Lecture Notes on
Backward Chaining

15-816: Linear Logic
Frank Pfenning

Lecture 17
March 26, 2012

In the last lecture we saw that it is difficult to identify subcomputations in
pure forward chaining. By comparison, in functional programming call-
ing a function naturally gives rise to a subcomputation that is given some
arguments and returns a result. In logic programming, the same is true if
we compute using backward chaining instead of forward chaining. As we
will see, it has other problems, so sometimes we will want to use back-
ward chaining and sometimes forward chaining, and some problems ben-
efit from a combination of these. Today, we will discuss pure backward
chaining. The idea of backward chaining for the Horn fragment of logic
goes back to Kowalski and Colmerauer (see [Kow88] for a recounting of its
beginning). A more general notion was introduced as uniform proofs [MNPS91],
which was based on the negative fragment of intuitionistic higher-order
logic. A proof-theoretic introduction and many further discussions and
references can be found in a set of lecture notes [Pfe06].

1 Negative Atoms and Goal-Directed Search

Backward chaining characteristically performs goal-directed search. We re-
call an earlier example:

a,a—ob,b—oc—c

When all atoms are positive, we can only focus on a — b. When all atoms
are negative we can only focus on b —o c. In other words, the only applicable
clause is one whose conclusion matches the right-hand side of the sequent.

LECTURE NOTES MARCH 26, 2012

Backward Chaining L17.2

One of the first questions should be which fragment of linear logic
maintains this property. When we are focused on the left on a clause D, we
should eventually come to a negative atom (which must match the succe-
dent of the sequent), and not a positive proposition. In this process we
spawn goals G, in right focus, which should decompose far enough that we
eventually reach a negative atom, rather than stopping at a positive propo-
sition which would not provide at atom for goal-directed search.!

Clauses D == P |G —D|Di&Dy| T |Vz.D
Goals G = PT|Gi®G2|1|Gi®Gy|0|3z.G|!D|D

2 Binary Addition

As an example, we revisit binary addition, this time as a backward-chaining
program. This means all atoms will be considered negative. The main ap-
plication we have in mind is a clause such as

retnt(n) e cont™ (m + _) e plus™ (m, n,r) — retn(r)

where we compute r from m and n. Declaratively, plus(m,n,r) should be
trueif m +n =r.

We write addition as inference rules, but as we previously observed we
can go back and forth between such clauses. Recall that binary numbers
follow the structure

n == e (0)
| n0 (2n)
| nl (2n+1)

First, adding 0 leaves a number unchanged.

plus(e,n,n) plus(m, e, m)

Then the cases that add the least significant digits. In each case, except the
last, it reduces to just adding the subterms representing the higher bits. In

'In many prior presentation of pure backward chaining (and in lecture), all atoms were
considered negative. However, their presence in goals does not appear to upset the goal-
directed nature of search.

LECTURE NOTES MARCH 26, 2012

Backward Chaining L17.3

the last case we have to appeal to an increment operation, yet to be defined.

plus(m,n,r) plus(m,n,r)

plus(m0, n0, r0) plus(m0,nl,rl)

plus(m,n,r) plus(m,n, k) inc(k,r)

plus(m1,n0,rl) plus(m1,nl,r0)

In the last case, adding m + n = k, an intermediate value, which have to
increment with the carry before tacking on the last bit 0.

inc(n,)

inc(e, €1) inc(n0,nl) inc(nl,r0)

These can be written in propositional form as follows:

Vn. plus(e, n,n)

Vm. plus(m, e, m)

Vm.Vn.Vr. plus(m,n,r) — plus(m0,n0, r0)
Vm.Vn.Vr. plus(m,n,r) — plus(m0,nl,rl)
Vm.Vn.Vr. plus(m,n,r) — plus(ml,n0,rl)
VYm.Vn.Vr. plus(m,n, k) e inc(k,r) — plus(m1,nl,r0)
inc(e, €1)

Vn.inc(n0,nl)
Vn.Vr.inc(n,r) — inc(nl, r0)

Note that focusing on these clauses leads to the previously presented rules,
in a slightly modified form. For example,

I'; A;Qp — plus(m,n,k) T'5 A" Qr — inc(k,r)
L' AA;Qp,Qr — plus(ml,nl, r0)

We know that, ultimately, A, A/, ©, and €’ will all be empty in this par-
ticular program and signature, but this is not a consequence of focusing
itself.

3 An Operational Reading

Next we examine what proof search is actually like, using the rules in a
goal-directed way. This is isomorphic to what we would obtain by forward

LECTURE NOTES MARCH 26, 2012

Backward Chaining L17.4

chaining on the corresponding formulas. The complication we want to ex-
plore here is that in our example, when plus(m,n,r) comes up as a goal,
we actually know m and n, but 7 is unknown. To clearly distinguish these,
we write uppercase letters for unknowns. Unknown terms are also called
logic variables (in logic programming), metavariables (in logical frameworks)
or essentially existential variables (in theorem proving).

We start with

plus(€l0, €11, R)

which represents 2 + 3 and should yield 5. There is only one applicable
rule, so the shape of the proof must be

plus(el, el, R')
plus(el0,€ll, R)

R=R1

where we have noted the constraint that must be satisfied by R. Again,
only one rule applies

plus(e, e, K) inc(K,R")
plus(el,el, R')
plus(el0,ell, R)

R =R'0
R=R1

In this step we have introduced two new variables, K and R".

At this point there is a decision to make: we could try to find a proof
of plus(e, €, K') or a proof of inc(K, R"”). Because we want to use backward
chaining as the basis for a programming language, we always solve the
subgoals in left-to-right order. In logic programming terminology, this is
called left-to-right subgoal selection.

Proceeding with the first subgoal, we see two rules are applicable, but
both give the same result (K = ¢). Generally speaking, a backward-chaining
logic program is considered in poor taste if there are multiple ways to prove
the same conclusion because it can lead to unnecessary backtracking. We’ll
fix our program at the end of this section in the obvious way. After solving

LECTURE NOTES MARCH 26, 2012

Backward Chaining L17.5

the first subgoal, we arrive at:

- K € :
plus(e, €, K) inc(K, R")
plus(el,el, R')
plus(el0, €11, R)

R/ — R//O
R=R1

Under the constraint that K = ¢, only the first rule for increment applies.
This yields R” = el.

———— K=¢ ———— R'=
plus(e, €, K) inc(K, R") ‘
R' =R'0

plus(el,el, R')
R=R1
plus(el0, €11, R)

At this point, there are no open subgoals. We can read off the substitution
R = €101

and apply the solution to all the constraints to write down the final proof

plus(e, e,€) inc(e,el)
plus(el, el,€10)
plus(€l0, €11, €101)

4 Left-Pointing Arrow Notation

When writing backward chaining logic programs, it is visually preferable
to write the succedent of the top-level implication first. This is so we can
easily examine the program and discern which rules are applicable to which
goals. Most clauses will then be written in one of the forms

P—Gi® --®Gy
PoGio oGy

which behave identically because o— is considered a left-associative opera-
tor, so that A o— B o— (' is the same as (A o— B) o— C which is the same as
C —o (B — A). Nested subgoals will thus be solved from the inside-out.

LECTURE NOTES MARCH 26, 2012

Backward Chaining L17.6

We rewrite our program in linear logic to eliminate the unnecessary and
potentially undesirable nondeterminism in our first program. We further
use the convention that free variables are implicitly universally quantified.

plus(e, €, €).
plus(e, n0, n0).
plus(e,nl, nl).

(
(
(
plus(m0, €, m0).

plus(m0, n0,r0) o— plus(m, n,r).
plus(m0,nl,rl) o— plus(m,n,r).
plus(ml,e,ml).

plus(m1,n0,r1l) o— plus(m,n,r).
plus(ml,nl,r0) — plus(m,n, k) ® inc(k,r).

inc(e, €1).
inc(n0, nl).
inc(nl,r0) o— inc(n,r).

5 Modes

An important criteria when reasoning about the operational behavior of
logic programs is to reason about which variables are known (have ground
values containing variables) or unknown (potentially contain variables). Let’s
return to a point in the proof search in the earlier example.

plus(e, e, K) inc(K,R")
plus(el,el, R)
plus(el0, €11, R)

R =R"0
R=R1

If we reversed the two subgoals

inc(K, R") plus(e, e, K)
plus(el,el, R)
plus(el0, €11, R)

R =R"0
R=R1

LECTURE NOTES MARCH 26, 2012

Backward Chaining L17.7

and tried to solve the first subgoal, we would now essentially guess K and
R" blindly and then filter our choices in the second subgoal. This can lead
to non-termination (for example, if the clause inc(n1,70) o— inc(n,r) would
be selected continuously) or a lot of backtracking.

In order to avoid such problems, it is important to check that predicates
in backward chaining are used consistently with respect to what is known
and what is generated. This is called mode checking, which is complemen-
tary to type checking which have have largely assumed, but not explicated.
Actually, problematic situations could already arise in forward chaining, so
mode checking is generally important in logic programming and not just
in backward chaining.

We begin with dividing the arguments to predicates into input argu-
ments, denoted by (+), and output arguments, denoted by (—).? These no-
tion are fundamentally defined by the following:

1. When a negative atomic proposition P first appears as a goal in the
succedent, all its input (4) arguments must be ground, that is, contain
no metavariables.

2. When a negative atomic proposition P succeeds as a goal in the succe-
dent, all its output (—) arguments must be ground.

We reason separately about each clause to determine if the property holds
for. For example, consider the mode

plUS(+7 +a _)
and the clause
plus(e, n0, n0).

When plus(m;, ng, r3) appears as a goal, the first and second argument will
be ground. We match this goal against the given clause, which succeeds if
e = mp and NO = ny for a new metavariable /V. But since ns is ground, this
will ground N. Then r3 = NO will be ground as well.

A slightly more complex reasoning applies to the clause

plus(m0,n0,r0) o— plus(m,n,r).

When a well-moded goal matches the clause head plus(AM0, NO, R0), both
M and N will be ground. This means that the recursive call plus(M, N, R) is

*This should not be confused with positive or negative propositions, which is an entirely
different notion.

LECTURE NOTES MARCH 26, 2012

Backward Chaining L17.8

well-moded. If it suceeds, R will be ground since it is an output argument.
Hence, the output argument R0 in the head will be ground as well.
As a last example, consider

plus(ml,nl,r0) o— plus(m,n, k) ® inc(k,r).

where inc(+, —). M and N in the head of the clause will be ground, so the
first subgoal plus(M, N, K) is well-moded and, if it succeeds, will ground
K. Therefore the call to inc(K, R) is also well-moded, and R will be ground
if successful. Hence, RO, the output argument of the clause head, will also
be ground upon success.

If we had reversed the subgoals,

plus(ml,nl,r0) o— inc(k,r) ® plus(m,n, k).

it would not have been well-moded, since the input argument K in the call
to inc(K, R) is unknown at the time that subgoal would be invoked. From
this example it should be clear that the order in which subgoals are solved
is crucial.

LECTURE NOTES MARCH 26, 2012

Backward Chaining L17.9

References

[Kow88] Robert A. Kowalski. The early years of logic programming.
Communications of the ACM, 31(1):38-43, 1988.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre
Scedrov. Uniform proofs as a foundation for logic program-
ming. Annals of Pure and Applied Logic, 51:125-157, 1991.

[Pfe06] Frank Pfenning. Logic programming. http://www.cs.cmu.
& g1c¢ prog g p
edu/~fp/courses/1lp/, December 2006. Lecture notes for a
graduate course, Carnegie Mellon University.

LECTURE NOTES MARCH 26, 2012

http://www.cs.cmu.edu/~fp/courses/lp/
http://www.cs.cmu.edu/~fp/courses/lp/

	Negative Atoms and Goal-Directed Search
	Binary Addition
	An Operational Reading
	Left-Pointing Arrow Notation
	Modes
	References

