are
sufficient.

We can see how proof checking in an object logic (structural, for the moment)
can be reduced to type-checking the proof representation in LF (also structural).
Moreover, the representation is a bijection between proofs and the well-typed terms
over a signature (the encoding of a proof system) and a particular context (the
encoding of the antecedents).

Before moving on, let’s look back at the type of impR.

impR : ΠA : prop.ΠB : prop.
(ante ⌜A⌝ → succ ⌜B⌝)
→ succ (imp ⌜A⌝ ⌜B⌝)

The adequacy of this encoding as mentioned in the preceding paragraph relies crit-
ically on the fact that the function spaces here are weak. For example, a function
cannot examine the structure of its argument and base its result on it. Instead, an
object of type A → B must be λx.M(x) which is parametric in x so that M(N) is
just the result of hereditary substitution of N for x in M(x) without further com-
putation.

3 A Linear Logical Framework

When encoding a substructural type system, the methodology we have exempli-
fied in the preceding section no longer works for LF. That’s because LF antecedents

LECTURE NOTES NOVEMBER 30, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//assignments/hw2.pdf

Substructural Frameworks L21.5

of the form x : ante ⌜A⌝ are structural, so we cannot use them for the linear an-
tecedents of linear logic. The most direct solution is to generalize the framework
so it also admits linear antecedents. We cannot throw out the nonlinear functions,
so the framework will be a mixed linear/nonlinear type theory call Linear LF (or
LLF, for short) [Cervesato and Pfenning, 1996, 2002].

Given what we know now regarding adjoint logic, we might have designed the
framework differently. We start by just adding a linear function type, but leaving
the remainder of the language the same; later on we’ll need something one more
type. We also just reuse λ-abstraction for linear functions and spines (M ; S) for
linear application since this ambiguity is not relevant here.

Negative types A,B ::= P | A→B | Πx : A.B(x) | A ⊸ B
Stable antecedents ∆ ::= · | ∆, xS : A | ∆, xL : A

Stable antecedents may be structural xS : A or linear xL : A. All declarations in
the signature remain structural: even in a linear logic, inference rules can be used
multiple times.

Focusing works similar to the way it worked before—we highlight only two
rules for the key differences between the linear and nonlinear left rules, namely
that the first premise of →L can only depend on structural antecedents.

ΓS ⊢ M : [A] ΓS,∆
′, [B] ⊢ S : δ

ΓS,∆
′, [A→B] ⊢ (M ; S) : δ

→L

ΓS,∆ ⊢ M : [A] ΓS,∆
′, [B] ⊢ (M ; S) : δ

ΓS,∆,∆′, [A ⊸ B] ⊢ (M ; S) : δ
⊸L

The focus on A in the first premise of both of these rules will be lost immediately
since the framework consists entirely of negative types. The succedent δ will al-
ways be a suspended negative atom ⟨P ⟩, as for LF.

As our example we use the (purely linear) semi-axiomatic sequent calculus
(SAX). We represent a proof

D
A1, . . . , An ⊢ C

by
x1L : ante ⌜A1

⌝, . . . , xnL : ante ⌜An
⌝ ⊢ ⌜D⌝ : ⟨succ ⌜C⌝⟩

The right rule for linear implication parallels what we have seen in the structural
case, but the left rule is replace by the axiom

A,A ⊸ B ⊢ B
⊸X

which simplifies the representation slightly.

LECTURE NOTES NOVEMBER 30, 2023

Substructural Frameworks L21.6

lolli : prop→ prop→ prop

lolliR : ΠA : prop.ΠB : prop.
(ante A ⊸ succ B)
⊸ succ (lolli A B)

lolliX : ΠA : prop.ΠB : prop.
ante A ⊸ ante (lolli A B) ⊸ succ B

The identity is similar to the axiom.

id : ΠA : prop. ante A ⊸ succ A

he fram The additive conjunction represents a new challenge.

∆ ⊢ A ∆ ⊢ B

∆ ⊢ A N B
NR

A N B ⊢ A
NX1

A N B ⊢ B
NX2

The challenge here is how to “duplicate” the antecedents ∆ to both premises of the
NR rule. In the framework we have so far, there is not easy way to accomplish
this. Fortunately, external choice is negative so we can just add it to the framework
without disturbing much of its structure.

Negative types A,B ::= P | A→B | Πx : A.B(x) | A ⊸ B | A N B
Objects M ::= c S | x S | λx.M(x) | (M1,M2)
Spines S ::= M ; S | () | π1 ; S | π2 ; S
Stable antecedents ∆ ::= · | ∆, xS : A | ∆, xL : A

With this addition we can define

with : prop→ prop→ prop

withR : ΠA : prop.ΠB : prop.
(succ A N succ B)
⊸ succ (with A B)

withX1 : ΠA : prop.ΠB : prop.
ante (with A B) ⊸ succ A

withX1 : ΠA : prop.ΠB : prop.
ante (with A B) ⊸ succ B

Because right inversion on succ A N succ B will propagate all linear antecedents to
both premises, the translation of

D
∆ ⊢ A

E
∆ ⊢ B

∆ ⊢ A N B
NR

LECTURE NOTES NOVEMBER 30, 2023

Substructural Frameworks L21.7

as
withR ⌜A⌝ ⌜B⌝ (⌜D⌝, ⌜E⌝) : ⟨succ (with ⌜A⌝ ⌜B⌝)⟩

is adequately typed.
If we also encode cut

∆ ⊢ A ∆′, A ⊢ C

∆,∆′ ⊢ C
cut

as

cut : ΠA : prop.ΠB : prop.
succ A ⊸ (ante A ⊸ succ C)
⊸ succ C

then we can, for example, show that the usual sequent calculus left rules are deriv-
able in SAX. The derivation

A N B ⊢ A
NX1

∆, A ⊢ C

∆, A N B ⊢ C
cut

becomes

⊢ (λf. λy. cut ⌜A⌝ ⌜C⌝ (withX1
⌜A⌝ ⌜B⌝ y) (λx.fx)) : (ante ⌜A⌝ ⊸ succ ⌜C⌝)

⊸ (ante (with ⌜A⌝ ⌜B⌝) ⊸ succ ⌜C⌝)

4 Metatheoretic Reasoning

One payoff for using high-level encodings is that they can enable elegant and con-
cise metatheoretic reasoning [Schürmann, 2000]. For substructural logics, this is
much less well understood and I believe Jason Reed’s PhD Thesis 2009 using re-
source semantics is probably currently the high water mark, although more recent
work with entirely different techniques is also promising [Sano et al., 2023, Crary,
2010].

Let’s first consider the structural case, and let’s assume we have formalized the
sequent calculus without the cut rule. Then, at some informal level, the (construc-
tive!) admissibility proof for cut would correspond to a function from a proof of A
and a proof of C from A to a proof of C. In LF, this might be written as

cutadmit : ΠA : prop.ΠC : prop.
succ A→ (ante A→ succ C)→ succ C

Unfortunately, such a function is not representable in LF because it would have to
distinguish all the different cases for the proofs of succ A and the hypothetical proof
of ante A → succ C. Allowing such case distinction would destroy the adequacy
of the encoding, although there are systems such as M+

2 [Schürmann, 2000] and

LECTURE NOTES NOVEMBER 30, 2023

Substructural Frameworks L21.8

Beluga [Pientka and Cave, 2015] that support multiple different kinds of function
spaces. In Twelf [Pfenning and Schürmann, 1999], the solution is to represent the
metatheoretic proof instead as a relation.

cutadmit : ΠA : prop.ΠC : prop.
succ A→ (ante A→ succ C)→ succ C
→ type

We can then check properties of this relation to verify our theorem. Specifically, it
should be total in A, C and the two given derivations. You can read more about
this in the following two papers [Pfenning, 1995, 2000].

It turns out this relational method is quite general, and there are many examples
and case studies in the Twelf distribution and on the website.1

References

Iliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke,
editor, Proceedings of the Eleventh Annual Symposium on Logic in Computer Science,
pages 264–275, New Brunswick, New Jersey, July 1996. IEEE Computer Society
Press.

Iliano Cervesato and Frank Pfenning. A linear logical framework. Information &
Computation, 179(1):19–75, November 2002. Revised and expanded version of an
extended abstract, LICS 1996, pp. 264-275.

Karl Crary. Higher-order representation of substructural logics. In P.Hudak and
S.Weirich, editors, Proceedings of the 15th International Conference on Functional
Programming (ICFP 2010), pages 131–142, Baltimore, Maryland, September 2010.
ACM.

Frank Pfenning. Structural cut elimination. In D. Kozen, editor, Proceedings of the
Tenth Annual Symposium on Logic in Computer Science, pages 156–166, San Diego,
California, June 1995. IEEE Computer Society Press.

Frank Pfenning. Structural cut elimination I. Intuitionistic and classical logic. In-
formation and Computation, 157(1/2):84–141, March 2000.

Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceedings of
the 16th International Conference on Automated Deduction (CADE-16), pages 202–
206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

1http://twelf.org/

LECTURE NOTES NOVEMBER 30, 2023

http://twelf.org/

Substructural Frameworks L21.9

Brigitte Pientka and Andrew Cave. Inductive Beluga: Programming proofs. In
A. Felty and A. Middeldorp, editors, 25th International Conference on Automated
Deduction (CADE 2015), pages 272–281, Berlin, Germany, August 2015. Springer
LNCS 9195.

Jason C. Reed. A Hybrid Logical Framework. PhD thesis, Carnegie Mellon University,
September 2009. Available as Technical Report CMU-CS-09-155.

Chuta Sano, Ryan Kavanagh, and Brigitte Pientka. Mechanizing session-types us-
ing a structural view: Enforcing linearity without linearity. In Proceedings of the
ACM on Programming Languages, volume 7 (OOPSLA2), pages 374–399. ACM,
2023. Extended version available at https://arxiv.org/abs/2309.12466.

Carsten Schürmann. Automating the Meta Theory of Deductive Systems. PhD the-
sis, Department of Computer Science, Carnegie Mellon University, August 2000.
Available as Technical Report CMU-CS-00-146.

LECTURE NOTES NOVEMBER 30, 2023

https://arxiv.org/abs/2309.12466

Lecture Notes on
The Concurrent Logical Framework

15-836: Substructural Logics
Frank Pfenning

Lecture 22
December 5, 2023

1 Introduction

In the last lecture we introduced Linear LF (LLF) as a substructural framework and
we saw how to represents proofs in the linear semi-axiomatic sequent calculus. But
it turns out that even some very simple systems of linear inference are difficult to
represent, particularly those with multiple conclusions that we used at the begin-
ning of the course.

In order to handle these we carefully extend the logical framework with some
positive types, leading us to Concurrent LF (CLF) [Watkins et al., 2002, Cervesato
et al., 2002, Watkins et al., 2004] which is implemented in the Celf language [Schack-
Nielsen and Schürmann, 2008, Schack-Nielsen, 2011]1. It turns out that this will
allow us to capture some concurrency in the computations we represent. We then
encode the dynamics of futures as an example that is significantly more direct than
possible in LLF.

2 Coin Exchange Revisited

Recall the rules for a linear coin exchange from Lecture 1, where q is a quarter, d is
a dime, and n is a nickel.

q

d d n
fromQ

d d n

q
toQ

d

n n
fromD

n n

d
toD

Here is a simple proof that from a quarter and a nickel we can get three dimes.
q

d d

n n

d
toD

fromQ

1https://github.com/clf/celf

LECTURE NOTES DECEMBER 5, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/01-ephemeral.pdf
https://github.com/clf/celf

The Concurrent Logical Framework L22.2

In linear logic, we can internalize these as (structural!) propositions

q ⊸ (d⊗ d⊗ n)
(d⊗ d⊗ n) ⊸ q
d ⊸ (n⊗ n)
(n⊗ n) ⊸ d

We could make the second and the forth into something entirely negative by Cur-
rying and represent it in LLF, but not the other two.

fromQ : q ⊸ (d⊗ d⊗ n) ??
toQ : d ⊸ d ⊸ n ⊸ q
fromD : d ⊸ (n⊗ n) ??
toD : n ⊸ n ⊸ d

How can we solve this problem and represent this form of inference in LLF?
Think about it before you move on, because you actually have seen the technique
we need already (specifically in Lecture 2).

LECTURE NOTES DECEMBER 5, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/02-connectives.pdf

The Concurrent Logical Framework L22.3

The technique is to move the inference steps into the antecedents, also flipping
their direction. The rules the are (with some arbitrary succedent C):

∆, d, d, n ⊢ C

∆, q ⊢ C
fromQ

∆, q ⊢ C

∆, d, d, n ⊢ C
toQ

∆, n, n ⊢ C

∆, d ⊢ C
fromD

∆, d ⊢ C

∆, n, n ⊢ C
toD

This we can represent in LLF, thinking of q, d, n, and C as judgments (and writing
c in lowercase), rather than propositions to avoid an extra level of indirection.

fromQ : (d ⊸ d ⊸ n ⊸ c)
⊸ (q ⊸ c)

toQ : (q ⊸ c)
⊸ (d ⊸ d ⊸ n ⊸ c)

fromD : (n ⊸ n ⊸ c)
⊸ (d ⊸ c)

toD : (d ⊸ c)
⊸ (n ⊸ n ⊸ c)

In functional programming this technique could be called continuation-passing style
where c stands for the continuation.

Now if we want to show that we can get three dimes from a quarter and a
nickel, it would be represented as

⊢ (d ⊸ d ⊸ d ⊸ c) ⊸ (q ⊸ c)

which we prove as follows:

...
d ⊸ d ⊸ d ⊸ c, d, d, d ⊢ c

d ⊸ d ⊸ d ⊸ c, d, d, n, n ⊢ c
toD

d ⊸ d ⊸ d ⊸ c, d, d, n, n ⊢ c
=

d ⊸ d ⊸ d ⊸ c, q, n ⊢ c
fromQ

⊢ (d ⊸ d ⊸ d ⊸ c) ⊸ (q ⊸ n ⊸ c)
⊸R× 3

The omitted part of the proof above is entirely straightforward.
If we represent this derivation as a term in LLF, it would be

⊢ λf. λq1. λn1. fromQ (λd1. λd2. λn2. toD (λd3. f d1 d2 d3) n1 n2) q1

LECTURE NOTES DECEMBER 5, 2023

The Concurrent Logical Framework L22.4

where, as before, we write h (M1 ; . . .Mk) as h M1 . . . Mk.
There are few notes about this particular term representation. One is that the

coins have unique identities. For example, if we swap the arguments to f as in
f d3 d1 d2 we obtain a different term. In order to avoid this and reduce the number
of possible proofs, we can use proof irrelevance [Ley-Wild and Pfenning, 2007].

The other is that no matter what coins and exchange opportunities we have, the
proof term will always consist of nested constructors. One possible answer to this
is multifocusing [Chaudhuri et al., 2008]. Another is to explicitly construct a logical
framework with positive connectives, as we’ll do now.

3 CLF

The Concurrent Logical Framework was explicitly designed to allow natural en-
codings of linear forward inference and also the kind of concurrency from the pre-
vious example. We only give here a very brief description before we start using
it—you are referred to the technical reports and the implementation mentioned in
the introduction to the lecture for more information.

Below we have in red the LLF additions to LF and in blue the further additions
that CLF makes.

Negative types A,B ::= P | A→B | Πx : A.B(x) | A ⊸ B | A N B | {A+}
Positive types A+, B+ ::= 1 | A+ ⊗B+ | ∃x : A.B+(x) | A

Objects M ::= c S | x S | λx.M(x) | (M1,M2) | {E}
Spines S ::= M ; S | () | π1 ; S | π2 ; S
Expressions E ::= . . .
Stable antecedents ∆ ::= · | ∆, xS : A | ∆, xL : A

There are a number of things to note here. Expressions E are the objects of positive
type, yet to be specified. The positive types are included in the negative ones as
{A+} which, nowadays, we would recognize as a form of shift. Similarly, the nega-
tive types are included directly in the positive ones (again, that should probably be
via a shift). Also, there are no positive atoms, even though there should be because
at the time we designed CLF we didn’t understand the type theory well enough.
Also, the antecedent A of A → B, A ⊸ B, and Πx : A.B(x) should be positive,
and probably also the A in ∃x : A.B(x). This last set of issues was recognized and
repaired in the design of Celf.

We omitted sums A ⊕ B because the branching nature of expressions compli-
cated the form of equality on terms we wanted to allow; a few further remarks later.
Before we come to the extension of objects/expressions, let’s write some types to
illustrate the use of positive types in the encoding of the coin exchange.

fromQ : q ⊸ { d⊗ d⊗ n }
toQ : d ⊸ d ⊸ n ⊸ { q }

LECTURE NOTES DECEMBER 5, 2023

The Concurrent Logical Framework L22.5

fromD : d ⊸ {n⊗ n }
toD : n ⊸ n ⊸ { d }

here, we need to wrap even the singletons in the conclusions of the implications
because otherwise these clauses would be eligible for backchaining and not for
forward chaining.

Now to the proof terms for forward chaining. Since we do not have expressions
are just let bindings instead of general matches.

Expressions E ::= let {p} = M in E | T
Terms T ::= [] | [T1, T2] | [M,T] | M
Patterns p ::= [] | [p1, p2] | [x, p] | x

We now show the CLF signature including the proof term for the previous example.

1 q : type.
2 d : type.
3 n : type.
4

5 toQ : d -o d -o n -o { q }.
6 fromQ : q -o { d * d * n }.
7 toD : n -o n -o { d }.
8 fromD : d -o { n * n }.
9

10 ex1 : q -o n -o { d * d * d } =
11 \q1. \n1. { let {[d1, [d2, n2]]} = fromQ q1 in
12 let { d3 } = toD n1 n2 in
13 [d1, d2, d3] }.

In this particular example, fromQ must come before toD because the argument n2

to toD is bound in the pattern that is matched against the result of fromQ.
More generally, though we consider two let expressions to be equivalent if they

can be swapped without any variable capture. That is,

(let p = M in let q = N in T)
= (let q = N in let p = M in T)

provided FV(p) ∩ FV(N) = ∅ = FV(q) ∩ FV(M)

This equality is baked into the definition of CLF at a fundamental level, just like the
renaming of bound variables. This allows is to think of the expressions as capturing
“true concurrency”, that is, different independent interleavings of concurrent actions
are indistinguishable.

It might be interesting to explore whether the notion of CBA-graphs we sketched
in the first two lectures would be an abstract representation of the quivalence
classes that arise from commuting independent actions. This may be related to
the notion of multifocusing mentioned earlier.

LECTURE NOTES DECEMBER 5, 2023

The Concurrent Logical Framework L22.6

4 Representing the Dynamics of Futures

Without further theory, which can be found in the given references, we show an
encoding of the dynamics of the positive fragment of linear SAX, which gives us
linear futures. This can easily be extended to encompass the whole language and
is much more abstract than the implementation in SML we used in this course.

1 val : type.
2 exp : type.
3 cont : type.
4

5 addr : type.
6

7 unit : val. % 1
8 pi1 : addr -o val. % A + B
9 pi2 : addr -o val.

10 pair : addr -o addr -o val. % A * B
11

12 unit_cont : exp -o cont.
13 plus_cont : (addr -o exp) & (addr -o exp) -o cont.
14 pair_cont : (addr -o addr -o exp) -o cont.
15

16 cut : (addr -o exp) -o (addr -o exp) -o exp.
17 id : addr -o addr -o exp.
18 write : addr -o val -o exp.
19 read : addr -o cont -o exp.
20

21 cell : addr -> val -> type.
22 proc : exp -> type.
23

24 pass : val -> cont -> exp -> type.
25 pass/unit : pass unit (unit_cont P) P.
26 pass/plus1 : pass (pi1 A) (plus_cont <(\x. P x), (\y. Q y)>) (P A).
27 pass/plus2 : pass (pi2 B) (plus_cont <(\x. P x), (\y. Q y)>) (Q B).
28 pass/pair : pass (pair A B) (pair_cont (\x. \y. P x y)) (P A B).
29

30 exec/cut : proc (cut (\x. P x) (\x. Q x))
31 -o { Exists a:addr. proc (P a) * proc (Q a) }.
32 exec/id : proc (id A B) -o cell B V -o { cell A V }.
33 exec/write : proc (write A V) -o { cell A V }.
34 exec/read : proc (read A K) -o cell A V -o pass V K P
35 -o { proc P }.

There are some subtle points here, such as the use of external choice in the encoding
of plus_cont, but in most respects it is an entirely straightforward representation.
Note also the use of the existential to create a fresh address dynamically when
executing a cut.

Unlike the coin exchange, we can actually execute SAX programs in this en-

LECTURE NOTES DECEMBER 5, 2023

The Concurrent Logical Framework L22.7

coding because of the don’t care nondeterminism that underlies the dynamics. In
the coin exchange, we never reach quiescence, but here we do for terminating pro-
grams using futures.

In the first two examples we execute a SAX program for negation of a boolean
value represented by store with two cells.

1 #query * 1 * 1
2 Pi c0:addr. Pi c1:addr. Pi c2:addr.
3 cell c0 unit * cell c1 (pi1 c0)
4 * proc (read c1 (plus_cont (<(\u. write c2 (pi2 u)),
5 (\u. write c2 (pi1 u))>)))
6 -o { cell c0 unit * cell c2 (pi2 c0) }.
7

8 #query * 1 * 1
9 Pi c0:addr. Pi c1:addr. Pi c2:addr.

10 cell c0 unit * cell c1 (pi2 c0)
11 * proc (read c1 (plus_cont (<(\u. write c2 (pi2 u)),
12 (\u. write c2 (pi1 u))>)))
13 -o { cell c0 unit * cell c2 (pi1 c0) }.

The implementation will print a trace of the computations in the form of terms of
the given type. It shows structural bindings with \!x. M, while linear bindings are
just \x. M.

1 Query (*, 1, *, 1) ...
2 Solution: \!c0. \!c1. \!c2. \[X1, [X2, X3]]. {
3 let {X4} = exec/read X3 X2 pass/plus1 in
4 let {X5} = exec/write X4 in [X1, X5]}
5 Query ok.
6

7 Query (*, 1, *, 1) ...
8 Solution: \!c0. \!c1. \!c2. \[X1, [X2, X3]]. {
9 let {X4} = exec/read X3 X2 pass/plus2 in

10 let {X5} = exec/write X4 in [X1, X5]}
11 Query ok.

In the last query we use an existential quantifier in the succedent so as not to antic-
ipate the answer and let CLF’s forward inference compute it for us.

1 #query * 1 * 1
2 Pi c0:addr. Pi c1:addr. Pi c2:addr.
3 cell c0 unit * cell c1 (pi2 c0)
4 * proc (read c1 (plus_cont (<(\u. write c2 (pi2 u)),
5 (\u. write c2 (pi1 u))>)))
6 -o { Exists V0. Exists V2. cell c0 V0 * cell c2 V2 }.

Here, the answers !unit and !(pi1 c0) are presented in the results as witness for
the existentials. The exclamation mark shows that they are not linear.

1 Query (*, 1, *, 1) ..

LECTURE NOTES DECEMBER 5, 2023

The Concurrent Logical Framework L22.8

2 Solution: \!c0. \!c1. \!c2. \[X1, [X2, X3]]. {
3 let {X4} = exec/read X3 X2 pass/plus2 in
4 let {X5} = exec/write X4 in [!unit, [!(pi1 c0), [X1, X5]]]}
5 Query ok.

References

Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concur-
rent logical framework II: Examples and applications. Technical Report CMU-
CS-02-102, Department of Computer Science, Carnegie Mellon University, 2002.
Revised May 2003.

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs
via multi-focusing. In 5th International Conference on Theoretical Computer Science,
pages 383–396, Milano, Italy, September 2008. IFIPAICT 273.

Ruy Ley-Wild and Frank Pfenning. Avoiding causal dependencies via proof ir-
relevance in a concurrent logical framework. Technical Report CMU-CS-07-107,
Carnegie Mellon University, February 2007.

Anders Schack-Nielsen. Implementing Substructural Logical Frameworks. PhD thesis,
IT University of Copenhagen, January 2011.

Anders Schack-Nielsen and Carsten Schürmann. Celf - a logical framework for de-
ductive and concurrent systems. In A. Armando, P. Baumgartner, and G. Dowek,
editors, Proceedings of the 4th International Joint Conference on Automated Reasoning
(IJCAR’08), pages 320–326, Sydney, Australia, August 2008. Springer LNCS 5195.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent
logical framework I: Judgments and properties. Technical Report CMU-CS-02-
101, Department of Computer Science, Carnegie Mellon University, 2002. Re-
vised May 2003.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent
logical framework: The propositional fragment. In S. Berardi, M. Coppo, and
F. Damiani, editors, Types for Proofs and Programs, pages 355–377. Springer-Verlag
LNCS 3085, 2004. Revised selected papers from the Third International Workshop
on Types for Proofs and Programs, Torino, Italy, April 2003.

LECTURE NOTES DECEMBER 5, 2023

Lecture Notes on
Linear Natural Deduction

15-836: Substructural Logics
Sophia Roshal

Lecture 23
December 7, 2023

1 Introduction

Throughout the course we have been focusing on the sequent calculus and its variations
SAX [DeYoung et al., 2020] and SNAX [DeYoung and Pfenning, 2022] all of which follow
a bottom up reasoning method. In this lecture we introduce natural deduction [Gentzen,
1935] which instead has 2 directions of reasoning, with introduction rules which follow
bottom up reasoning, and elimination rules which follow top down reasoning. Using all
the same tools as we have used so far, we will develop these rules, and prove some impor-
tant properties as well as relate natural deduction back to the sequent calculus.

2 The Base Rules

As stated in the introduction, we have two forms of rules. Introduction rules (which we
think of reasoning upwards) correspond directly to the sequent calculus right rules. The
elimination rules (which we think of reasoning downwards) will need a bit more work. All
the rules can be found in the appendix, but in this section we will focus on one positive (⊗)
and one negative (⊸) connective. First, for completeness sake, we state the introduction
rule for ⊗.

∆1 ⊢ M : A ∆2 ⊢ N : B

∆1,∆2 ⊢ (M,N) : (A⊗B)
⊗I

Now, we think about the elimination form. We should be starting, in our premise, with

∆1 ⊢ M : (A⊗B)
⊗E incomplete

Since we are in a linear setting, we are required to somehow use both A and B, however,
we aren’t allowed to have multiple conclusions in our rules, so, similarly to the sequent
calculus, we will break apart A ⊗ B into its parts, and use these parts to prove some new
right hand side term C producing the following rule:

∆1 ⊢ M : A⊗B ∆2, x : A, y : B ⊢ N : C

∆1,∆2 ⊢ match M with (x, y) in N : C
⊗E

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.2

For ⊸, again the introduction rule is identical to the sequent calculus right rule.

∆, x : A ⊢ M : B

∆ ⊢ λx.M : A ⊸ B
⊸ I

For the elimination rule, we start with

∆1 ⊢ M : A ⊸ B
⊸ E partial

Thinking about linearity, we know we need to consume M, and approaching this from
programming perspective, ⊸ is a the type of a function. To consume a function, we apply
it, so this rule should correspond to function application.

∆1 ⊢ M : A ⊸ B ∆2 ⊢ N : A

∆1,∆2 ⊢ M N : B
⊸ E

Other rules can be constructed in a similar fashion, with positive connectives correspond-
ing almost directly to sequent calculus rules, and negative connectives requiring a bit more
work.

3 Bidirectional Type Checking

In section 2, we presented some rules, and claimed that we read the introduction rules bot-
tom up, as in the sequent calculus, and the elimination rules top down, but this isn’t made
in any way explicit. We can make this explicit via bidirectional type checking [Dunfield
and Krishnaswami, 2022] by splitting the judgement M : A into two judgements M ⇐ C
(read as M checks against C) and M ⇒ A (read as M synthesizes A.) From an implementa-
tion perspective, we think of the checking judgement as type checking (where both M and
C are provided as inputs) and the synthesis judgement as type inference (where only the
term M is given, and we infer its type). The checking judgement is the upward reasoning
direction, while the synthesis judgement is the downwards reasoning direction. We start
with ⊗. The introduction rule is fairly straightforward. To check if the pair (M,N) has the
type A⊗B, we need to check the individual components.

∆1 ⊢ M ⇐ A ∆2 ⊢ N ⇐ B

∆1,∆2 ⊢ (M,N) ⇐ A⊗B
⊗I

The elimination rule is a bit trickier.

∆1 ⊢ M ⇒ (A⊗B) ∆2, x : A, y : B ⊢ N ? C

∆1,∆2 ⊢ match M with (x, y) in N ? C
⊗E incomplete

The first premise we have labeled as a synthesis, this is to embody the downward direction
reasoning. To label the other two, there are several ways to do so that would be “correct”
in the sense that we would still have a complete system with respect to standard natural

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.3

deduction. One way to decide, is to consider the sequent calculus rule, and label every-
thing that appears on the left as a synthesis judgement, and everything that appears on the
right as a checking judgement. Internally to natural deduction, we can come to the same
conclusion for this rule, by thinking about the order that rules apply in. We first want to
apply all the introduction rules we can before we begin apply elimination rules. Once we
have reached the point of applying the ⊗ elimination rule, we are still in a checking mode,
and from this rule we don’t have information about what C (or N) is, so we might as well
remain in a checking mode. This gives us the following rule

∆1 ⊢ M ⇒ (A⊗B) ∆2, x : A, y : B ⊢ N ⇐ C

∆1,∆2 ⊢ match M with (x, y) in N ⇐ C
⊗E

Now for ⊸. Again, the introduction rule is fairly straightforward.

∆, x : A ⊢ M ⇐ B

∆ ⊢ λx.M ⇐ A ⊸ B
⊸ I

For the elimination rule, we again think back to the sequent calculus, and which propo-
sitions appear on which side in the implication left rule. If we follow that, we are left
with

∆1 ⊢ M ⇒ A ⊸ B ∆2 ⊢ N ⇐ A

∆1,∆2 ⊢ M N ⇒ B
⊸ E

Internally to natural deduction, and thinking about the proof terms, we could come to the
same conclusion. Starting from the top, we know A ⊸ B should be a synthesis as that’s
the term we are applying the elimination rule to. Once we have that type, we now have
A as well so the second premise can be a checking judgement. Finally, for the conclusion,
having it be a checking judgement would not be helpful to the proof. We’d still need to
synthesize a type for M , so this should remain as a synthesis.

Lastly we also present the hypothesis rule.

x : A ⊢ x ⇒ A
hyp(x)

From the separation into upwards and downwards reasoning point of view, it doesn’t
make sense to make this an upwards rule as there is no upward direction to go. From a
programming perspective, we want this rule to be a synthesis, as we don’t want to have to
annotate our variables with a type if it isn’t necessary to do so.

While this looks like the identity rule of the sequent calculus, it has a different function
and purpose (as we’ll see later in this lecture), so we call it the hypothesis rule.

4 An example

Here, we prove one direction of currying in our bidirectional system. Through this deriva-
tion, we will see that on top of the base rules, we actually need one more.

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.4

ab : (A⊗B) ⊢ ab =⇒ A⊗B
hyp(ab)

f : (A ⊸ (B ⊸ C)) ⊢ f ⇒ (A ⊸ (B ⊸ C))
hyp(f)

a : A ⊢ a ⇒ A
hyp(a)

a : A ⊢ a ⇐ A
?

f : (A ⊸ (B ⊸ C)), a : A ⊢ f ⇒ (A ⊸ (B ⊸ C))
⊸ E

b : B ⊢ b ⇒ B
hyp(b)

b : B ⊢ b ⇐ B
?

f : (A ⊸ (B ⊸ C)), a : A, b : B ⊢ ((f a) b) ⇒ C
⊸ E

f : (A ⊸ (B ⊸ C)), a : A, b : B ⊢ ((f a) b) ⇐ C
?

f : (A ⊸ (B ⊸ C)), ab : A⊗B ⊢ match ab with (a, b) in ((f a) b) ⇐ C
⊗E

f : (A ⊸ (B ⊸ C)) ⊢ λab.match ab with (a, b) in ((f a) b) ⇐ (A⊗B) ⊸ C
⊸ I

· ⊢ λf.λab.match ab with (a, b) in ((f a) b) ⇐ (A ⊸ (B ⊸ C)) ⊸ ((A⊗B) ⊸ C)
⊸ I

There are a few places in this proof marked with a question mark, which leads us to one
more rule:

∆ ⊢ M ⇒ A

∆ ⊢ M ⇐ A
⇒/⇐∗

From an implementation perspective however, we need to modify this rule just a bit. Syn-
thesis only takes the term as input so this rule doesn’t entirely make sense as written, given
that M synthesizes some type, and we don’t necessarily know that it will be A specifically.
This is something we need to check. We make a small modification.

∆ ⊢ M ⇒ A′ A = A′

∆ ⊢ M ⇐ A
⇒/⇐

While we’ve written A = A′ for type equality here, we could also generalize this to be a
sub-typing call, if our type system supports sub-typing. This one rule is the only place
where we need to do type equality/sub-typing checks.

5 System Correctness

So far, we have completed an example proof in natural deduction that we knew should
work. Unfortunately (or fortunately) proof by one example is not usually an accepted
form of proof in most publication venues, and so we need to do a bit more work before
being satisfied that the system we have developed is correct. There are several criteria
we can consider when we want to decide whether a system we have is “correct”. For the
sequent calculus, we had an internal way to do so via admissibility of identity and cut
which established harmony between the left and right rules. In natural deduction, we also
have a similar internal notion via local soundness and completeness of the introduction
and elimination rules. Another way we can establish correctness is by relating to some
outside system. Throughout this course, we have established the sequent calculus as “the
source of truth” and have proven many properties about it, so it would make sense to want
to verify that natural deduction corresponds in some way to the sequent calculus.

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.5

5.1 Harmony

We have two properties to prove: local soundness (or proof normalization) which corre-
sponds to cut elimination/admissibility in the sequent calculus and local completeness
which corresponds to admissibility of identity in the sequent calculus. We start with local
completeness. Here, we want to prove that we given an arbitrary proof of ∆ ⊢ M : A, and
applying the corresponding elimination rule, we should be able to reconstruct A again (of
course, with a different proof term).

Proof: Case: ⊗

D
∆ ⊢ M : A⊗B =⇒

D
∆ ⊢ M : A⊗B

x : A ⊢ x : A
hyp

y : B ⊢ y : B
hyp

x : A, y : B ⊢ (x, y) : (A⊗B)
⊗I

∆ ⊢ match M with (x, y) in (x, y) : (A⊗B)
⊗E

Case: ⊸

D
∆ ⊢ M : A ⊸ B =⇒

D
∆ ⊢ M : A ⊸ B x : A ⊢ x : A

hyp

∆, x : A ⊢ M x : B
⊸ E

∆ ⊢ λx.(M x) : A ⊸ B
⊸ I

Other cases proceed similarly. □

Soundness requires a bit more work. We want to establish that if we apply an introduc-
tion rule then an elimination rule, we can actually simplify that proof. this corresponds to
cut elimination (and more specifically the principal case of cut elimination with a right rule
“introducing” the cut proposition and the left rule “eliminating” it). To do so, we need one
more lemma: substitution. This corresponds to the more general cut reduction, where we
may not be cutting together a right and left rule. We need to prove that given a derivation
that relies on a variable, we can substitute that variable for a term of the same type.

Lemma 1 The following rule is admissible in the system without it

∆ ⊢ M : A ∆′, x : A ⊢ N(x) : C

∆,∆′ ⊢ N(M) : C
subst

Proof: Proof proceeds by induction on the second given derivation. We provide an inter-
esting case
Case: the second derivation ends in a ⊸ E. This case actually splits into two possible
cases, we show just the first (the second case is almost identical, with the difference of how
the context is split).

∆ ⊢ M : A

D1

∆′
1, x : A ⊢ N(x) : B ⊸ C

D2

∆′
2 ⊢ N ′(x) : B

∆′
1,∆

′
2, x : A ⊢ N(x) N ′(x) : C

⊸ E

∆,∆′
1,∆

′
2 ⊢ N(M) N ′(M) : C

subst

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.6

First, we need to realize that x cannot appear in N ′ as it must appear in N due to linearity
(and x is not present in ∆′

2), so N ′(x) = N ′ which in turn gives us N ′(M) = N ′. We can
now push the substitution upwards, reducing this proof to the following:

∆ ⊢ M : A

D2

∆′
1, x : A ⊢ N(x) : B ⊸ C

∆,∆′
1 ⊢ N(M) : B ⊸ C

subst D2

∆′
2 ⊢ N ′ : B

∆,∆′
1,∆

′
2 ⊢ N(M) N ′ : C

⊸ E

Other cases proceed similarly. □

Moving on to proving local soundness.

Proof: Case: ⊗
D1

∆a ⊢ M : A

D2

∆b ⊢ M ′ : B

∆a,∆b ⊢ (M,M ′) : A⊗B
⊗I E

∆′, x : A, y : B ⊢ N : C

∆a,∆b,∆
′ ⊢ match (M,M ′) with (x, y) in N : C

⊗E

We know N relies on both x and y, and this is where substitution comes into play. We
construct the following proof reduction via admissibility of substitution:

D1

∆a ⊢ M : A

D2

∆b ⊢ M ′ : B
E

∆′, x : A, y : B ⊢ N(x, y) : C

∆b,∆
′, x : A ⊢ N(x,M ′) : C

subst

∆a,∆b,∆
′ ⊢ N(M,M ′) : C

subst

Case: ⊸
D

∆1, x : A ⊢ M : B

∆1 ⊢ λx.M : A ⊸ B
⊸ I E

∆2 ⊢ N : A

∆1,∆2 ⊢ (λx.M)N : B
⊸ E

=⇒
E

∆2 ⊢ N : A
D

∆1, x : A ⊢ M(x) : B

∆1,∆2 ⊢ M(N) : B
subst

other cases proceed similarly. □

5.2 Soundness/Completeness wrt Sequent Calculus

We have developed two natural deduction systems. We would like to be able to relate
them to each other as well as to the sequent calculus, and to do so we can prove three

theorems. To separate notation, we will use
nd
⊢ to represent derivations in standard nat-

ural deduction,
↑↓
⊢ to represent derivations in bidirectional natural deduction, and

seq

⊢ to
represent derivations in the sequent calculus. The three theorems we need now are

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.7

Theorem 2 If ∆
nd
⊢ M : C then ∆

seq

⊢ C

Theorem 3 If ∆
seq

⊢ C then ∆′
↑↓
⊢ M ⇐ C for some M where ∆′

sub
⊢ ∆

Theorem 4 If ∆
↑↓
⊢ M ⇐ C then ∆

nd
⊢ M : C

Notice that in the second theorem, we need a modification to what we initially might
think of as the theorem. We will come back to that in the proof.

Proof: Theorem 1
We proceed by induction over the natural deduction derivation. We provide the cases for
⊗ and ⊸ as we have been throughout these notes. However, we leave out the cases for the
introduction rules as they follow directly via application of the induction hypothesis.

Case: ⊗E
D1

∆1

nd
⊢ M : A⊗B

D2

∆2, x : A, y : B
nd
⊢ N : C

∆1,∆2

nd
⊢ match M with (x, y) in N : C

⊗E

From the inductive hypothesis on D1 and D2 we can conclude

∆1

seq

⊢ A⊗B

∆2, A,B
seq

⊢ C

We need to prove ∆1,∆2

seq

⊢ C.
Looking at the statements we have from our inductive hypothesis, there doesn’t seem

to be a way to proceed directly. The only applicable rule is ⊗R but that isn’t particularly
useful. However, we have one more tool that we can use. We have the admissability of cut
in the sequent calculus. We proceed with the proof as follows.

IH(D1)

∆1

seq

⊢ A⊗B

IH(D2)

∆2, A,B
seq

⊢ C

∆2, A⊗B
seq

⊢ C

⊗L

∆1,∆2

seq

⊢ C

cut

Case: ⊸ E
D1

∆1

nd
⊢ M : A ⊸ B

D2

∆2

nd
⊢ N : A

∆1,∆2

nd
⊢ M N : B

⊸ E

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.8

From the inductive hypothesis we conclude

∆1 ⊢ A ⊸ B

∆2 ⊢ A

Again, there is no clear way forward unless we use the admissibility of cut (and in this case
we also use the admissibility of identity). Once we do so, we obtain the following proof.

IH(D1)

∆1

seq

⊢ A ⊸ B

IH(D2)

∆2

seq

⊢ A B
seq

⊢ B

id

∆2, A ⊸ B
seq

⊢ B

⊸ L

∆1,∆2

seq

⊢ B

cut

Cases for other connectives proceed in a similar fashion. □

Proof: Theorem 2
We now work through why we need the modification in theorem 2. Assume first that we
had not made the modification and instead had just

If ∆
seq

⊢ C then ∆
↑↓
⊢ M ⇐ C

We try to proceed with a proof of ⊗L

D′

∆, A,B ⊢ C

∆, A⊗B ⊢ C
⊗L

If we were to apply the inductive hypothesis based on the incorrect theorem statement, we
get

∆, x : A, y : B
↑↓
⊢ M ⇐ C

and get stuck. There are no clear rules we can apply here, and we also arbitrarily labeled
propositions in the context with some variables without any clear reasoning. So instead,
we want some way of translating a sequent calculus context into a natural deduction one,
that allows us to apply rules to what was in the sequent calculus context. To do so we
define the following rules:

·
sub
⊢ ·

∆′
1

sub
⊢ ∆ ∆′

2

↑↓
⊢ M ⇒ A

∆′
1,∆

′
2

sub
⊢ ∆, A

∆′
1 and ∆′

2 are natural deduction contexts, while ∆ is a sequent calculus context. We are
able to go back to our corrected proof statement. Repeated here for convenience.

If ∆
seq

⊢ C then ∆′
↑↓
⊢ M ⇐ C for some M where ∆′ sub⊢ ∆

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.9

Case: ⊗L
D′

∆, A,B ⊢ C

∆, A⊗B ⊢ C
⊗L

While we can no longer apply the induction hypothesis directly, we have some new as-
sumptions to work with.

∆ab

↑↓
⊢ M ⇒ A⊗B (1)

∆′ sub⊢ ∆ (2)

And we want to show

∆ab,∆
′
↑↓
⊢ M ′ ⇐ C

We are now able to apply ⊗E to (1) producing

(1)

∆ab

↑↓
⊢ M ⇒ A⊗B

?

∆′, x : A, y : B
↑↓
⊢ N ⇐ C

∆ab

↑↓
⊢ match M with (x, y) in N ⇐ C

⊗E

We still need a proof of the second premise. Luckily, we can finally apply the inductive

hypothesis! We can do so because from assumption we know ∆′
sub
⊢ ∆, and from identity

rules we have

x : A
↑↓
⊢ x ⇒ A (3)

y : B
↑↓
⊢ y ⇒ B (4)

We complete the proof

(1)

∆ab

↑↓
⊢ M ⇒ A⊗B

IH(D′, (2, 3, 4))

∆′, x : A, y : B
↑↓
⊢ N ⇐ C

∆ab

↑↓
⊢ match M with (x, y) in N ⇐ C

⊗E

Case: ⊸ L
D1

∆1

seq

⊢ A

D2

∆2, B
seq

⊢ C

∆1,∆2, A ⊸ B
seq

⊢ C

⊸ L

Assumptions:

∆′
1

sub
⊢ ∆1 (5)

∆′
2

sub
⊢ ∆2 (6)

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.10

∆ab

↑↓
⊢ M ⇒ A ⊸ B (7)

We begin by applying ⊸ E on our last assumption.

(7)

∆ab

↑↓
⊢ M ⇒ A ⊸ B

IH(D1, (5))

∆′
1

↑↓
⊢ N ⇐ A

∆ab,∆
′
1

↑↓
⊢ M N ⇒ B

⊸ E

(8)

Now we can complete the proof by an application of the inductive hypothesis on D2 and
the derivation (8) as well as assumption 6.

IH(D2, (6, 8))

∆′
1,∆

′
2,∆ab

↑↓
⊢ M ′ ⇐ C

While we don’t know specifically what term we have, we know it is possible to construct
such a term. Other cases proceed similarly. □

Proof: Theorem 3 To prove the final theorem, we need to simultaneously prove one more
theorem, since ⇒ and ⇐ are defined with references to each other. So this proof proceeds
by simultaneous induction on the following two statements, over the derivation.

If ∆
↑↓
⊢ M ⇐ A then ∆

nd
⊢ M : A

If ∆
↑↓
⊢ M ⇒ A then ∆

nd
⊢ M : A

□

This proof should be self evident as a bidirectional proof with the two directions col-
lapsed back into the single judgement : should still be a valid natural deduction proof
(with some possible collapsing of the change of direction rule). We omit this proof and
leave it as an exercise.

6 Curry-Howard Correspondence

Howard [1969] discovered the correspondence between one of the most fundamental mod-
els of computation, the lambda calculus and the implication fragment of natural deduction.
This goes beyond just type checking. The proof reductions we did to demonstrate local
soundness correspond to computational rules in the lambda calculus.

A→B (λx.M)N =⇒ [N/x]M

This correspondence of course extends beyond just the lambda calculus, and encompasses
the full natural deduction system and functional programming.

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.11

7 Full Bidirectional Rules
∆ ⊢ M =⇒ A′ A = A′

∆ ⊢ M ⇐= A
⇒/⇐

∆ ⊢ M ⇐= A

∆ ⊢ (M : A) =⇒ A
⇐/⇒

x : A ⊢ x =⇒ A
hyp

∆, x : A ⊢ e ⇐= B

∆ ⊢ λx.M ⇐= A ⊸ B
⊸I

∆ ⊢ M =⇒ A ⊸ B ∆′ ⊢ N ⇐= A

∆,∆′ ⊢ M N =⇒ B
⊸E

∆ ⊢ Mℓ ⇐= Aℓ (∀ℓ ∈ L)

∆ ⊢ {ℓ ⇒ Mℓ}ℓ∈L ⇐= N{ℓ : Aℓ}ℓ∈L
NI

∆ ⊢ M =⇒ N{ℓ : Aℓ}ℓ∈L (ℓ ∈ L)

∆ ⊢ M.ℓ =⇒ Aℓ

NE

∆ ⊢ e1 ⇐= M ∆′ ⊢ N ⇐= B

∆,∆′ ⊢ (M,N) ⇐= A⊗B
⊗I

∆ ⊢ M =⇒ A⊗B ∆′, x1 : A, x2 : B ⊢ N ⇐= C

∆,∆′ ⊢ match M ((x1, x2) ⇒ N) ⇐= C
⊗E

· ⊢ () ⇐= 1
1I

∆ ⊢ M =⇒ 1 ∆′ ⊢ N ⇐= C

∆,∆′ ⊢ match M (() ⇒ N) ⇐= C
1E

∆ ⊢ M ⇐= Aℓ

∆ ⊢ ℓ(M) ⇐= ⊕{ℓ : Aℓ}ℓ∈L
⊕I

∆ ⊢ M =⇒ ⊕{ℓ : Aℓ}ℓ∈L ∆′, x : Aℓ ⊢ Nℓ ⇐= C (∀ℓ ∈ L)

∆,∆′ ⊢ match M (ℓ(x) ⇒ Nℓ)ℓ∈L ⇐= C
⊕E

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.12

References

Henry DeYoung and Frank Pfenning. Data layout from a type-theoretic perspective.
In 38th Conference on the Mathematical Foundations of Programming Semantics (MFPS
2022). Electronic Notes in Theoretical Informatics and Computer Science 1, 2022. URL
https://arxiv.org/abs/2212.06321v6. Invited paper. Extended version avail-
able at https://arxiv.org/abs/2212.06321v3.pdf.

Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-axiomatic sequent calculus.
In Z. Ariola, editor, 5th International Conference on Formal Structures for Computation and
Deduction (FSCD 2020), pages 29:1–29:22, Paris, France, June 2020. LIPIcs 167.

Jana Dunfield and Neel Krishnaswami. Bidirectional typing. ACM Computing Surveys, 98
(5):1–38, 2022.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,
39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor, The Collected Papers
of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

W. A. Howard. The formulae-as-types notion of construction. Unpublished note. An an-
notated version appeared in: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, 479–490, Academic Press (1980), 1969.

LECTURE NOTES DECEMBER 7, 2023

https://arxiv.org/abs/2212.06321v6
https://arxiv.org/abs/2212.06321v3.pdf

	Introduction
	Structural Inference
	Linear Inference
	Ordered Inference
	Binary Increment as Ordered Inference
	Blocks World as Linear Inference
	Summary
	21c89c7e-401d-4634-97ee-1be298d74f30.pdf
	Introduction
	CBA Diagrams for Substructural Proofs
	CBA Diagrams and True Concurrency
	CBA Diagrams for Structural Inference
	Hypothetical Judgments
	Internalizing State Formation as Conjunction
	Internalizing Hypothetical Judgments as Implication
	Persistence as a Modality

	e0b650b5-bd38-4342-ab32-e865e1855113.pdf
	Introduction
	Right Rules Meeting Left Rules
	Ordered Conjunction A B
	Left Implication A B

	Right Implication B /A
	Excursion: Parsing with the Lambek Calculus
	A Small Example
	External Choice (A B)
	The Empty State (1)
	Disjunction (A B)
	Truth ()
	Falsehood (0)
	Admissibility of Identity, as a Theorem
	Admissibility of Cut, as a Theorem
	Summary

	47d082d8-9aec-481b-9edb-92a19b0c0ff4.pdf
	Introduction
	Annotating the Sequent
	Cut Reductions on Proof Terms
	Invertibility and Polarity
	A Zoo of Connectives
	Summary

	2330f9f2-2526-4096-b4a6-9d6ef80730bf.pdf
	Introduction
	Cut as Process Composition
	Cut Reduction as Communication
	Communication and Polarity
	An Example: Booleans
	Another Example: Natural Numbers
	MPass Syntax
	Example: Natural Numbers in Binary Form
	Summary

	c2470b2c-f489-4474-9d40-5dbbf531f9e7.pdf
	Introduction
	Dynamics as Linear Inference
	Typing Finite Internal Choice
	Sending Channels Along Channels
	Example: Sequences
	External Choice
	Linear Implication
	Example: A Storage Server
	A Brief Note on Parametricity
	Summary

	e538c65b-fb38-40b0-ae1e-0c6c843dac40.pdf
	Introduction
	Integrating Recursion
	Typing Configurations of Processes
	Preservation
	Progress
	Observation
	Refactoring the Dynamics

	b5e159b1-6333-4e0c-8471-cf8108f33fcd.pdf
	Introduction
	Message Understood
	Internal Choice and Unit
	Example: Binary Numbers in Standard Form
	Tensor
	Negative Types
	Example: Subtyping of Stores
	Subtyping in MPass
	Summary

	86d8d283-4a65-4b9e-923a-06c6ff9f7b9a.pdf
	Introduction
	Girard's Exponential
	Andreoli's Exponential
	Examples
	Translation from Structural into Linear Logic
	Cut and Identity Elimination

	ff7f9d71-d579-4239-81d7-41652a18238b.pdf
	Introduction
	Shifting Between Logics
	Rules for Implication
	Rules for Shifts
	Identity and Cut
	Examples
	A Programming Example
	Dynamics of the Shifts
	Example Continued
	Summary

	7247685c-cb0f-4264-a2a2-cc5a4d62425e.pdf
	Introduction
	Adjoint Logic: The Basics
	Logical Rules
	The Shifts
	Specific Logics as Instances of the Adjoint Schema
	Summary

	ec844e56-5209-4e75-a7dd-ca376b91435a.pdf
	Introduction
	Cut Elimination Revisited
	Inversion
	Chaining
	A Simple Example

	d5db2691-ca76-4d5b-a563-de51d55ae9ea.pdf
	Introduction
	Universal Quantification
	Existential Quantification
	Polarities

	7ff36960-209b-4554-a725-78b60b55adbe.pdf
	Introduction
	The Origin of Synchronous Communication
	Continuation Channels instead of Continuation Processes
	Back to Logic
	Generalizing to Other Connectives
	Relating Sequent Calculus to SAX
	Cut Elimination for SAX
	Completing Process Assignment and Dynamics
	Example Revisited

	bc713d9e-b949-4bdd-b025-cb65278cd631.pdf
	Introduction
	Adding Adjoint Modalities to SAX
	An Example: mapreduce
	Bottom
	Message Sequences
	Pattern Matching
	Dynamics for Message Sequences

	6672e687-8b98-450d-b321-c879e6c78078.pdf
	Introduction
	Reinterpreting SAX: Positive Types
	Reinterpreting SAX: Negative Types
	Mixed Linear/Structural Futures

	990f194b-73d2-4744-90f3-b6ae56a7d5e8.pdf
	Introduction
	Data Layout: Compound Values
	Partial Focusing Revisited
	Example: Append with Three Types

	c2a49ac2-1a69-4ead-895a-e6d910571905.pdf
	Introduction
	The Basic Idea
	The Inverse Method with Focusing
	Strict, Affine, and Structural Logic
	 and 0 Revisited

	cf90586d-96bc-4b6c-b9c4-8d785ca5fb18.pdf
	Introduction
	A Sequent Calculus with Explicit Resources
	Adding Validity
	Untethering

	240202e9-5a74-405d-80c3-c2e78b393a21.pdf
	Introduction
	Judgments as Types
	The Formal Metalanguage
	Hereditary Substitution

	ca24cd8d-2053-42c5-a19f-17eb61a5da92.pdf
	Introduction
	Representing Sequent Derivations
	A Linear Logical Framework
	Metatheoretic Reasoning

	08477a19-9f5c-4e49-a42f-f3bb85d054f4.pdf
	Introduction
	Coin Exchange Revisited
	CLF
	Representing the Dynamics of Futures

	812b6088-03a4-428d-b0b7-5b90762ea49f.pdf
	Introduction
	The Base Rules
	Bidirectional Type Checking
	An example
	System Correctness
	Harmony
	Soundness/Completeness wrt Sequent Calculus

	Curry-Howard Correspondence
	Full Bidirectional Rules

