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1 Introduction

In this lecture we present the sequent calculus and its theory. The sequent
calculus was originally developed by Gentzen [Gen35] as a means to estab-
lish properties of a system of natural deduction. In particular, this included
consistency, which means that not every proposition is provable. But there
are many other properties that naturally follow from the sequent calculus
that are much more difficult to see on natural deduction.

For us, the sequent calculus provides a bridge between the truth and
verification judgments. It will finally let us finish the internal global sound-
ness and completeness theorems for the eliminations with respect to the
introductions discussed in earlier lectures.

2 Searching for Verifications

In ordinary intuitionistic logic, when searching for a verification we are in
a situation

A1 ↓ . . . An ↓...
C ↑

where we try to select introductions to deduce C ↑ and eliminations to ap-
ply to Ai↓ until we meet in the middle. The sequent calculus codifies these
three kinds of steps as inference rules that are all read from the conclusion
to the premises.
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L8.2 Sequent Calculus

A sequent is a particular form of hypothetical judgment

A1 left, . . . , An left ` C right

where A left corresponds to a proposition that can be used (A ↓) and C right
corresponds to a proposition we have to verify (C ↑). The right rules de-
compose C in analogy with the introduction rules, while the left rules de-
compose one of the hypotheses, in analogy with the elimination rules, but
“upside-down”. For the moment, we ignore the fine structure of proofs
and do not label the hypotheses. We return to this in Exercise 2.

We now go through each of the rules for verifications, constructing anal-
ogous sequent rules. We still write Γ for a collection of hypotheses, where
in the sequent calculus they all have the form A left.

Judgmental rule. The rule
P ↓
P ↑

↓↑

means that if we have P on the left we can conclude P on the right.

Γ, P left ` P right
init

Conjunction. The introduction rule translates straightforwardly to the
right rule.

Γ ` A right Γ ` B right

Γ ` A ∧B right
∧R

The elimination rule
Γ ` A ∧B ↓

Γ ` A ↓
∧EL

means that if we have license to use A∧B, then we are justified in using A.
During proof search, we are still licensed in using A∧B again, since we do
have a justification for using A ∧B. So we obtain the following left rule:

Γ, A ∧B left, A left ` C right

Γ, A ∧B left ` C right
∧L1

Here, A ∧ B is called the principal formula of the inference. Even though
we always write this as if it were on the right end of the hypotheses, the
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Sequent Calculus L8.3

rule can be applied to any hypothesis since we consider their order to be
irrelevant. If we ignore the additional assumption A ∧B left, this is just the
elimination rules upside-down, on the left of the hypothetical judgment
rather than to the right. We also obtain a second left rule, from the second
elimination rule.

Γ, A ∧B left, B left ` C right

Γ, A ∧B left ` C right
∧L2

Implication. As is typical, the introduction rule translates straightforwardly
to a right rule.

Γ, A ↓ ` B ↑
Γ ` A⊃B ↑

⊃I
Γ, A left ` B right

Γ ` A⊃B right
⊃R

To transcribe the elimination rule into a left rule, we just have to follow
carefully the idea of bidirectional proof construction with introductions
and eliminations.

Γ ` A⊃B ↓ Γ ` A ↑
Γ ` B ↓

⊃E

In order to use A⊃B we have to verify A, which then licenses us to use B.

Γ, A⊃B left ` A right Γ, A⊃B left, B left ` C right

Γ, A⊃B left ` C right
⊃L

There is some redundancy in this rule. The hypothesis A⊃B left in the sec-
ond premise is not needed, because the assumption B left is strictly stronger.
We retain it in this calculus for two reasons. For one, it makes the con-
nections to verifications stronger, because in the construction of a verifica-
tion one could re-use the assumption even if that is not strictly necessary.
Secondly, this means that all rules (in the non-modal case) preserve mono-
tonicity of hypotheses: an assumption, once made, will be available in the
remainder of the bottom-up proof construction process.

Disjunction. Again, the introduction rules correspond directly to the fol-
lowing right rules.

Γ ` A right

Γ ` A ∨B right
∨R1

Γ ` B right

Γ ` A ∨B right
∨R2
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L8.4 Sequent Calculus

Perhaps surprisingly, the somewhat awkward elimination rule

Γ ` A ∨B ↓ Γ, A ↓ ` C ↑ Γ, B ↓ ` C ↑
Γ ` C ↑

∨E

becomes much more similar to the other left rules.

Γ, A ∨B left, A left ` C right Γ, A ∨B left, B left ` C right

Γ, A ∨B left ` C right
∨L

Again, we accept the redundancy for the sake of uniformity.

Truth. There is no elimination rule, so we only have a right rule corre-
sponding to the introduction rule.

Γ ` A right
>R

Falsehood. There is no introduction rule, so we only have a left rule cor-
responding the the elimination rule.

Γ ` ⊥↓
Γ ` C ↑

⊥E
Γ,⊥ left ` C right

⊥L

This concludes the rule for the purely (non-modal) intuitionistic se-
quent calculus. Instead of

A1 left, . . . , An left ` C right

we write
A1, . . . , An =⇒ C

because with the new notation for sequents, the judgments left and right
are determined by the position of the formula in the sequent. The rules are
summarized in Figure 1.

We take weakening and contraction properties for the sequent assump-
tions for granted; their proof is entirely straightforward and just follows
from the general principles behind hypothetical judgments.
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Sequent Calculus L8.5

Γ, P =⇒ P
init

Γ =⇒ A Γ =⇒ B

Γ =⇒ A ∧B
∧R

Γ, A ∧B,A =⇒ C

Γ, A ∧B =⇒ C
∧L1

Γ, A ∧B,B =⇒ C

Γ, A ∧B =⇒ C
∧L2

Γ, A =⇒ B

Γ =⇒ A⊃B
⊃R

Γ, A⊃B =⇒ A Γ, A⊃B,B =⇒ C

Γ, A⊃B =⇒ C
⊃L

Γ =⇒ A

Γ =⇒ A ∨B
∨R1

Γ =⇒ B

Γ =⇒ A ∨B
∨R2

Γ, A ∨B,A =⇒ C Γ, A ∨B,B =⇒ C

Γ, A ∨B =⇒ C
∨L

Γ =⇒ >
>R

no >L rule

no ⊥R rule Γ,⊥ =⇒ C
⊥L

Figure 1: Intuitionistic Sequent Calculus

3 Verifications and Sequents

The meaning of propositions is defined by their verifications. To show that
the sequent calculus is sound with respect to this definition we want to show
that if A right then A ↑ and conversely for completeness.

To translate verifications to sequent deductions we have to demonstrate
that if A1 ↓, . . . , An ↓ ` C ↑ then A1 left, . . . , An left ` C right. The difficulty
is how to translate proofs of the second judgment, namely A1 ↓, . . . , An ↓ `
A ↓. The correct property is not at all obvious, and the reader is invited to
attempt to generalize the induction hypothesis appropriately before read-
ing on.
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In the statement of the soundness theorem and its proof, we have to
translate hypotheses Γ = (A1 ↓, . . . , An ↓) to Γ̂ = (A1 left, . . . , An left).

Theorem 1 (From Verifications to Sequent Calculus)

(i) If Γ ` C ↑ then Γ̂ ` C right.

(ii) If Γ ` A ↓ and Γ̂, A left ` C right then Γ̂ ` C right.

Proof: By mutual induction on the deduction of Γ ` C ↑ and Γ ` A ↓. We
show some representative cases.

Case:

Γ, C1 ↓ ` C2 ↑
Γ ` C1⊃C2 ↑

⊃I

Γ̂, C1 left ` C2 right By i.h.(i)
Γ̂ ` C1⊃C2 right By ⊃R

Case:

Γ ` P ↓
Γ ` P ↑

↓↑

Γ̂, P left ` P right By rule init

Γ̂ ` P right By i.h.(ii)

Case:

Γ ` A1⊃A2 ↓ Γ ` A1 ↑
Γ ` A2 ↓

⊃E

Γ̂, A2 left ` C right Assumption
Γ̂, A1⊃A2 left, A2 left ` C right By weakening
Γ̂ ` A1 right By i.h.(i)
Γ̂, A1⊃A2 left ` A1 right By weakening
Γ̂, A1⊃A2 left ` C right By rule ⊃L

Γ̂ ` C right By i.h.(ii)

Case:

Γ′, A ↓ ` A ↓
hyp
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Sequent Calculus L8.7

Γ̂′, A left, A left ` C right Assumption and Γ = (Γ′, A ↓)
Γ̂′, A left ` C right By contraction

�

For the completeness theorem, we use the substitution property for A ↓.
This is just an example of the general substitution principle since the con-
clusion A ↓ matches the hypothesis of the second judgment.

Theorem 2 (Substitution for Uses) Assume Γ ` A ↓. Then

(i) if Γ, A ↓ ` B ↓ then Γ ` B ↓, and

(ii) if Γ, A ↓ ` C ↑ then Γ ` C ↑.

Proof: By mutual induction on the structure of the deduction of Γ, A ↓ `
B ↓ and Γ, A ↓ ` C ↑. �

Now we can prove the completeness of the sequent calculus. For a con-
text Γ = (A1 left, . . . , An left) we write Γ̌ = (A1 ↓, . . . , An ↓)

Theorem 3 (From Sequent Calculus to Verifications)
If Γ ` C right then Γ̌ ` C ↑.

Proof: By induction on the structure of the given derivation. We give some
representative cases
Case:

Γ, C1left ` C2 right

Γ ` C1⊃C2 right
⊃R

Γ̌, C1 ↓ ` C2 ↑ By i.h.
Γ̌ ` C1⊃C2, ↑ By rule ⊃R

Case:
Γ, A⊃B left ` A right Γ, A⊃B left, B left ` C right

Γ, A⊃B left ` C right
⊃L

Γ̌, A⊃B ↓ ` A⊃B ↓ By hypothesis rule
Γ̌, A⊃B ↓ ` A ↑ By i.h.
Γ̌, A⊃B ↓ ` B ↓ By rule ⊃E

Γ̌, A⊃B ↓, B ↓ ` C ↑ By i.h.
Γ̌, A⊃B ↓ ` C ↑ By substitution (Theorem 2)

�
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L8.8 Sequent Calculus

4 Cut Elimination

Our sequent calculus so far lacks the rule of cut:

Γ ` A right Γ, A left ` C right

Γ ` C right
cut

It is the absence of this rule (a variant of which was present in Gentzen’s
original formulation) which allows us to easily relate sequent deductions
to verifications. From the proof search perspective, the rule above corre-
sponds to the introduction of a lemma A into a proof. In the one premise
we prove this lemma, which justifies its use in the other. While this makes
sense from the perspective of truth, it could not be part of a verification.
This is because a verification should only consult the subformulas of a
given proposition, while A in the cut rule is arbitrary.

Rather than taking cut as a rule, we show that whenever the premises
have proofs in the (cut-free) sequent calculus, then the conclusion also has a
proof. This reminiscent of the substitution principle, and yet it is different.
As we can see from the rule above, the conclusion A right is a different judg-
ment than the hypothesis A left. Its proof is consequently more involved,
because it does not follow merely by substitution. We will see later that it is
the key to the global (internal) soundness and completeness theorems for
intuitionistic natural deduction as presented in earlier lectures.

The proof we follow here proceeds by nested structural induction, as
proposed in [Pfe00]. This proof is amenable to formalization in Twelf [PS99],
which was its origin. It can be presented more formally with proof terms,
but we forego this extra step here.

Theorem 4 (Admissibility of Cut) If Γ ` A right and Γ, A left ` C right then
Γ ` C right.

Proof: By nested induction, first on the structure of the cut formula A, and
second on the structure of the two given deductions (either one may be
decreased while the other remains the same). We also allow weakening
on either of the two given deductions and exploit that weakening does not
change the size or structure of a deduction at all, so we can appeal to the
induction hypothesis on a weakened subdeduction. We do this silently, in
order to avoid cluttering the proof. In one case, we also explicitly appeal to
contraction.
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Sequent Calculus L8.9

So we can refer to proofs, we use the abbreviated form of sequents and
write

If
D

Γ =⇒ A and
E

Γ, A =⇒ C then
F

Γ =⇒ C

We also write D :: (Γ =⇒ A) instead of
D

Γ =⇒ A to indicate that D is a
deduction of the sequent Γ =⇒ A.

We distinguish a variety of cases. First, two cases where either D or E is
an initial sequent.

Case:

D =
Γ′, P =⇒ P

init

and
E

Γ′, P, P =⇒ C is arbitrary. Note that Γ = (Γ′, P ) in this case.

Γ′, P, P =⇒ C Deduction E
Γ′, P =⇒ C By contraction

Case:
D

Γ =⇒ P is arbitrary and

E =
Γ, P =⇒ P

init

Γ =⇒ P Deduction D

Next an example of a case where the principal formula of the cut was
just introduced by the most recent inference on both side. This is a proto-
type of similar cases for other connectives; we call these principal cases.

Case:

D =

D2

Γ, A1 =⇒ A2

Γ =⇒ A1⊃A2
⊃R

and

E =

E1

Γ, A1⊃A2 =⇒ A1

E2

Γ, A1⊃A2, A2 =⇒ C

Γ, A1⊃A2 =⇒ C
⊃L
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L8.10 Sequent Calculus

This case proceeds in four major steps. First, we apply the induction
hypothesis to remove the “extra” copies of A1⊃A2 from the two sub-
deductions E1 and E2. Then we cut A1 and A2 from the results. The
latter two are on subformulas of the original cut formula.

Γ =⇒ A1⊃A2 Given (D)
Γ, A1⊃A2 =⇒ A1 Subdeduction E1

E ′
1 :: (Γ =⇒ A1) By i.h. on A1⊃A2, D, and E1

Γ, A1 =⇒ A2 Subdeduction D2

D′
2 :: (Γ =⇒ A2) By i.h. on A1, E ′

1, and D2

Γ, A1⊃A2, A2 =⇒ C Subdeduction E2

E ′
2 :: (Γ, A2 =⇒ C) By i.h. on A1⊃A2, D, and E2

Γ =⇒ C By i.h. on A2, D′
2, and E ′

2

Finally, we have cases where the cut formula is not the principal formula
of the last inference, either in D or in E . In that case the principal formula
can be found in one or more of the premises and we just cut it from these
premises and reapply the rule. We “push” the cut up the derivation, into
subderivations.

Case:

D =

D1

Γ′, B1⊃B2 =⇒ B1

D2

Γ′, B1⊃B2, B2 =⇒ A

Γ′, B1⊃B2 =⇒ A
⊃L

and
E

Γ′, B1⊃B2, A =⇒ C is arbitrary.

D′
2 :: (Γ′, B1⊃B2, B2 =⇒ C) By i.h. on A, D2, and E

Γ′, B1⊃B2 =⇒ C By rule ⊃L on D1 and D′
2

Case:
D

Γ =⇒ A is arbitrary and

E =

E1

Γ′, B1⊃B2, A =⇒ B1

E2

Γ′, B1⊃B2, B2, A =⇒ C

Γ′, B1⊃B2, A =⇒ C
⊃L

E ′
1 :: (Γ′, B1⊃B2 =⇒ B1) By i.h. on A, D, and E1

E ′
2 :: (Γ′, B1⊃B2, B2 =⇒ C) By i.h. on A, D, and E2

Γ′, B1⊃B2 =⇒ C By rule ⊃L on E ′
1 and E ′

2
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Sequent Calculus L8.11

Case:
D

Γ =⇒ A is arbitrary and

E =

E2

Γ, A, C1 =⇒ C2

Γ, A =⇒ C1⊃C2
⊃R

E ′
2 :: (Γ, C1 =⇒ C2) By i.h. on A, D, and E2

Γ =⇒ C1⊃C2 By rule ⊃R on E ′
2

�

5 Identity

Cut corresponds to a global soundness property: if we have proved A right,
we are justified in assuming A left Identity is the corresponding complete-
ness property: if we have an assumption A left we can prove A right. To-
gether they show that we can move back and forth between A left and
A right as long as we respect the side they can appear on. The identity
theorem below shows that the rule

Γ, A left ` A right
id

is admissible and can be used in proofs without changing the provable se-
quents.

Theorem 5 (Identity) Γ, A left ` A right for arbitrary propositions A and con-
texts Γ.

Proof: By induction on the structure of A. We again use the abbreviated
form of sequents, showing two representative cases.

Case: A = P , an atomic proposition.

Γ, P =⇒ P By rule init

Case: A = A1⊃A2.

Γ, A1⊃A2, A1 =⇒ A1 By i.h. on A2

Γ, A1⊃A2, A1, A2 =⇒ A2 By i.h. on A2

Γ, A1⊃A2, A1 =⇒ A2 By rule ⊃L
Γ, A1⊃A2 =⇒ A1⊃A2 By rule ⊃R

�
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6 Truth and Verifications, Revisited

We can use the sequent calculus as a bridge to show that every true propo-
sition has a verification. We show this by first showing that every true
proposition has a sequent calculus proof. Since we already know every
proposition with a sequent proof has a verification, the desired result is a
simple consequence.

The key to mapping arbitrary natural deductions to sequent derivations
is the admissibility of cut. We write Γ̂ for the translation of hypotheses
A true to A left.

Theorem 6 (From Natural Deductions to Sequent Calculus) If Γ ` A true
then Γ̂ ` A right.

Proof: By induction on the structure of the given proof
D

Γ ` A true. We
show some representative cases.

Case:

D =
Γ′, A true ` A true

hyp

Γ̂′, A =⇒ A By identity (Theorem 5)

Case:

D =

D2

Γ, A1 true ` A2 true

Γ ` A1⊃A2 true
⊃I

Γ̂, A1 =⇒ A2 By i.h. on D2

Γ̂ =⇒ A1⊃A2 By rule ⊃R

Case:

D =

D2

Γ ` A1⊃A2 true
D1

Γ ` A1 true

Γ ` A2 true
⊃E
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Sequent Calculus L8.13

Γ̂ =⇒ A1⊃A2 By i.h. on D2

Γ̂ =⇒ A1 By i.h. on D1

Γ̂, A1⊃A2, A1 =⇒ A1 By identity
Γ̂, A1⊃A2, A1, A2 =⇒ A2 By identity
Γ̂, A1⊃A2, A1 =⇒ A2 By rule ⊃L

Γ̂, A1 =⇒ A2 By cut (Theorem 4)
Γ̂ =⇒ A2 By cut (Theorem 4)

�

Recall that verifications are sound for truth. This follows by induction
on verifications and uses, since each introduction and elimination rule ap-
plies equally to truth if we conflate verifications and uses. The rule ↓↑ is the
only exception, but after replacing P ↑ and P ↓ both by P true the premise
and conclusion are identical.

Corollary 7 (Truth and Verifications) A true iff A ↑.

Proof: “⇒”: Assume A true.

· ` A right By Theorem 6
· ` A ↑ By Theorem 3

“⇐”: See above remark.
�

Of course, there will in general be many more proofs of A true than
A ↑, because verifications are purposefully restricted to be constructed in
a certain analytic manner. The sequent calculus from this lecture can be
seen as a rudimentary basis for a search procedure for verifications, which
is therefore sound and complete for truth.

Computationally, the proof of the above corollary is not particularly
satisfactory. A natural deduction of A true is converted to a sequent proof
using a plethory of cuts, employing cut elimination to go back to a veri-
fication. The computational interpretation of cut elimination is not nearly
as elegant as proof term reduction directly on natural deductions. One can
also directly transform a proof into a verification using a technique called
hereditary substitution, which we will probably not cover in this course.
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7 Modal Sequent Calculus

The system of natural deduction and verifications constructed in Lecture
3 and Lecture 4 to capture modal necessity and possibility has an elegant
rendering as a sequent calculus, following exactly the same intuition as for
(non-modal) intuitionistic logic. There are two forms of extended sequent
judgments

B1 lvalid, . . . , Bm lvalid︸ ︷︷ ︸
∆

; A1 left, . . . , An left︸ ︷︷ ︸
Γ

` γ

where γ is either C right or C rposs.

Validity. The judgmental rule

A⇓ ∈ ∆

∆; Γ ` A ↓

is a transition from the assumption that A is valid which we may use (A ⇓)
to the assumption that we may use A. It becomes

(∆, A lvalid); (Γ, A left) ` γ

(∆, A lvalid); Γ ` γ
valid

In addition, we have the introduction and elimination rules.

∆; • ` A ↑
∆; Γ ` �A ↑

�I
∆; Γ ` �A ↓ (∆, A⇓); Γ ` C ↑

∆; Γ ` C ↑
�E

∆; Γ ` �A ↓ (∆, A⇓); Γ ` C ·↑·

∆; Γ ` C ·↑·
�E

They become (were γ is C right or C rposs, as before):

∆; • ` A right

∆; Γ ` �A right
�R

(∆, A lvalid); (Γ,�A left) ` γ

∆; (Γ,�A left) ` γ
�L

As expected, the ordinary truth assumptions A left are no longer mono-
tonic, because they are erased when the �R rule is applied. Validity as-
sumptions in ∆, however, remain.
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Possibility. The judgmental rule

∆; Γ ` A ↑
∆; Γ ` A ·↑·

poss

which constructs a verification of possibility from a verification of truth,
translates easily into an analogous rule in the sequent calculus.

∆; Γ ` A right

∆; Γ ` A rposs
poss

The right and left rules for verifications of ♦A do not pose any special chal-
lenges.

∆; Γ ` A rposs

∆; Γ ` ♦A right
♦R

∆; (•, A left) ` C rposs

∆; (Γ,♦A left) ` C rposs
♦L

For the example, we use a shorthand notation, where the judgment is
question is indicated by the position of the proposition in the sequent. The
two forms of sequents are

∆; Γ =⇒ C right written as ∆; Γ =⇒ C; ·
∆; Γ =⇒ C rposs written as ∆; Γ =⇒ ·;C

We summarize the modal rules in the abbreviated notation in Figure 2.
For reference, we also repeat the generalized rules from Figure 1.

As an example derivation, we show the sequent proof of �(A⊃B)⊃(♦A⊃♦B).
We silently omit propositions that are no longer needed. Furthermore,
when ∆ is empty or no longer needed, we may omit the leading “∆;” and
when γ is C right we omit the trailing “; ·”. In this notation, purely non-
modal intuitionistic reasoning looks just as before.

A =⇒ A
init

B =⇒ B
init

A⊃B,A =⇒ B
⊃L

A⊃B,A =⇒ ·;B
poss

A⊃B;A =⇒ ·;B
valid

A⊃B;♦A =⇒ ·;B
♦L

A⊃B;♦A =⇒ ♦B
♦R

�(A⊃B),♦A =⇒ ♦B
�L

=⇒ �(A⊃B)⊃(♦A⊃♦B)
⊃R× 2
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8 Properties of the Modal Sequent Calculus

The properties of the sequent calculus we developed in the preceding sec-
tions carry over to the modal sequent calculus. We write ∆̂ for the transla-
tion that replaces A valid with A lvalid. We also write γ for C right or C rposs.

Theorem 8 (From Verifications to Modal Sequent Calculus)

(i) If ∆; Γ ` C ↑ then ∆̂; Γ̂ ` C right.

(ii) If ∆; Γ ` C ·↑· then ∆̂; Γ̂ ` C rposs.

(iii) If ∆; Γ ` A ↓ and ∆̂; Γ̂, A left ` γ then ∆̂; Γ̂ ` γ.

Proof: By induction on the first given deduction, as for Theorem 1. �

For the other direction, we write ∆̌ for the translation from hypotheses
A lvalid to A⇓.

Theorem 9 (From Modal Sequent Calculus to Verifications)

(i) If ∆; Γ ` C right then ∆̌; Γ̌ ` C ↑

(ii) If ∆; Γ ` C rposs then ∆̌; Γ̌ ` C ·↑·

Proof: By induction on the given deduction, as for Theorem 3. We need a
straightforward generalization of the substitution properties for uses (The-
orem 2). �

The admissibility of cut comes in several flavors, which mutually de-
pend on each other. This complicates the induction principle that we need.

Theorem 10 (Admissibility of Cut in Modal Sequent Calculus)

(i) If ∆; Γ ` A right and ∆; Γ, A left ` γ then ∆; Γ ` γ.

(ii) If ∆; • ` A right and ∆, A lvalid; Γ ` γ then ∆; Γ ` γ.

(iii) If ∆; Γ ` A rposs and ∆; •, A left ` C rposs then ∆; Γ ` C rposs

Proof: By nested induction

1. on the cut formula A,

2. on the cut judgment, where (A left) < (A lvalid),
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3. on the structure of the two given derivations, where one may get
smaller while the other one remains the same.

�

The identity theorem changes less, because we do not have any directly
related judgments on the left and the right of a sequent except for A left and
A right.

Theorem 11 (Identity for Modal Sequent Calculus) ∆; Γ, A left ` A right
for any ∆, Γ and A.

Proof: By induction on the structure of A. �

Again, exploiting cut and identity, we can show that natural deductions
and sequent calculus derivations prove the same theorems. Here we write
∆̄ and Γ̄ for the translation of hypotheses A valid and A true to A lvalid and
A left, respectively.

Theorem 12 (From Natural Deductions to Modal Sequent Calculus)

(i) If ∆; Γ ` A true then ∆̄; Γ̄ ` A right.

(ii) If ∆; Γ ` A poss then ∆̄; Γ̄ ` A rposs.

Proof: By induction on the structure of the given natural deduction, ex-
ploiting cut and identity. �

We will not restate Corollary 7, but it follows directly from the theorems
above: Every true proposition has a verification.

9 Unprovable Propositions

In the sequent calculus, all inference rules construct a proof bottom-up,
from the conclusion to the premises. Moreover, all rules have the subfor-
mula property: the sequent in the premises is constructed only from sub-
formulas of the sequent in the conclusion. These two properties combine
to make it a powerful tool for showing that certain propositions cannot be
proven.

In these examples, we treat the propositional variables A,B, C, . . . as
atomic propositions. When we say “by inversion” we mean that we find
zero or more possible rules that could conclude with a given sequent and
distinguish these finitely many cases.
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6` ⊥ true. Since sequent proofs are complete for truth, it suffices to show
that there cannot be a sequent proof for arbitrary atomic propositions A.
This reasoning applies for the following examples as well.

=⇒ ⊥ Assumption
Contradiction By inversion (no possible rule)

6` A ∨ (A⊃⊥) true.

=⇒ A ∨ (A⊃⊥) Assumption
=⇒ A or =⇒ A⊃⊥ By inversion (∨R1 or ∨R2)

=⇒ A First case
Contradiction By inversion (no possible rule)

=⇒ A⊃⊥ Second case
A =⇒ ⊥ By inversion (⊃R)
Contradiction By inversion (no possible rule)

6` A⊃�A true.

=⇒ A⊃�A Assumption
A =⇒ �A By inversion (⊃R)
• =⇒ A By inversion (�R)
Contradiction By inversion (no possible rule)

6` ♦A⊃A true.

=⇒ ♦A⊃A Assumption
♦A =⇒ A By inversion (⊃R)
Contradiction By inversion (no possible rule)

6` ♦⊥⊃⊥.

=⇒ ♦⊥⊃⊥ Assumption
♦⊥ =⇒ ⊥ By inversion (⊃R)
Contradiction By inversion (no possible rule)
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6` ♦(A ∨B)⊃(♦A ∨ ♦B).

=⇒ ♦(A ∨B)⊃(♦A ∨ ♦B) Assumption
♦(A ∨B) =⇒ ♦A ∨ ♦B By inversion (⊃R)
♦(A ∨B) =⇒ ♦A or ♦(A ∨B) =⇒ ♦A By inversion (∨R1 or ∨R2)

♦(A ∨B) =⇒ ♦A First case
♦(A ∨B) =⇒ ·;A By inversion (♦R)

♦(A ∨B) =⇒ A or A ∨B =⇒ ·;A By inversion (poss or ♦R)

♦(A ∨B) =⇒ A First subcase
Contradiction By inversion (no possible rule)

A ∨B =⇒ ·;A Second subcase
A ∨B,B =⇒ ·;A By inversion, first subsubcase (∨L)
B =⇒ ·;A By strengthening (see below)
B =⇒ A By inversion
Contradiction By inversion (no possible rule)

A ∨B =⇒ A Second subsubcase (poss)
A ∨B,B =⇒ A By inversion (∨L)
B =⇒ A By strengthening (see below)
Contradiction By inversion (no possible rule)

♦(A ∨B) =⇒ ♦B Second case
Symmetric to first case

In this last proof we used the following instance of strengthening: If
A ∨B,B =⇒ γ then B =⇒ γ. The proof goes as follows:

B =⇒ A ∨B By init and ∨R2

A ∨B,B =⇒ γ Given
B =⇒ γ By cut

LECTURE NOTES FEBRUARY 9, 2010



L8.20 Sequent Calculus

∆; Γ, P =⇒ P ; ·
init

∆; Γ =⇒ A; · ∆; Γ =⇒ B; ·

∆; Γ =⇒ A ∧B; ·
∧R

∆; Γ, A ∧B,A =⇒ γ

∆; Γ, A ∧B =⇒ γ
∧L1

∆; Γ, A ∧B,B =⇒ γ

∆; Γ, A ∧B =⇒ γ
∧L2

∆; Γ, A =⇒ B; ·

∆; Γ =⇒ A⊃B; ·
⊃R

∆; Γ, A⊃B =⇒ A; · ∆; Γ, A⊃B,B =⇒ γ

∆; Γ, A⊃B =⇒ γ
⊃L

∆; Γ =⇒ A; ·

∆; Γ =⇒ A ∨B; ·
∨R1

∆; Γ =⇒ B; ·

∆; Γ =⇒ A ∨B; ·
∨R2

∆; Γ, A ∨B,A =⇒ γ ∆; Γ, A ∨B,B =⇒ γ

∆; Γ, A ∨B =⇒ γ
∨L

∆; Γ =⇒ >; ·
>R

no >L rule

no ⊥R rule ∆; Γ,⊥ =⇒ γ
⊥L

(∆, A); (Γ, A) =⇒ γ

(∆, A); Γ =⇒ γ
valid

∆; • =⇒ A; ·

∆; Γ =⇒ �A; ·
�R

(∆, A); (Γ,�A) =⇒ γ

∆; (Γ,�A) =⇒ γ
�L

∆; Γ =⇒ A; ·

∆; Γ =⇒ ·;A
poss

∆; Γ =⇒ ·;A

∆; Γ =⇒ ♦A; ·
♦R

∆; (•, A) =⇒ ·;C

∆; (Γ,♦A) =⇒ ·;C
♦L

Figure 2: Intuitionistic Modal Sequent Calculus
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Exercises

Exercise 1 We can annotate modal verifications and uses with the proof terms
introduced in Lecture 4. This will induce several syntactic classes of terms:

Canonical terms N such that ∆; Γ ` N : A ↑
Atomic terms R such that ∆; Γ ` R : A ↓
Normal expressions E such that ∆; Γ ` E ÷A ·↑·

For arbitrary proof terms M , we used type annotations as, for example, in
λx:A.M to make sure that every proof term has a unique type. For canonical
terms these are no longer necessary.

(i) Give a syntactic characterization of the forms of N , R, and E.

(ii) Prove that even without any type annotations, if Γ, ∆, N , and A are given,
the derivation of Γ;∆ ` N : A ↑ is uniquely determined (if it exists), even
without any type annotations in terms. Make sure to appropriately general-
ize the induction hypothesis to include the other judgment forms.

Exercise 2 One way to assign proof terms to the sequent calculus is suggested
by the translation from verifications to sequent deductions (Theorem 1). A (non-
modal) sequent annotated with proof terms has the form

M1:A1, . . . ,Mn:A1 =⇒ N : C

where Mi:Ai ↓ and N : C ↑.

(i) Restate Theorem 1 with proof terms.

(ii) Show the cases for ⊃I , ↓↑, ⊃E, and hypotheses in the proof.

(iii) Generalize the theorem to include the judgments of validity and possibility.

(iv) Show the cases for valid hypotheses, �I , and �E.

(v) Show the cases for poss, ♦I , and ♦E.

(vi) Is it the case that for every term N such that ` N : C ↑ there is a sequent
derivation such that =⇒ N : C? In other words, is the sequent calculus
complete with respect to all proofs, or just with respect to provability?

Exercise 3 Once the admissibility of cut is established, we can add it as an infer-
ence rule to obtain a sequent calculus with an explicit rule of cut. Writing Γ +=⇒ A

for sequent calculus with the cut rule, prove that Γ +=⇒ C iff Γ =⇒ A.
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Exercise 4 We have presented the sequent calculus in a form that is directly moti-
vated by verifications. From the perspective of provability, however, there are some
redundancies. For example, in the ∨L rule, the assumption A ∨ B is redundant
in both premises because the new assumption A or B, respectively, is stronger.
We exploited this observation in the form of a strengthening principle to show the
unprovability of ♦(A ∨B)⊃(♦A ∨ ♦B).

Rewrite the sequent calculus rules to exploit redundancy as much as possible.
In which rules do we need to preserve the principal formula of the left rule?

Exercise 5 We call a connective negative if its right rule in the sequent calculus
can always be applied immediately without losing provability. For example, con-
junction is negative because ∆; Γ =⇒ A ∧ B iff ∆; Γ =⇒ A and ∆; Γ =⇒ B.
On the other hand, �A is not negative, because the proof of ·;�(A ∧ B) =⇒ �A
must start with the left rule.

Determine which connectives among ∧, ⊃, ∨, >, ⊥, �, ♦ are negative.
By extension, a judgment is negative if it does not occur on the right because

it can always immediately be decomposed according to its definition. A valid is a
negative judgment. Demonstrate that A poss is not negative.

Exercise 6 We call a connective positive if its left rule in the sequent calculus
can always be applied immediately without losing provability, while at the same
time not carrying the principal formula to any premises. For example, A ∨ B is
positive, while ♦A is not positive.

Determine which connectives among ∧, ⊃, ∨, >, ⊥, �, and ♦ are positive.
By extension, a judgment is positive if it does not occur on the left because

it can always be immediately decomposed according to its definition. A poss is a
positive judgment. Demonstrate that A valid is not positive.

Exercise 7 As explained in Exercises 5 and 6, the judgment A valid is negative
and A poss is positive so validity never appears on the right and possibility never
on the left. In this exercise we explore the consequences of nevertheless allowing
these judgments.

(i) Formulate a system of verifications and uses that allows verifications for
validity A⇑ and uses of possibility A ·↓·.

(ii) Give a proof term assignment as well as local reductions and expansions.

(iii) Design a corresponding sequent calculus.

(iv) Write out the expected cut principles.

LECTURE NOTES FEBRUARY 9, 2010



Sequent Calculus L8.23

(v) Give the induction order and show the new cases for the admissibility of cut.

(vi) Discuss the merits and demerits of this system when compared to the one
present in lecture.

Exercise 8 Re-examine the proposed rule

Γ, A ↓ ` C ↓ Γ, B ↓ ` C ↓
Γ ` A ∨B ↓

∨E

from Exercise L1.9 in view of the connection between verifications and the sequent
calculus.

Exercise 9 Re-examine the connective A ⊗ B from exercise L2.9, which was de-
fined by its elimination rule.

(i) Give the corresponding left and right rules of the sequent calculus.

(ii) Give the new cases in the translation from verifications to sequent calculus
(Theorem 1).

(iii) Give the new cases in the translation from the sequent calculus to verifica-
tions (Theorem 3).

(iv) Is A⊗B negative (see Exercise 5)?

(v) Is A⊗B positive (see Exercise 6)?

(vi) There is a proposition logically equivalent to A ⊗ B. State and prove the
equivalence. Any observations regarding (iv) and (v)?

Exercise 10 Gentzen’s original sequent calculus permitted right and left rules
for negation, taking advantage of a sequent form with an empty right-hand side.
From the judgmental perspective, we can obtain this using a new judgment of con-
tradiction, written “contra” for natural deduction and “empty” for the sequent
calculus. We then have the rules

∆; Γ, A left ` empty

∆; Γ ` ¬A right
¬R

∆; Γ,¬A left ` A right

∆; Γ,¬A left ` γ
¬L

The notation γ in this an all other rules now includes C right, C rposs, and empty.
In the short-hand form of sequents, we write “A; ·” for A right, “·;A” for

A rposs and “·; ·” for empty, so the rules above could be written as

∆; Γ, A =⇒ ·; ·
∆; Γ =⇒ ¬A; ·

¬R
∆; Γ =⇒ A; ·

∆; Γ,¬A =⇒ γ
¬L
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(i) Give the corresponding judgments and rules for natural deduction.

(ii) Extend the definition of verifications and uses.

(iii) Present the new cases in the translation from verifications to sequent proofs
(Theorem 8).

(iv) Present the new cases in the translation from sequent proofs to verifications
(Theorem 9).

(v) Present the new principal case(s) in the proof of the admissibility of cut (The-
orem 10).

(vi) Present the new case(s) in the proof of identity (Theorem 11).

(vii) Present the new cases in the translation from natural deduction to sequent
calculus (Theorem 12).

(viii) Prove that ` ¬A ≡ (A⊃⊥).

(ix) Prove that 6` ¬¬A⊃A .

Exercise 11 We define ?A = ¬(¬A), where you may chose to view ¬A either as
a notational definition or a new connective as explained in Exercise 10. Which of
the following characteristic axioms of modal logic hold for ?A?

(i) ` A⊃ ?A

(ii) ` ?A⊃A

(iii) ` ?A⊃ ? ? A

(iv) ` ? ? A⊃ ?A

(v) ` ?(A⊃B)⊃(?A⊃ ?B)

Exercise 12 Using the sequent calculus, show that the following are not provable.

(i) ♦A ∧ ♦B⊃♦(A ∧B)

(ii) �¬A⊃¬♦A
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