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1 Introduction

In this lecture we present an intuitionistic approach to describing a multiple-
world semantics for modal logic in the style of Kripke. This is done by
providing judgments and inference rules that reason about truths in mul-
tiple worlds. A thorough analysis of intuitionistic modal logic in this style
has been carried out by Simpson [Sim94]. This presentation of the logic
suggests an operational interpretation via distributed computation, where
worlds correspond to loci of computation (hosts or processes), with acces-
sibility being connectivity between hosts. Variations of this operational
interpretation go back to Jia and Walker [JW04] Murphy et al. [MCHP04,
Mur08], although we will not be able to sustain this interpretation in its
full generality.

This is very different from providing a Kripke semantics for intuitionis-
tic logic; something that can also be done (see Lecture 14) but is somehow
the inverse. It would describe intuitionistic logic from a classical point of
view, while we want to give an intuitionistic perspective on the typically
classical Kripke structures. In the next lecture we will make the connec-
tion to the intuitionistic modal logic of validity and possibility described in
earlier lectures.

2 Basic Judgments

Rather than adding new judgments as we did when we moved from in-
tuitionistic to (judgmental) modal logic, we revise the basic judgment from
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L15.2 Intuitionistic Kripke Semantics

A true to A @ w which we read as “A is true at world w”. All the usual logical
inference rules are now relativized to an arbitrary world w. This expresses
that the meaning of the usual connectives is local to a world, and that we
reason with the same rules at all worlds.

A @ w B @ w

A ∧B @ w
∧I

A ∧B @ w

A @ w
∧E1

A ∧B @ w

B @ w
∧E2

A @ w
x

...
B @ w

A⊃B @ w
⊃Ix

A⊃B @ w A @ w

B @ w
⊃E

> @ w
>I

no >E

A @ w

A ∨B @ w
∨I1

B @ w

A ∨B @ w
∨I2

A ∨B @ w

A @ w
x

...
C @ w′′

B @ w
y

...
C @ w′′

C @ w′′ ∨Ex,y

no ⊥I

⊥ @ w

C @ w′′ ⊥E

Figure 1: Kripke logic, propositional connectives

In anticipation of the modal connectives which move between worlds,
we have given the ∨E and ⊥E rules with a general conclusion C @ w′′.
This will cause us some grief in the operational interpretation because the
action of disjunction is somehow not local, despite our goals of locality. On
the other hand, it is not simple to just restrict these rules to the case w′′ = w
and preserve cut elimination (see Exercise 2).

Next are the modal connectives. We use the judgment w ≤ w′ to express
that w′ is reachable or accessible from w. We may also say that w′ lies in the
future of w. For the moment we remain agnostic which laws govern this
relation.

LECTURE NOTES MARCH 18, 2010
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Necessity. In order for �A to be true at world w, we have to show that A
is true at all reachable worlds. We model this by introducing a new world
parameter α and verifying that A is true at α, knowing only that α is reach-
able from w.

w ≤ α
...

A @ α

�A @ w
�Iα

We write w, w′, w′′ for arbitrary worlds, and α, β, γ for world parameters
that are bound in inference rules. In the rule for �I , the deduction in the
premise is parametric in α and hypothetical in w ≤ α. Note that w ≤ α is a
judgment, not a proposition. It is therefore not localized at any world, and
it can not be mentioned in a proposition.

The elimination rule expresses that if �A is true at some world w, then
A is true at any reachable world w′.

�A @ w w ≤ w′

A @ w′ �E

The local reduction exploits the parametricity in the introduction rule
in a new familiar manner.

w ≤ α
D

A @ α

�A @ w
�Iα E

w ≤ w′

A @ w′ �E =⇒R

E
w ≤ w′

[w′/α]D
A @ w′

The local expansion straightforwardly introduces the modality.

D
�A @ w =⇒E

D
�A @ w w ≤ α

A @ α
�E

�A @ w
�Iα

Possibility. In order for ♦A to be true at a world w, we have to show that
A is true at some reachable world w′.

w ≤ w′ A @ w′

♦A @ w
♦I
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In the elimination rule, we assume that A is true at some reachable world
α about which we know nothing else.

♦A @ w

w ≤ α A @ α
x

...
C @ w′′

C @ w′′ ♦Eα,x

The right premise here is parametric in α and hypothetical in w ≤ α and
A @ α, labeled by x. This implies that w′′ 6= α, because otherwise α would
escape its scope to the conclusion.

Like ∨E and ⊥E, this rule is not local in the sense that w may be differ-
ent from w′′.

Local reduction again exploits parametricity in an expected way.

D
A @ w′

E
w ≤ w′

♦A @ w
♦I

w ≤ α A @ α
x

F
C @ w′′

C @ w′′ ♦Eα,x
=⇒R

E
w ≤ w′

D
A @ w′

x

[w′/α]F
C @ w′′

The local expansion mirrors the local expansion of disjunction.

D
♦A @ w =⇒E

D
♦A @ w

w ≤ α A @ α
x

♦A @ w
♦I

♦A @ w
♦Eα,x

The rules for the modalities are summarized in Figure 3. We obtain var-
ious particular modal logics by specifying specific laws for the accessibility
relation ≤. We name the logics by prefixing the corresponding classical
modal logic with “I”.

Propertie of ≤ Modal logic
none IK
reflexive IT
transitive I4
reflexive and transitive IS4
symmetric I5
reflexive, transitive, and symmetric IS5
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w ≤ α
...

A @ α

�A @ w
�Iα

�A @ w w ≤ w′

A @ w′ �E

w ≤ w′ A @ w′

♦A @ w
♦I

♦A @ w

w ≤ α A @ α
x

...
C @ w′′

C @ w′′ ♦Eα,x

Figure 2: Kripke logic, modal connectives

We can see the effects of these by writing out the proofs of a few sample
theorems. The first, the familiar axiom �(A⊃B)⊃(♦A⊃♦B). We prove
this at an arbitrary world h (for “here”).

♦A @ h
y

h ≤ α

�(A⊃B) @ h
x

h ≤ α

A⊃B @ α
�E

A @ α
z

B @ α
⊃E

♦B @ h
♦I

♦B @ h
♦Eα,z

�(A⊃B)⊃(♦A⊃♦B) @ h
⊃Ix,⊃Iy

As expected, this proof does not require any reasoning about the acces-
sibility relation: we directly use the assumption h ≤ α twice. We would
expect �A⊃A to require reflexivity, and indeed this is the case.

�A @ h
x

h ≤ h
refl

A @ h
�E

�A⊃A @ h
⊃Ix

On the other hand, something like ♦♦A⊃♦A should require transitiv-
ity.
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♦♦A @ h
x

♦A @ α
y

h ≤ α α ≤ β

h ≤ β
trans

A @ β
z

♦A @ h
♦I

♦A @ h
♦Eβ,z

♦A @ h
♦Eα,y

♦♦A⊃♦A @ h
⊃Ix

Perhaps surprisingly, the axioms laid out in Lecture 9 are not sufficient
to prove all the true propositions in the corresponding intuitionistic modal
logic under the Kripke semantics. We return to this very important point
in the next lecture.

3 Proof Term Assignment

A natural attempt to give an operational interpretation for this form of intu-
itionistic modal logic is as a language for distributed computation, where
accessibility is related to connectivity between loci of computation, e.g.,
hosts in a network. This interpretation will require some restrictions; in-
stead of assuming them a priori will develop the language and read off the
restriction from its definition.

We start with a proof term assignment. The primary intuition, to be
refined in the next section, is that if we type M : A @ w then M is located at
world w. � and ♦ are then concerned with movement between the worlds.
We present a localized version of the inference rules annotated with proof
terms. For the non-modal connectives, we use the same proof terms as
before. For the modal connectives, we have two forms of hypotheses: w ≤
α and A @ w. When we write w ≤ α, α is considered a new parameter
declared at that occurrence. This avoids us having to introduce a new kind
of hypothesis such as α world. As usual, we assume all world parameters
and also all ordinary variables declared in the context to be distinct.

We have chosen not to have an explicit representation for the proofs
of accessibility, since in all the modal logics we consider the reachability
relation is easily decidable by saturating the assumptions under the appro-
priate rules (reflexivity for declared worlds, transitivity, and symmetry, as
available). Instead, we show the accessibility judgment itself that was used.
We write the term in such a way that the world in which a terms is checked
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Intuitionistic Kripke Semantics L15.7

x:A@w ∈ Γ
Γ ` x : A @ w

hyp

Γ, w ≤ α ` M : A @ α

Γ ` Λw ≤ α. M : �A @ w
�I

Γ ` M : �A @ w Γ ` w ≤ w′

Γ ` M [w ≤ w′] : A @ w′ �E

Γ ` w ≤ w′ Γ ` M : A @ w′

Γ ` 〈w ≤ w′〉M : ♦A @ w
♦I

Γ ` M : ♦A @ w Γ, w ≤ α, x:A @ α ` N : C @ w′′

Γ ` let 〈w ≤ α〉x = M in N : C @ w′′ ♦E

Figure 3: Kripke logic, proof terms for modal connectives

is close to that term:

Term Location
Λw ≤ α. M M @ α

M [w ≤ w′] M @ w

〈w ≤ w′〉M M @ w′

let 〈w ≤ α〉x = M in N M @ w, x @ α

We rewrite the earlier examples in the form of proof terms.

K♦ : �(A⊃B)⊃(♦A⊃♦B) @ h
= λx@h. λy@h. let 〈h ≤ α〉 z = y in 〈h ≤ α〉((x [h ≤ α]) z)

T� : �A⊃A
= λx@h. x [h ≤ h]

4♦ : ♦♦A⊃♦A
= λx@h. let 〈h ≤ α〉 y = x in let 〈α ≤ β〉 z = y in 〈h ≤ β〉z

To check accessibility we can read the term left-to-right, collection the
hypotheses from Λw ≤ α and let 〈w ≤ α〉 and verifying if the conditions
[w ≤ w′] and 〈w ≤ w′〉 hold, under the reachability relation under consid-
eration.
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We also rewrite the earlier local reduction on the proof terms. For the
sake of clarity (as far as locations are concerned), we have built some redun-
dancy into the terms. On well-typed terms, the two occurrences of worlds
labeled w in the reductions below must match.

(Λw ≤ α. M) [w ≤ w′] =⇒R [w′/α]M

let 〈w ≤ α〉x = 〈w ≤ w′〉M in N =⇒R [M/x][w′/α]N

4 Distributed Computation

Here is the basic intended interpretation of values of modal type. A value
V : �A should be a mobile computation of type A which can be moved to
a reachable host according to the accessibility relation. Conversely, V :
♦A should be the address of a remote value of type A at some reachable
host. While references to remote values may be mobile, the remote values
themselves are not.

We present the computational interpretation as a substructural opera-
tional semantics [Pfe04, PS09]. In this style of presentation the state of the
computation is represented by an ordered context of ephemeral proposi-
tions. The general invariant is that if we have a typed term Γ ` M : A
then we are in a situation where we are either computing the value of M or
returning the value of M , written as eval M or ret V . The remaining com-
putation called the continuation is represented by a stack of frames cont F ,
each of which carries out the computation described by F when a value is
returned to it. In the particular kind of call-by-value operational semantics
we are interested in here, variables are bound by to values !bind xV . Such
bindings are not ordered and persistent, in the sense that once made they
remain in effect throughout the rest of the computation. The operational
semantics itself is described by a set of rules for transforming the state. The
left-hand side is matched against part of the ordered context, which is then
replaced by the right-hand side.

For the current application, we generalize the predicates of evaluation,
return, continuation, and binding to be located at particular worlds. Some
of this information is redundant, but may help to clarify the location of
the computational object we are considering. We have the following corre-
spondence:

Static Dynamic
M : A @ w eval M w
V : A @ w ret V w
x : A @ w !bind xV w
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In addition we have the predicate cont F w which means that continuation
frame F is waiting for a value at world w. We will introduce appropriate
notions of values and frames as we present the semantics.

As a warm-up, we consider call-by-value evaluation in substructural
style. We use A • B for adjacent propositions in the current state, and
A � B for the transition rule that replaces A by B, where • binds more
tightly than �. We begin with the rules for functions A⊃B.

eval (M1 M2) w � eval M1 w • cont ( M2) w
eval (λx.M) w � ret (λx.M) w
ret V1 w • cont ( M2) w � eval M2 w • cont (V1 ) w
ret V2 w • cont ((λx.M) ) w � ∃x. !bind xV2 w • eval M w
eval xw � cont xw
!bind xV2 • cont xw � ret V2 w

In the rule where a function is applied to an argument, we create a new
parameter, called x, using the existential on the right-hand side. In the pre-
sentation we chose a new name identical to the name of the variable bound
in λx.M , but using α-conversion we could write the right-hand side equiv-
alently as ∃y. !bind y V2 w • eval ([y/x]M) w. We have values λx.M and con-
tinuation frames ( M2) and (V1 ). Note that all computation takes place
at the same world w — computation is entirely local.

We show the rules for mobile computations �A.

eval (M [w ≤ w′])w′ � eval M w • cont ( [w ≤ w′])w′

eval (Λw ≤ α. M ′) w � ret (Λw ≤ α. M ′) w
ret (Λw ≤ α. M ′) w • cont ( [w ≤ w′])w′ � eval ([w′/α]M ′) w′

We see that the source expression M either moves from w′ to w (in the
reverse direction of the accessibility relation), or is already located at w as
the result of compilation and static distribution of the program. The value
computed by M , Λw ≤ αṀ ′ flows from w to w′ (following accessibility)
and is then evaluated at w′.

The rules for remote values ♦A are more complex. Recall that a value of
type ♦A should be a reference to remote value of type A, whose exact loca-
tion is not known in advance and not accessible from within the program.

eval (let 〈w ≤ α〉x = M in N) w′′ � eval M w • cont (let 〈w ≤ α〉x = in N) w′′

eval (〈w ≤ w′〉M ′) w � eval M ′ w′ • cont (〈w ≤ w′〉 )
ret V ′ w′ • cont (〈w ≤ w′〉 ) � ∃x. !bind xV ′ w′ • ret (〈w ≤ w′〉x) w
ret (〈w ≤ w′〉x) w • cont (let 〈w ≤ α〉x = in N) w′′ � eval ([w′/α]N) w′′

LECTURE NOTES MARCH 18, 2010



L15.10 Intuitionistic Kripke Semantics

In the last rule, again, we are used some implicit α-conversion, by nam-
ing the let-bound variable x the same as the reference x to the remote value
V . Note that any reference to x in N will automatically take place in the
right world w′, since x was typed parametrically at α, and w′ is substituted
for α.

If we assume that all source expressions are already at the right world,
we see that in the third rule the new value 〈w ≤ w′〉x is moved from w′ to
w, in the opposite direction of accessibility. What is disturbing, however, is
that in the last rule the same value is moved from w to w′′, even though w
and w′′ are not required to be connected. This is finally a manifestation of
the non-locality of the ♦E rule in the sense that w and w′′ in that rule do
not need to be connected.

So we see that computations (values of type �A) flow from w to w′

where w ≤ w′ and that references to remote values (of type ♦A) flow to w
from w′ where w ≤ w′. It appears that there is also a non-local interaction,
where a continuation at w′′ is waiting for a value at the unconnected world
w, and the value is needed before computation in the body proceeds.

This tension can be resolved in two ways. One is to restrict one’s at-
tention to the modal logic IS5. In IS5, the accessibility relation is reflex-
ive, transitive, and symmetric. This means, if we start from a closed pro-
gram at a world h, all worlds are inter-accessible. In that case, the non-
local actual alluded to above is implementable. This can be done most
elegantly if we localize all the rules and introduce separate rules that uni-
formly move values of type �A or ♦A. This is the approach taken by Mur-
phy et al. [MCHP04, Mur08] and closely related to the solution by Jia and
Walker [JW04]. More about this solution in the next lecture.

An alternative is to keep the accessibility relation general, but restrict
the rules in other ways to eliminate the need for non-local actions. We will
discuss this in the lecture after next using a technique called tethering.
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Exercises

Exercise 1 Annotate the rules of natural deduction to isolate verifications and
uses among all proofs.

Exercise 2 If we restrict ∨E,⊥E and ♦E to act entirely locally (that is, w′′ = w)
and keep the remaining rules as they are, then some true propositions no longer
have verifications. Give examples demonstrating this.

Exercise 3 Show the local expansions on proof terms.

Exercise 4 Both proof terms and substructural operational semantics contain re-
dundant worlds. Assume that proof terms remain the same and explore which
information in the propositions defining the substructural operational semantics
can be erased without leading to ambiguity as to which computation takes place
where.
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