Lecture Notes on Modal Tableaux

15-816: Modal Logic André Platzer

Lecture 10 Februrary 18, 2010

1 Introduction to This Lecture

The Hilbert calculus for modal logic from the last lectures is incredibly simple, but it is not entirely simple to find a proof in it. In this lecture, we introduce a modal tableau calculus that is more amenable to systematic proof construction and automated theorem proving.

Tableaux calculi for modal logic can be found in the work of Fitting [Fit83, Fit88] and the manuscript by Schmitt [Sch03].

2 The Petite Modal Zoo

In previous lectures, we have mainly seen the propositional modal logic **S4** and its Hilbert-style axiomatization. This is, by far, not the only modal logic of interest. The minimal (normal) modal logic is modal logic **K**. The axiomatisation of **K** is a subset of the axioms of **S4** and the same proof rules of **S4**; see Figure 1. In fact, normal modal logics share the same proof rules (MP and G) and mostly differ in the choice of axioms.

Extensions of logic K are shown in Figure 2.

3 Modal Tableaux

For proving formulas in propositional modal logic, we develop a tableau calculus. Tableaux often give very intuitive proof calculi. Here we choose prefix tableaux, where every formula on the tableau has a *prefix* σ , which

LECTURE NOTES

FEBRURARY 18, 2010

(P) all propositional tautologies

(K)
$$\Box(\phi \to \psi) \to (\Box \phi \to \Box \psi)$$

(MP) $\frac{\phi \quad \phi \to \psi}{\psi}$
(G) $\frac{\phi}{\Box \phi}$

Figure 1: Modal logic K

Т	is system K plus	(T)	$\Box\phi\to\phi$
S4	is system T plus	(4)	$\Box \phi \to \Box \Box \phi$

Figure 2: Some other modal logics

is a finite sequence of natural numbers. In addition, every formula on the tableau has a sign $Z \in \{F, T\}$ that indicates the truth-value we currently expect for the formula in our reasoning. That is, a formula in the modal tableaux is of the form

 σZA

where the prefix σ is a finite sequence of natural numbers, the sign *Z* is in $\{F, T\}$, and *F* is a formula of modal logic. At this point, we understand a prefix σ as a symbolic name for a world in a Kripke structure.

Definition 1 (K prefix accessibility) For modal logic K, prefix σ' is accessible from prefix σ if σ' is of the form σn for some natural number n.

For every formula of a class α with a top level operator and sign (*T* or *F* for true and false) as indicated, we define two successor formulas α_1 and α_2 :

α	α_1	α_2	eta	β_1	β_2
$TA \wedge B$	TA	TB	$TA \vee B$	TA	TB
$FA \vee B$	FA	FB	$FA \wedge B$	FA	FB
$FA \rightarrow B$	TA	FB	$TA \to B$	FA	TB
$F \neg A$	TA	TA	$T \neg A$	FA	FA

For the following cases of formulas we define one successor formula

LECTURE NOTES

FEBRURARY 18, 2010

ν	$ u_0 $	π	π_0
$T\Box A$	TA	$T\Diamond A$	TA
$F\Diamond A$	FA	$F\Box A$	FA

Every combination of top-level operator and sign occurs in one of the above cases. Tableau proof rules by those classes are shown in Figure 3. A tableau is *closed* if every branch contains some pair of formulas of the form σTA and σFA . A *proof* for modal logic formula consists of a closed tableau starting with the root 1FA.

(a)
$$\frac{\sigma\alpha}{\sigma\alpha_1}$$
 (b) $\frac{\sigma\beta}{\sigma\beta_1 \sigma\beta_2}$ (ν^*) $\frac{\sigma\nu}{\sigma'\nu_0}^1$ (π) $\frac{\sigma\pi}{\sigma'\pi_0}^2$

 $^{1}\sigma'$ accessible from σ and σ' occurs on the branch already

 $^{2}\sigma'$ is a simple unrestricted extension of σ , i.e., σ' is accessible from σ and no other prefix on the branch starts with σ'

Figure 3: Tableau proof rules for QML

The tableau rules can also be used to analyze $F \Box A \rightarrow \Diamond A$ as follows:

1	$F\Box A \to \Diamond A$	(1)
1	$T\Box A$	(2) from 1
1	$F\Diamond A$	(3) from 1
	ston	

No more proof rules can be used because the modal formulas are ν rules, which are only applicable for accessible prefixes that already occur on the branch. If we drop this restriction, we can continue to prove and close the tableau:

$1 \ F \Box A \to \Diamond A$	(1)
$1 T \Box A$	(2) from 1
$1 F \Diamond A$	(3) from 1
$1.1 \ TA$	(4) from 2
$1.1 \ FA$	(5) from 3
*	

But this is bad news, because the formula $\Box A \rightarrow \Diamond A$ that we set out to prove in the first place is not even valid in **K**. Consequently, the side condition on the ν rule is necessary for soundness!

As an example proof in **K**-tableaux we prove $\Box A \land \Box B) \rightarrow \Box (A \land B)$:

LECTURE NOTES

FEBRURARY 18, 2010

1 F	$(\Box A \land \Box B)$ -	$\rightarrow \Box (A \land$	B)	(1)
1 T	$\Box A \land \Box B$			(2) from 1
1 F	$\Box(A \land B)$			(3) from 1
1 T	$\Box A$			(4) from 2
1 T	$\Box B$			(5) from 2
$1.1 \ F$	$A \wedge B$			(6) from 3
$1.1 \ FA$	(7) from 6	1.1	FB	(8) from 6
1.1 TA	(9) from 4	1.1	TB	(10) from 5
*	7 and 9		*	10 and 8

Let us prove the converse $\Box(A \land B) \rightarrow (\Box A \land \Box B)$ in **K**-tableaux:

$1 F \Box (A \land B) \to (\Box A)$ $1 T \Box (A \land B)$ $1 F \Box A \land \Box B$			$\wedge \Box B)$	(1) (2) fro (3) fro	om 1 om 1
1	$F\Box A$	(4) from 3	$1 \ F \Box$	В	(5) from 3
1.1	FA	(6) from 4	$1.1 \ FB$		(10) from 5
1.1	$TA \wedge B$	(7) from 2	1.1 TA	$\wedge B$	(11) from 2
1.1	TA	(8) from 7	1.1 TA		(12) from 11
1.1	TB	(9) from 7	$1.1 \ TB$		(13) from 11
	*	6 and 8	*		10 and 13

Let us try to prove $\Box(A \lor B) \to \Box A \lor \Box B$:

$1 \ F \Box (A \lor B) \to \Box A \lor \Box B$	(1)
1 $T\Box(A \lor B)$	(2) from 1
$1 \ F \Box A \lor \Box B$	(3) from 1
$1 F \Box A$	(4) from 3
$1 F \Box B$	(5) from 3
$1.1 \ FA$	(6) from 4
1.2 <i>FB</i>	(7) from 5
1.1 $TA \lor B$	(8) from 2
1.2 $TA \lor B$	(9) from 2

1.1 <i>TA</i> (10) from 8	1.1 <i>TB</i> (11) from 8	1.2 <i>TA</i> (12) from 9	1.2 <i>TB</i> (13) from 9
* 10 and 6	open	open	* 13 and 7

This tableau does not close but remains open, which is good news because the formula we set out to prove is not valid in **K**.

LECTURE NOTES

Februrary 18, 2010

Exercises

Exercise 1 *Prove or disprove using modal tableaux:* $\Diamond(A \land B) \rightarrow \Diamond A \land \Diamond B$ *.*

Exercise 2 Are the side conditions on the prefixes for the ν^* -rule and the π -rule necessary or not? Prove or disprove each case.

Exercise 3 Use a tableau procedure to prove or disprove the formulas

 $\Box A \to \Box (\Box A \lor B)$

and

$$\Box \Box A \leftrightarrow \Box A$$

in the modal logic S4. Explain your solution.

Exercise 4 Use a tableau procedure to prove or disprove the formula

 $\Box \Diamond A \to \Diamond \Box A$

in the modal logic **S4**. Explain your solution and which difficulties exist in comparison to classical propositional cases.

References

- [Fit83] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logic. Reidel, 1983.
- [Fit88] Melvin Fitting. First-order modal tableaux. J. Autom. Reasoning, 4(2):191–213, 1988.
- [Sch03] Peter H. Schmitt. Nichtklassische Logiken. Vorlesungsskriptum Fakultät für Informatik , Universität Karlsruhe, 2003.