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1 Introduction to This Lecture

The Hilbert calculus for modal logic from the last lectures is incredibly sim-
ple, but it is not entirely simple to find a proof in it. In this lecture, we in-
troduce a modal tableau calculus that is more amenable to systematic proof
construction and automated theorem proving.

Tableaux calculi for modal logic can be found in the work of Fitting
[Fit83, Fit88] and the manuscript by Schmitt [Sch03].

2 The Petite Modal Zoo

In previous lectures, we have mainly seen the propositional modal logic
S4 and its Hilbert-style axiomatization. This is, by far, not the only modal
logic of interest. The minimal (normal) modal logic is modal logic K. The
axiomatisation of K is a subset of the axioms of S4 and the same proof rules
of S4; see Figure 1. In fact, normal modal logics share the same proof rules
(MP and G) and mostly differ in the choice of axioms.

Extensions of logic K are shown in Figure 2.

3 Modal Tableaux

For proving formulas in propositional modal logic, we develop a tableau
calculus. Tableaux often give very intuitive proof calculi. Here we choose
prefix tableaux, where every formula on the tableau has a prefix σ, which
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(P) all propositional tautologies

(K) �(φ→ ψ)→ (�φ→ �ψ)

(MP)
φ φ→ ψ

ψ

(G)
φ

�φ

Figure 1: Modal logic K

T is system K plus (T) �φ→ φ
S4 is system T plus (4) �φ→ ��φ

Figure 2: Some other modal logics

is a finite sequence of natural numbers. In addition, every formula on the
tableau has a sign Z ∈ {F, T} that indicates the truth-value we currently
expect for the formula in our reasoning. That is, a formula in the modal
tableaux is of the form

σZA

where the prefix σ is a finite sequence of natural numbers, the sign Z is in
{F, T}, and F is a formula of modal logic. At this point, we understand a
prefix σ as a symbolic name for a world in a Kripke structure.

Definition 1 (K prefix accessibility) For modal logic K, prefix σ′ is accessible
from prefix σ if σ′ is of the form σn for some natural number n.

For every formula of a class α with a top level operator and sign (T or
F for true and false) as indicated, we define two successor formulas α1 and
α2:

α α1 α2

TA ∧B TA TB
FA ∨B FA FB
FA→ B TA FB
F¬A TA TA

β β1 β2
TA ∨B TA TB
FA ∧B FA FB
TA→ B FA TB
T¬A FA FA

For the following cases of formulas we define one successor formula
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ν ν0
T�A TA
F♦A FA

π π0
T♦A TA
F�A FA

Every combination of top-level operator and sign occurs in one of the
above cases. Tableau proof rules by those classes are shown in Figure 3. A
tableau is closed if every branch contains some pair of formulas of the form
σTA and σFA. A proof for modal logic formula consists of a closed tableau
starting with the root 1FA.

(α)
σα

σα1

σα2

(β)
σβ

σβ1 σβ2
(ν∗)

σν

σ′ν0

1 (π)
σπ

σ′π0

2

1σ′ accessible from σ and σ′ occurs on the branch already
2σ′ is a simple unrestricted extension of σ, i.e., σ′ is accessible from σ and no other prefix

on the branch starts with σ′

Figure 3: Tableau proof rules for QML

The tableau rules can also be used to analyze F�A→ ♦A as follows:

1 F�A→ ♦A (1)
1 T�A (2) from 1
1 F♦A (3) from 1
stop

No more proof rules can be used because the modal formulas are ν rules,
which are only applicable for accessible prefixes that already occur on the
branch. If we drop this restriction, we can continue to prove and close the
tableau:

1 F�A→ ♦A (1)
1 T�A (2) from 1
1 F♦A (3) from 1

1.1 TA (4) from 2
1.1 FA (5) from 3
∗

But this is bad news, because the formula �A→ ♦A that we set out to
prove in the first place is not even valid in K. Consequently, the side condi-
tion on the ν rule is necessary for soundness!

As an example proof in K-tableaux we prove �A ∧�B)→ �(A ∧B):
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1 F (�A ∧�B)→ �(A ∧B) (1)
1 T�A ∧�B (2) from 1
1 F�(A ∧B) (3) from 1
1 T�A (4) from 2
1 T�B (5) from 2

1.1 FA ∧B (6) from 3

1.1 FA (7) from 6
1.1 TA (9) from 4
∗ 7 and 9

1.1 FB (8) from 6
1.1 TB (10) from 5
∗ 10 and 8

Let us prove the converse �(A ∧B)→ (�A ∧�B) in K-tableaux:

1 F�(A ∧B)→ (�A ∧�B) (1)
1 T�(A ∧B) (2) from 1
1 F�A ∧�B (3) from 1

1 F�A (4) from 3
1.1 FA (6) from 4
1.1 TA ∧B (7) from 2
1.1 TA (8) from 7
1.1 TB (9) from 7
∗ 6 and 8

1 F�B (5) from 3
1.1 FB (10) from 5
1.1 TA ∧B (11) from 2
1.1 TA (12) from 11
1.1 TB (13) from 11
∗ 10 and 13

Let us try to prove �(A ∨B)→ �A ∨�B:

1 F�(A ∨B)→ �A ∨�B (1)
1 T�(A ∨B) (2) from 1
1 F�A ∨�B (3) from 1
1 F�A (4) from 3
1 F�B (5) from 3

1.1 FA (6) from 4
1.2 FB (7) from 5
1.1 TA ∨B (8) from 2
1.2 TA ∨B (9) from 2

1.1 TA (10) from 8
∗ 10 and 6

1.1 TB (11) from 8
open

1.2 TA (12) from 9
open

1.2 TB (13) from 9
∗ 13 and 7

This tableau does not close but remains open, which is good news because
the formula we set out to prove is not valid in K.
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Exercises

Exercise 1 Prove or disprove using modal tableaux: ♦(A ∧B)→ ♦A ∧ ♦B.

Exercise 2 Are the side conditions on the prefixes for the ν∗-rule and the π-rule
necessary or not? Prove or disprove each case.

Exercise 3 Use a tableau procedure to prove or disprove the formulas

�A→ �(�A ∨B)

and
��A↔ �A

in the modal logic S4. Explain your solution.

Exercise 4 Use a tableau procedure to prove or disprove the formula

�♦A→ ♦�A

in the modal logic S4. Explain your solution and which difficulties exist in com-
parison to classical propositional cases.
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