3.2 Unification 57

3.2 Unification

When proving a proposition of the form Jz. A by its right rule in the sequent
calculus, we must supply a term ¢ and then prove [t/z]A. The domain of quan-
tification may include infinitely many terms (such as the natural numbers), so
this choice cannot be resolved simply by trying all possible terms ¢. Similarly,
when we use a hypothesis of the form Va. A we must supply a term ¢ to substi-
tute for x.

Fortunately, there is a better technique called unification which is sound and
complete for syntactic equality between terms. The basic idea is quite simple: we
postpone the choice of ¢ and instead substitute a new existential variable (often
called meta-variable or logic variable) X for x and continue with the bottom-up
construction of a derivation. When we reach initial sequents we check if there is
a substitution for the existential variables such that the hypothesis matches the
conclusion. If so, we apply this instantiation globally to the partial derivation
and continue to search for proofs of other subgoals. Finding an instantiation
for existential variables under which two propositions or terms match is called
unification. It is decidable if a unifying substitution or unifier exists, and if so,
we can effectively compute it in linear time. Moreover, we can do so with a
minimal commitment and we do not need to choose between various possible
unifiers.

Because of its central importance, unification has been thoroughly investi-
gated. Herbrand [Her30] is given credit for the first description of a unification
algorithm in a footnote of his thesis, but it was not until 1965 that it was
introduced into automated deduction through the seminal work by Alan Robin-
son [Rob65, Rob71]. The first algorithms were exponential, and later almost
linear [Hue76, MMS82] and linear algorithms [MM76, ?] were discovered. In the
practice of theorem proving, generally variants of Robinson’s algorithm are still
used, due to its low constant overhead on the kind of problems encountered in
practice. For further discussion and a survey of unification, see [Kni89]. We
describe a variant of Robinson’s algorithm.

Before we describe the unification algorithm itself, we relate it to the problem
of proof search. For this we use a general method of residuation. We enrich the

judgment I'; A = A by a residual proposition F such that
1. if A = Athen ;A = A\ F and F is true, and

2. f A= A\ F and F is true then I'; A = A.

Generally, we cannot prove such properties directly by induction, but we need
to generalize them, exhibiting the close relationship between the derivations of
the sequents and residual formulas F'.

Residual formulas F' are amenable to specialized procedures such as unifi-
cation, since they are drawn from a simpler logic or deductive system than the
general propositions A. In practice they are often solved incrementally rather
than collected throughout a derivation and only solved at the end. This is

Draft of February 17, 1998

58 Proof Search

important for the early detection of failures during proof search. Incremental
solution of residual formulas is the topic of Exercise 77.

What do we need in the residual propositions so that existential choices and
equalities between atomic propositions can be expressed? The basic proposition
is one of equality between atomic propositions, P; = P,. We also have conjunc-
tion Fy A F3, since equalities may be collected from several subgoals, and T if
there are no residual propositions to be proven. Finally, we need the existen-
tial quantifier dz. F' to express the scope of existential variables, and Vz. F' to
express the scope of parameters introduced in a derivation. We add equality
between terms, since it is required to describe the unification algorithm itself.
We refer to the logic with these connectives as unification logic, defined via a
deductive system.

Formulas F 1= Py =Pyt =te| F1ANFo|T|3z. F|Vz. F

The main judgment “F is valid”, written = F, is defined by the following
rules, which are consistent with, but more specialized than the rules for these
connectives in intuitionistic natural deduction (see Exercise ?7).

— =1 -y
EP=P Et=t
=R = F
Al —TI

EF AP, ET

= [t/a]F = la/a]F
—dI —VI®
Edx. F Eva. F

The VI rule is subject to the usual proviso that a is a new parameter not
occurring in Vz. F. There are no elimination rules, since we do not need to
consider hypotheses of the form = F, which is the primary reason for the
simplicity of theorem proving in the unification logic.

We enrich the sequent calculus with residual formulas from the unification
logic, postponing all existential choices. Recall that in practice we merge resid-
uation and solution in order to discover unprovable residual formulas as soon as
possible. This merging of the phases is not represented in our system.

Hypotheses. Initial sequents residuate an equality between its principal propo-
sitions. Any solution to the equation will unify P’ and P, which means that this
will translate to a correct application of the initial sequent rule in the original
system.

(I, A4);(AA) = C\ F
I DL
[P = P\P =P ([, A);A = C\ F

Draft of February 17, 1998

3.2 Unification 59

Propositional Connectives. We just give a few sample rules for the con-
nectives which do not involve quantifiers, since all of them simply propagate or
combine unification formulas, regardless whether they are additive, multiplica-
tive, or exponential.

F,A:_>A—OB\F F;A1XA2,A—OB:_>C\F1/\F2
A= C\F
1R 1L

;= 1\T [A1=C\F

Quantifiers. These are the critical rules. Since we residuate the existential
choices entirely, the dR and VL rules instantiate a quantifier by a new parameter,
which is existentially quantified in the residual formula in both cases. Similarly,
the VR and JL rule introduce a parameter which is universally quantified in the
residual formula.

A = [a/x]A\ [a/z]F ;A [a/z]A= C\ [a/z]F
VR*

VL®
A = Vz. A\ Va. F ANVe. A= C\ Jz. F

I''A = [a/z]A\ |a/z|F A [a/z]A= C\ [a/z]F
JR* JLe
A= 3z. A\ Jz. F A3z, A= C\Vz. A

The soundness of residuating equalities and existential choices in this manner
is straightforward.

Theorem 3.4 (Soundness of Equality Residuation) If A — A \ F
and = F then T; A = A.

Proof: By induction on the structure of R :: (IA = A \ F). We show the
critical cases. Note how in the case of the IR rule the proof of = Jz. F provides
the essential witness term ¢.

Case: R = B L
I;P' = P\P =P
We know by assumption that |= F which reads = P’ = P. By inver-
sion therefore P’ = P (since = I is the only rule which applies to this

judgment), and I'; P" = P is a valid initial sequent.

R
A = [a/x] A1\ [a/x]Fy

Case: R = B IR
A= Jz. A\ Jz. Fy

Draft of February 17, 1998

60 Proof Search

By assumption, we have = Jz. Fy. By inversion, |= [t/z]F; for some t. By
the proviso on the dR* rule, R; is parametric in a, so we can substitute
t for a in this derivation an obtain [t/a]R; :: (I'; A = [t/x] A1 \ [t/x]F1).
Applying the induction hypothesis to [¢/a] R4 yields a D; and we construct

Dy
A = [t/x] Ay
JR
A= dz. Ay
R
A = [a/z] A1\ [a/z] Fy
Case: R = VR

A= Vz. Ay \Vz. |y

By assumption, we have = Vz. Fy. By inversion, = [b/x]F; for a new
parameter b, and therefore also |= [a/x]F} by substitution. Hence we can
apply the induction hypothesis to obtain a D; and construct

D,
A = [a/x] A

VR
A= Vz. Ay

The opposite direction is more difficult. The desired theorem:
IfT;A = A thenT;A = A\ F for some F with = F

cannot be proved directly by induction, since the premisses of the two deriva-
tions are different in the dR and VL rules. However, one can be obtained from
the other by substituting terms for parameters. Since this must be done simul-
taneously, we introduce a new notation.

Parameter Substitution p == -|p,t/a

We assume all the parameters a substituted for by p are distinct to avoid ambi-
guity. We write [p]A, [p]F, and [p|T’, for the result of applying the substitution
p to a proposition, formula, or context, respectively.

Lemma 3.5 If ;A = A and [p|A’" = A, [p]A" = A, and [p]I” = T, then
;A" = A’ \ F for some F and = [p]F.

Proof: The proof proceeds by induction on the structure of D :: (I'; A = A).
We show only three cases, the second of which required the generalization of

the induction hypothesis.

Draft of February 17, 1998

3.2 Unification 61

Case: D=" I
and [p]I" =T, [p]A’ = (-, P), and [p]A’ = P. Therefore A’ = (-, P") with
[p]P"”" = P and A’ = P’ with [p]P’ = P and we construct

I .
=1
1-\/; (',P”):—>P/\PN£P/ and ’: [p]P//: [p]P/

D,
I'TA = [t/x]As
Case: D = B JR.
A= 3Jz. A
We assumed [p]A’ = Fz. Ay, so A = Fz. A} and [p,t/a]([a/z]A}) =
[t/x]A; for a new parameter a. Since a is new, [p,t/a]l” = [p]I" and

similarly for A’, so we can apply the induction hypothesis to D; to obtain
R1 and U; and construct

R1 n
I A= a/z] A7\ [a/z]Fy Re = [p, t/d]([a/z] Fy)
A= Jz. A\ 3. Fy and E [p]3x. Fy
Dy
A = [a/x] 4
Case: D = B VR®.
A= Va. A

We assume [p]A" = Vz. Ay, so A" = Va. A} and [p,a/d’]([d’/2]A]) =
[a/x]A; for an o’ new in IV, A’ and Vx. A]. We can then appeal to the
induction hypothesis on D; to obtain R; and U; and construct

R U

_ 1
I A" = [d /2] Ay \ [o' /2] Fy - = [p, a/d']([d' /2] F1) »
I'sA'= Vz. A)\Vz. Fy and E [plVz. Fy '

O

Theorem 3.6 (Completeness of Equality Residuation) IfT'; A = A then
A= A\ F for some F and = F.

Proof: From Lemma 3.5 with A’ = A, A’ = A, IV =T, and p the identity
substitution on the parameters in I', A, and A. |

Next we describe an algorithm for proving residuated formulas, that is, an
algorithm for unification. We do this in two steps: first we solve the problem in

Draft of February 17, 1998

62 Proof Search

the fragment without parameters and universal quantifiers and then we extend
the solution to the general case.

There are numerous ways for describing unification algorithms in the liter-
ature. We describe the computation of the algorithm as the bottom-up search
for the derivation of a judgment. We restrict the inference rules such that they
are essentially deterministic, and the inference rules themselves can be seen as
describing an algorithm. This algorithm is in fact quite close to the implemen-
tation of it in ML which is available together with these notes.!

In order to describe the algorithm in this manner, we need to introduce
existential variables (often called meta-variables or logic variables) which are
place-holders for the terms to be determined by unification. We use X to stand
for existential variables.

The second concept we need is a continuation, which arises from the in-
troduction rule for conjunction. This rule has two premisses, which leaves the
choice on how which premiss to prove first when we work in a bottom-up fash-
ion. Our algorithm commits to do the first conjunct first, but it has remember
that the second conjunct remains to be proved. Equational formulas which
have been postponed in this way are accumulated in the continuation, which is
activated when there are no further equations to be solved. For now, a contin-
uation is simply another formula denoted by S. Initially, we use T for S. Thus
our main judgment describing the algorithm has the form “F' is satisfiable with
continuation S”, written as = F / S.

Continuations. The following rules introduce and manage the continuations.
EF /NS EF/S

AL —— TIT — TIA
=R AF, /S =T/ T =T /FAS

Existential Quantification. Existential variables are introduced for existen-
tial quantifiers. They must be new not only in F' but also in S.

E[X/z]F/S X notin ForS
Edx. F/S

I

Despite the requirement on X to be new, the derivation of the premiss is not
parametric in X. That is, we cannot substitute an arbitrary term ¢ for X in
a derivation of the permiss and obtain a valid derivations, since the vr, rv, vv,
and vv’ rules below require one or both sides of the equation to be an existential
variable. Substituting for such a variables invalidates the application of these
rules.

Predicate and Function Constants. An equation between the same func-
tion constant applied to arguments is decomposed into equations between the
arguments. Unification fails if different function symbols are compared, but this

Lhttp://www.cs.cmu.edu/” fp/courses/linear/code /unif.tar.gz

Draft of February 17, 1998

3.2 Unification 63

is only indirectly reflected by an absence of an appropriate rule. Failure can also
be explicitly incorporated in the algorithm (see Exercise 77).

’:tlisl/\---/\tnisn/S ’:tlisl/\---/\tnisn/S
1Y%
Ep(t,...,tn) =p(s1,...,80) / S Efty, .. tn) = f(s1,---5,8.) / S

These rules violate orthogonality by relying on conjunction in the premisses for
the sake of conciseness of the presentation. When f or p have no arguments,
the empty conjunction in the premiss should be read as T.

IT

Existential Variables. There are three rules for variables. We write r for
terms of the form f(¢1,...,t,). Existential variables always range over terms
(and not propositions), so we do not need rules for equations of the form X = P
or P=X.
ET/[r/X]S X notinr ET/[r/X]S X notinr
vr

EX=r/S Er=X/S

rv

These two rules come with the proviso that the existential variable X does
not occur in the term ¢. This is necessary to ensure termination of these rules
(when viewed as an algorithm) and to recognize formulas such as Jz. z = f(x)
as unprovable. This leaves equations of the form X = Y with to existential
variables. We write two rules for this case to simplify the analysis.

=T/ [Y/X]S =T/s8

v _— v/

EX=Y/S EX=X/S

We now analyze these rules when viewed as an algorithm specification. First
we observe that all rules have either no or one premiss. Furthermore, for any
judgment = F / S at most one rule is applicable, and in only one way (the
choice of the new existential variable name X is irrelevant). Therefore these
rules, when viewed as instructions for construction a derivation of a judgment
E F / T are deterministic, but may fail, in which case the formula is not
provable.

Furthermore, the bottom-up search for a derivation of = F / S in this

system will always terminate. The termination ordering involves five measures,
ordered lexicographically as follows:

1. the number of free and quantified existential variables,
2. the number of predicate and function symbols,

3. the total number of logical symbols A, T, 3 in F and S,
4. the number of logical symbols in F,

5. the number of equations.

Draft of February 17, 1998

64 Proof Search

This measure decreases in each rule:
AI does not change (1)—(3) and decreases (4),
TIT completes the search,

TIA does not change (1)—(2) and decreases (3),

—(2
—(2) and decreases (3),

(1)
31 does not change (1)
pp does not change (1) and decreases (2),
rr does not change (1) and decreases (2),
vr decreases (1) since X does not occur in 7,
rv decreases (1) since X does not occur in 7,
vv decreases (1), and

vv’ does not change (1)—(4) and decreases (5).

In some of these cases it is also possible that a measure of higher priority de-
creases (but never increases), preserving the strict decrease along the lexico-
graphic ordering.

We also note that the continuation S is not completely general, but follows
the grammar below.

Continuations S == TI|FAS

In other words, it may be viewed as a stack of formulas. In the ML implemen-
tation, this stack is not represented explicitly. Instead we use the call stack of
ML itself.

The desired soundness and completess theorems for this algorithm requires
some generalizations based on substitutions for existential variables.

Ground Substitutions 6 == -]6,t/X

We always assume that the terms t we assign to variables in substitutions do not
contain existential variables. This assumption is reasonable, since we only use
substitutions here to connect derivations for = F' (which contains to existential
variables) with derivations of |= F” / S’ (which contains existential variables).

Lemma 3.7 (Soundness Lemma for Unification) If = F / S then there
exists a ground substitution for the existential variables in F' and S such that
E [0]F and = [0]S.

Proof: By induction on the structure of F :: (= F / S).]

The soundness theorem follows easily from this lemma.

Draft of February 17, 1998

3.2 Unification 65

Theorem 3.8 (Soundness of Unification) If = F / T and F contains no
existential variables, then |= F.

Proof: From Lemma 3.7 for S =T and 6 = -. O

Lemma 3.9 (Completeness Lemma for Unification) If = F and E S,
then for any formulas F', continuations S’ and substitutions 6 for the existential
variables in F' and S such that F = [0]F' and S = [0]S’" we have = F / S.

Proof: By nested inductions on F :: (= F) and S :: (= 5). This means that
when we appeal to the induction hypothesis on a subderivation of 7, S may be
larger. We distinguish cases for F.

Case: F =—TIL.
ET

The we distinguish two subcases for §. If § is TI, the result is trivial by
TIT. Otherwise

F1 52
EFR E S2
S = A
E Fi A Sy

where S = F] A Sy for some F; and S3. Then
Fiu(FE FiL/ S2) By ind. hyp. on F; and S»
F (BT /FiAS) By TIA

F1 Fa

=R =

Case: F = AL
= F AR,
Fou(EFy /S8 By ind. hyp. on 75 and S
Sy (FFaAS) By Al from F; and S
Fia(EF/FNS) By ind. hyp. on F; and S»
F 2 (EFIANF]S) By Al from Fj.
F1
= [t/x]Fy
Case: F = —— I

’: dz. Fl
F’ =3z. F{ and [0|(3z. F{) = 3z. F4 By assumption
[0,t/ X]([X/x]F{) = [t/z]F} for X not in F' or S’
[0,t/X])S" =S Since X is new
Fi(E [X/z)F]]S By ind. hyp. on F; and S
Fu(E3z. F{ /S By dI

Draft of February 17, 1998

66 Proof Search

Case: F=—— =1.

=t=t
Here we proceed by an auxiliary induction on the structure of ¢. By
assumption [0]F’ = (t = t), so we have ¢’ and ¢’ such that [0]t' = [0]t" = t.
We distinguish cases on ¢’ and t”, showing three. The remaining ones are
similar.

Subcase: t' = f(t},...,t,)and ¢ = f(t},...,t0),soalsot = f(t1,...,tn).

o =t /5 By ind. hyp. on t,, and S
Sni(FEth =ty AS) By Al from =T and S
=t =t Jt=tIAS By ind. hyp. on t,_; and S,,.
Ety =t Jth=t)Nn---Nt, =t NS As above
Ety=tIAty =ty NNt =t by Al
E ... t) = fit],...,t")] S by rr.

Subcase: ¢ = X and ¢/ = r but contains X. This is impossible, since
we assumed [0]t' = [0]t" = t.

Subcase: t' = X and ¢’ = r does not contain X. Then [0]([r/X]S’) =
[0]S" = S since [A]r = [A]X =t and 6 is a ground substitution. By
distinguishing cases for S as for F' = T above, we conclude

=T/ [r/X]S
EX=r/58 By rule vr

O

The completeness theorem follows easily from this lemma.

Theorem 3.10 (Completeness of Unification) If |= F' (where F contains
no existential variables) then = F | T.

Proof: From Lemma 3.9 with S =T, 58 =T, F/=F and 0 = -. a

The generalization of the algorithm above to account for universal quanti-
fiers and parameters is not completely straightforward. The difficulty is that
Vz. Jy. y = z is valid, while Jy. Vz. y = x is not. We show an attempt to derive
the latter which must be ruled out somehow.

—— TIT

=T /le/YIT

EY Za/T
EVe.Y=z/T
EdyVe.y=x/T

In this derivation, the application of TIT is correct since [a/Y]T = T. The
problem lies in the fact a is new in the application of the VI® rule, but only

a

I

Draft of February 17, 1998

3.2 Unification 67

because we have not instantiated Y with a yet, which is necessary to complete
the derivation.

There are two ways to solve this problem. More or less standard in theorem
proving is Skolemization which we pursue in Exercise 7?. The dual solution
notes for each existential variable which parameters may occur in its substitution
term. In the example above, Y was introduced at a point where a did not yet
occur, so the substitution of a for Y should be rejected.

In order to describe this concisely, we add a parameter context ¥ to the
judgment which lists distinct parameters.

Parameter Context ¥ 1= -|U,a

This step is analogous to the localization of the hypotheses and should be con-
sidered merely a change in notation, not an essential change in the judgment
itself. We annotate each judgment with the parameter context and introduce
the new judmgnet “t is closed with respect to U”, written as ¥ |= tterm. It is
defined by the following rules.

U+ t;term --- W ¢, term

parm root
Uq,a,¥s F aterm Uk f(t1,...,t,) term

We modify the validity judgment for unification formulas to guarantee this con-
dition.
U F ¢ term U = [t/z|F U, a = [a/z]F
|
U =3z F U =V F

When an existential variable X is introduced during the search for a deriva-
tion of a unification formula, we annotate it with the parameter context so we
keep track of the admissible substitutions for X.

U = [Xyg/z]F/S XgnotinF or S
U=3z. F/S

Ell

Parameters are introduced in the rule for universal quantifiers as before.
U.al=[a/x]F /S
U =Ve. F/S

An equation Xy = ¢ could now be solved immediately, if all parameters of
t are contained in ¥ and X does not occur in ¢t. However, there is one tricky
case. Consider the judgment

aEX = fY)AYy=a/T

where X cannot depend on any parameters and Y can depend on a. This
should have no solution, since X. would have to be equal to f(a), which is not
permissible. On the other hand,

aEX = f(Y)AY,=c/T

Draft of February 17, 1998

68 Proof Search

for a constant ¢ has a solution where Y is ¢ and X. is f(c). So when we process
an equation Xy = t we need to restrict any variable in ¢ so it can depend only
on the parameters in ¥. In the example above, we would substitute Y for Y.

In order to describe the algorithm, we internalize the judgment ¥ I ¢t term
as a new formula, written as t |y. We define it as follows.

UVET/S ifain¥ Vet oA Atp o/ S
UV =aly/ S ¢ U= f(tr,. . ta) |w/ S
U =T/ [Yo,nw, /Ye,]S
UV =Yy, v,/ S

Here, U1 N ¥y denotes the intersection of the two contexts. In the rules for
variables, this is invoked as follows.

| v

V' =r|y/ [r/Xg]S where Xg not in r
\I// ’:X\p = T / S

vr

V' E=r|y/[r/Xe]S where Xy not in r
o’ ’27“ = Xy / S

where r stands for a term f(t1,...,t,) or a parameter a. The variable rules are
modified similarly.

L4 ’: Yy, |‘I’1/ [Y‘PQ/X‘Pl]S L4 ’: T / S
Vv v
\I/”:X\pliY%/S ql/m’:X\Ij:X\IJ/S

vr

V/

The use of continuations introduces on final complication. Consider the case
of (Vz. Fy) A Fy. Since we linearize bottom-up search the parameter context
U will contain the parameter introduced for x when F5 is finally considered
after F; has been solved. This introduces spurious dependencies. To prohibit
those, we build closures consisting of a formula and its parameter context on
the continuation stack.

Continuations S == T|{¥,F}AS
The rules for continuations are modified as follows.
V=R /{Y, RS VEF/S
N TIT TIA
VR AR/ S TET/T V=T /{U,FIAS

The termination argument is only slightly more difficult, since the restriction
operation is a structural recursion over the term r and does not increase the
number of variables or equations.

The soundness and completeness theorems from above extend to the problem
with parameters, but become more difficult. The principal new notion we need

Draft of February 17, 1998

3.2 Unification 69

is an admissible substitution € which has the property that for every existential
variable Xy, ¥ - [0] Xy term (see Exercise ?77).

The ML implementation takes advantage of the fact that whenever a vari-
able must be restricted, one of the two contexts is a prefix of the other. This
is because every equation in a formula F' lies beneath a path of possibly al-
ternating quantifiers, a so-called mized quantifier prefic. When we apply the
rules above algorithmically, we instantiate each existentially quantified variable
with a new free existential variable which depends on all parameters which were
introduced for the universally quantified variables to its left. Clearly, then, for
any two variables in the same equation, one context is a prefix of the other. Our
ML implementation does take advantage of this observation by simplifying the
intersection operation.

We can take this optimization a step further and only record with an integer
(a kind of time stamp), which parameters an existential variable may depend on.
This improves the efficiency of the algorithm even further, since we only need
to calculate the minimum of two integers instead of intersecting two contexts
during restriction. In the ML code for this class, we did not optimize to this
extent.

Draft of February 17, 1998

