
The Mathematics of Sentence Structure

Joachim Lambek

The American Mathematical Monthly, Vol. 65, No. 3. (Mar., 1958), pp. 154-170.

Stable URL:
http://links.jstor.org/sici?sici=0002-9890%28195803%2965%3A3%3C154%3ATMOSS%3E2.0.CO%3B2-7

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Tue Mar 11 19:34:22 2008

http://links.jstor.org/sici?sici=0002-9890%28195803%2965%3A3%3C154%3ATMOSS%3E2.0.CO%3B2-7
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/maa.html

THE MATHEMATICS OF SENTENCE STRUCTURE*
JOACHIM LAMBEK, McGill University

T h e definitions [of the parts of speech] are very far from having attained the
degree of exactitude found in Euclidean geometry.

-Otto Jespersen, 1924.

1. Introduction. The aim of this paper is to obtain an effective rule (or
algorithm) for distinguishing sentences from nonsentences, which works not
only for the formal languages of interest to the mathematical logician, but also
for natural languages such as English, or a t least for fragments of such lan-
guages. An attempt to formulate such an algorithm is implicit in the work of
Ajdukiewicz.t His method, later elaborated by Bar-Hillel [2], depends on a
kind of arithmetization of the so-called parts of speech, here called syntactic
types.f

The present paper begins with a new exposition of the theory of syntactic
types. I t is addressed to mathematicians with a t most an amateur interest in
linguistics. The choice of sample languages is therefore restricted to English
and mathematical logic. For the same reason, technical terms have been bor-
rowed from the field of high school grammar.

Only a fragmentary treatment of English grammar is presented here. This
should not be taken too seriously, but is meant to provide familiar illustrations
for our general methods. The reader should not be surprised if he discovers
considerable leakage across the line dividing sentences from nonsentences. I t
is only fair to warn him that some authorities think that such difficulties are in-
herent in the present methods.$ We take consolation in the words of Sapir: "All
grammars leak."

The second part of this paper is concerned with a development of the tech-
nique of Ajdukiewicz and Bar-Hillel in a mathematical direction. We introduce
a calculus of types, which is related to the well-known calculus of residuals.**

* This paper was written while the author held a Summer Research Associateship from the
National Research Council of Canada. The present discussion of English grammar, in its final
form, owes much to the careful reading and helpful criticism of earlier versions by Bar-Hillel and
Chomsky.

i An English translation of his paper [I] is available in mimeographed form at the University
of Chicago.

$ Historically, these types can be traced back t o the semantic types attributed by Tarslri [21,
p. 2151 to E. Husserl and S. Lesniewski. A similar technique for logical systems was developed in-
dependently by Church [8]. Closely related is also the work by Curry [ll]on functional characters.
These correspond approximately t o syntactic types for languages in which functors are always
written on the left of their arguments.

Q Chomsky [6; 71 believes that such methods can describe only a small proportion of the
sentences of a natural language and that other sentences should be obtained from these by certain
transformations.

** See [3, xIII]. The calculus presented here is formally identical with a calculus constructed
by G. D. Findlay and the present author for a discussion of canonical mappings in linear and
multilinear algebra.

19581 THE MATHEMATICS OF SENTENCE STRUCTURE 155

The decision problem for this system is solved affirmatively, following a pro-
cedure first proposed by Gentzen for the intuitionistic propositional calculus.tt

The methods described here may be applied in several fields. For the teaching
of English they provide a rigorous version of the traditional activity known as
diagramming and parsing. For introductory logic courses they offer an effective
definition of well-formed formulas. For the mechanical translation of languages
[16],they may help with the syntactic analysis of the input material and indi-
cate how to arrange the output into grammatical sentences of the target lan-
guage. For the construction of an auxiliary language, they tell how to achieve a
completely regular syntax; this is of special importance when the auxiliary is to
act as an intermediate language in mechanical translation.

2. Syntactic types. While linguists are primarily interested in speech rather
than in written texts, we shall here confine attention to the latter, if only to
escape the difficult task of breaking up continuous discourse into discrete words.
By a word we shall understand a word-form: Such forms as work, works, worked
and working are different words; but the word work occurs twice in we work best
when we like our work, although it functions as a verb in the first place and as a
noun in the second. T o describe the function of a word or expression we ascribe
to i t a certain syntactic type. This concept will now be defined; i t corresponds
approximately to the traditional part of speech.

We begin by introducing two primitive types: s, the type of sentences, and
n, the type of names. For the sake of simplicity, we here restrict sentence to
denote complete declarative sentences, ruling out requests and questions (as
well as most replies, which are usually incomplete). By a name we understand
primarily a proper name, such as John or Napoleon. But we shall also assign type
n to all expressions which can occur in any context in which all proper names
can occur. Thus type n is ascribed to the so-called class-nouns milk, rice, . . . ,
which can occur without article, and to compound expressions such as poor
John, fresh milk, . .$$ We do not need to assign type n to the so-called count-
nouns king, chair, . . . , which require an article, nor to the pronoun he, as i t
cannot replace John in poor John works or milk in John likes milk.

From the primitive types we form compound types, by the recursive defini-
tion: If x and y are types, then so are x/y (read x over y) and y\x (read y under x).
The meaning of these two kinds of division will be made clear by two examples.

The adjective poor modifies the name John from the left, producing the noun-
phrase poor John. We assign to i t type n/n.

The predicate (intransitive verb) works transforms the name John from the
right into the sentence John works. We assign to i t type n\s.

In general, an expression of type x/y when followed by an expression of type
See [13; 10, 11; 15, XV]. Curry [l l , appendix] has also observed the close analogy between

the theory of functional characters and the propositional calculus.
$1There is a difficulty here: Of course we cannot check all admissible name contexts (whose

number is infinite) to see whether poor John can be fitted in. Our assignment of types is tentative
and subject to future revision.

156 THE MATHEMATICS OF SENTENCE STRUCTURE [March

y produces an expression of type x , and so does an expression of type y\x when
preceded by an expression of type y. We write symbolically

3. Type list for a fragment of English. We shall illustrate the assignment of
types to English words by considering a number of sample sentences.

(1) John works

This remains a sentence if John is replaced by any other name, hence works
has type n\s.

(2) (poor John) works

Here poor John takes the place of the name in (1); in fact poor John can occur
in any context in which all names can occur, hence it has type n. Moreover, so
has #oor Tom, poor Jane, . . . , thus poor has type n / n .

(3) (John works) here

The word here transforms (I) , or any other sentence, into a new sentence,
hence it has type s\s. The question may be raised whether here can be attached
to a sentence such as (3) itself. While John works here here is open to stylistic
objections, we shall consider it grammatically well-formed.

John (never works)

(n\s>/(n\s> n\s
Since John can be replaced by any name here, never works has type n\s, and so
has never slee#s, . ;hence never has type (n\s)/(n\s). I t may be argued that (3)
could also have been grouped John (works here) suggesting the type (n\s)\(n\s)
for here. I t will be shown later that every adverbial expression of type s\s also
has type (n\s)\(n\s).

(John works) (for Jane)
n n\s (s\s)/n n

This indicates that for Jane should have the same type as here in (3), namely s\s,
and since Jane can be replaced by any other name for has type (s\s)/n.

(6) (John works) (and (Jane rests))

This illustrates how and can join two arbitrary sentences to form a new sen-
tence; its type is therefore (s\s)/s.

19581 THE MATHEMATICS OF SENTENCE STRUCTURE

(7) John (likes Jane)

Here likes Jane has the same type as works in (I) , hence likes has type (n\s)/n.
Similarly we may write John (likes milk) and even milk (likes John). The latter
is a grammatical sentence, though open to semantic objections.

Example (7) raises an important point. Let us group this sentence

(John likes) Jane
n n\(s/n) n

Here John likes has type s/n, hence likes must be given the new type n\(s/n).
We would regard the two types of likes in (7) and (7') as in some sense equiva-
lent. Abstracting from this particular situation, we write symbolically

In practical applications i t is often tedious to distinguish between equivalent
types, we then write x\y/z for either side of (11). Further examples of this con-
vention are afforded by the types of never, for and and [see Table I] . T o avoid
multiplication of parentheses, we may also abbreviate (x/y)/z as x/y/z, and,
symmetrically, z\(y\x) as z\y\x. However, parentheses must not be omitted
in such compounds as x/(y/z), (z\y)\x, (x/y)\z and z/(y\x).

Table I compares the syntactic types of the words discussed above with the
traditional parts of speech and the recent classification of Fries [12].

Word Type Part of Speech Fries Class

(1) works n\s intransitive verb 2C
(2) poor 4% adjective 3
(3) here s\s adverb 4
(4) never n\s/(n\s) adverb
(5) for s\s/n preposition F
(6) and S\S/S conjunction E,J
(7) likes n\s/n transitive verb 2B

I t is fairly clear that in this manner we can build up a type list for a gradu-
ally increasing portion of English vocabulary. This should be subject to possible
revision, as more information becomes available.

T o distinguish between different forms such as works and work, usually
represented by a single dictionary entry, i t is necessary to allow for more than
two primitive types. Thus we might assign the type n* to all noun-plurals,
such as men, chairs, . . . In contrast to examples (I), (2) , (5), (7) we then have

men work
n* n*\s

158 THE MATHEMATICS OF SENTENCE STRUCTURE [March

(2*) poor men work

(5*) John works for men

(7*) John likes girls, men like Jane, men like girls

This assignment successfully distinguishes between the forms work and
works, like and likes, but i t introduces an undesirable multiplicity of types for
poor, for, like, and likes. While French distinguishes the forms pauvre and
pauvres, English fails to make a corresponding distinction.

A more thorough analysis of the English verb phrase would compel us to
introduce further primitive types for the infinitive and the two kinds of par-
ticiples of intransitive verbs. This would lead to some revision of the type
list embodied in Table I. While giving a more adequate treatment of English
grammar, such a program would not directly serve the purpose of the present
paper.

4. Formal systems. Suppose we have before us a string of words whose types
are given. Then we can compute the type of the entire expression, provided its
so-called phrase structure has been made visible by some device such as brackets.
Consider for example

John (likes (fresh milk))

The indicated computation can also be written in one line:

In the formal languages studied by logicians, this process offers an effective
test whether a given grouped string of symbols is a well-formed formula. For in
these languages'each word (usually consisting of a single sign) has just one pre-
assigned type, and the use of brackets is obligatory. Let us call expressions with
built-in brackets formulas; then formulas may be defined recursively: Each
word is a formula, and if A and B are formulas, so is (A B) .

Brackets are usually omitted when this can be done without introducing
ambiguity. Brackets are regularly omitted in accordance with Rule (11). Thus
logicians write

THE MATHEMATICS OF SENTENCE STRUCTURE

rather than

Allowance being made for this convention, the sentence structure of a formal-
ized language is completely determined by its type list. A number of examples
will illustrate this.

1. The propositional calculus, according to one of its formulations, possesses
an infinite sequence of propositional variables of type s, and two signs for nega-
tion and implication of types s/s and s\s/s respectively.

The Polish school of logicians prefer to write all functors on the left of their
arguments; i t is well-known [18, IV] that all brackets can then be omitted with-
out introducing ambiguity. The implication sign in the Polish notation is there-
fore of type s/s/s.

2. Boolean algebra, rather redundantly formulated, contains an infinite
sequerice of individual variables, as well as the signs 0 and 1, all of type n, an
accent (for complementation) of type n\n, cap and cup of type n\n/n, equality
and inclusion signs of type n\s/n.

3. Quine's mathematical logic [I?] , into which we here introduce a special
sign for universal quantification, contains an infinite sequence of individual
variables of type n, and signs for joint denial, universal quantification and
membership of types s\s/s, s/s/n and n\s/n respectively.

4. The calculus of lambda conversion due to Church, with a special sign of
type n/n/n for application [18, p. 11 I] , contains also an infinite sequerice of
individual variables xi (i=1, 2 , .) of type n, together with a parailel se-
quence Axi of type n/n/n.

5. The syntactic calculus to be introduced in this paper contains a namber
of symbols for primitive types of type n, three connectives . , \, / of type n\n/n,
and the sign -+ of type n\s/n.

In the interpretation of formal languages 121, XVIII , Section 41 oile usually
assumes tha t expressions of type s denote truth values, expressions of type n
denote members of a given domain of individuals, and expressions of type x/y
or y\x denote functions from the class of entities denoted by expressions of type
y into the class of entities denoted by expressions of type x.

The above discussion of formal systems is somewhat oversimplified. Thus
in Quine's formulation of mathematical logic, no special symbol is used for uni-
versal quantification, and in Church's formulation of the calculus of lambda con-

160 THE MATHEMATICS OF SENTENCE STRUCTURE [March

version the sign for application is not written. The syntactic description of these
languages in terms of types would be more complicated without the special
symbols introduced here. In some languages it is important to distinguish be-
tween constants and variables of apparently the same type [see, e.g., I] . A
description in terms of two primitive types is then no longer adequate.

5. Type computations in English. Suppose we wish to compute the type of
a string of English words, which are taken from a given type list. We cannot
proceed quite as directly as in the formal systems discussed above, for two
reasons, which we shall pause to discuss.

First, brackets do not usually occur in English texts, unless we regard
punctuation as a half-hearted attempt to indicate grouping. Two ways of insert-
ing brackets into an expression such as the daughter of the woman whom he loved
may lead to essentially different syntactic resolutions, which may be accom-
panied by different meanings.

Secondly, English words usually possess more than one type. We have seen
some examples of this in Section 3 ; others are easily found: The adverbial ex-
pression today has type s/s or s\s, depending on whether it precedes or follows
the sentence modified. The word sound may be a noun, an adjective, or a verb,
either transitive or intransitive, depending on the context. Some "chameleon"
words possess a type which is systematically ambiguous, allowing them to blend
into many different contexts. Thus only, of type x/x, can probably modify
expressions of any type x, and and, of type x\x/x, will join together expressions
of almost any type x to form a compound of the same type.

A mechanical procedure for analyzing English sentences would consist of
four steps:

I. Insert brackets in all admissible ways.

11. T o each word assign all types permitted by a given finite type list. (We
ignore for the moment the difficulty arising from words which possess a poten-
tially infinite number of types, as do the chameleons and and only).

111. For each grouping and type assignment compute the type of the total
expression.

IV. Select that method of grouping and that type assignment which yields
the desired type s.

A simple example, in which the problem of grouping does not arise, is

time flies
n n*

n*\s/n n\s

19581 THE MATHEMATICS OF SENTENCE STRUCTURE

Only the assignment

time $lies

produces a declarative sentence. This may be contrasted with

(spiders time flies) without clocks,
n* n*\s/n* n* s\s/n* n*

and

(T I M E flies (10,000 copies)) to Montreal.
n n\s/n* n*/n* n* s\s/n n

6. Pronouns. So far we have confined attention to the computation Rules
(I) and (11). We have had one indication that other rules may play a role: the
discussion of Example (4) suggests the rule

T o give a heuristic introduction for the consideration of further rules, we enter
into a short discussion of English pronouns.

he works, he likes Jane
(8)

s/(n\s> n\s s/(n\s> n\s/n n
Since he transforms such expressions as works, likes Jane, . . . , of type n\s

into sentences, we assign to i t type s/(n\s). We could of course enlarge the class
of names to include pronouns, but then we should be hard put to explain why
poor he works and Jane likes he are not sentences. A t any rate, the assignment of
type s/(n\s) t o he is valid, irrespective of whether we regard pronouns as
names. In fact, by the same argument, the name John also has type s/(n\s).
This point will be discussed later.

(9) that's him, Jane likes him,
4%(s/~)\s n n\s/n (s/n>\s

Janeworks for him
n n\s s\s/n (s/n)\s

The expressions that's, Jane likes and Jane worksfor all have type s /n , hence
we have ascribed type (s/n)\s to him. (This assignment is not quite correct:*
The example Jane likes poor John indicates that the expression Jane likes poor
also has type s / n , yet Jane likes poor him is not a sentence. Moreover the pres-
ent assignment does not explain why that's he is a sentence in the speech of some
people. We shall overlook these defects here.) We observe that the difference

* This was kindly pointed out t o the author by N. Chomsky.

162 THE MATHEMATICS OF SENTENCE STRUCTURE [March

in form between he and him is reflected by a difference in type, indicating that
the former operates from the left, while the latter operates from the right. Sapir
[19,V I I]has called these two forms the pre-verbal and post-verbal case of the
pronoun respectively.

A difficulty arises when we try to show the sentencehood of

(10) he likes him ;
s/ (n\s) n\s/n (s/n)\s

for

(s/(n\s>) (n\s/.) ((sln>\s)

cannot be simplified any further by the Rules (I) and (11). We introduce two
new rules

(111) (x l y) (y l z) x/z, (x\Y) (y\z) x\z.-+ -+

We may then assign type

(s/(n\s)> (n\s/n> -+ s / n
to he likes and type

(a\$/%) ((s/n)\s) -+ n\s

to likes him, permitting two equivalent resolutions

--(he likes) him, he --(likes him).

s / n (s/n>\s s/(n\s) n\s

Rules (111) also allow alternative, though equivalent, resolutions of expressions
considered earlier; e.g., the sentence

(John works) for Jane
n n\s s\s/n n

can now also be grouped John (works (for Jane)) , where the predicate has type

(n\s) ((s\s/n)n) -+ (n\s) (s\s) n\s.-+

We have seen above that the name John also has the type of the pronoun
he. For the same reason, it also has the type of the pronoun him. We symbolize
the situation by writing

n -+ s/(n\s), + (s/n)\s
and more generally

(I V) x -+ Y/(X\Y), x -+ (y/x)\x.

These new rules may actually be required for computations. Suppose that

19581 163THE MATHEMATICS OF SENTENCE STRUCTURE

from sample sentences such as books by him bore we arrived a t the type n*\s/nt
for by, where n' is short for (s/n)\s. The phrase books by John then requires the
computation

which utilizes rules (I), (IV) and (I) in this order.
While Ajdukiewicz [I] makes use of (111), Rules (IV) suggest that the

mathematical apparatus used hitherto may have to be expanded.

7. Syntactic calculus. By an expession we shall mean a string of words. Let
us suppose that to certain expressions there have been assigned certain primitive
types. If A has type x and B has type y, we assign to the expression A B the type
xy, also written x .y . We assign type z/y to all expressions A such that AB has
type z for any B of type y. We assign type x\z to all expressions B such that
A B has type z for any A of type x. We write x-ty to mean that any expression
of type x also has type y. We write x e y to mean that x+y and y-x.

The following rules are now valid:

then x +z/y then y +x\z
(dl if x +z/y (dl) ; fy+x \z

then xy +z then xy -+ z
(4 if x + y and y - - t z

then x +z
Rules (a), (b), (b'), (e) hold trivially. Rules (c') and (d') are symmetric duals of
(c) and (d), hence i t suffices to prove the latter.

Assume xy-+z, and let A have type x. Then for any B of type y, A B has type
z; hence A has type z/y. Thus x+z/y.

Conversely, assume x+z/y, and let A , B have types x, y, respectively; then
AB has type z. Thus xy+z.

The system presented above may be viewed abstractly as a formal language
with a number of primitive type symbols of type n, three connectives ., /, \
of type n\n/n, and a relation symbol --t of type n\s/n. If we furthermore regard
(a), (b) and (b') as axiom schemes and (c) to (e) a s rules of inference, we obtain
a deductive system which may be called syntactic calculus. A number of rules
are provable in the system; for example,

164 THE MATHEMATICS OF SENTENCE STRUCTURE [March

(9 (Z/Y) (Y/x) 3z/x,
(j) Z/Y -+ (z l 4/(Y/x),
(k) (X\Y)/~@ x\(Y/~),
(1) (x/y)/z @ x/(~Y),
(4 if x 3x' and y 3y' then xy 3x'y',

(4 if x +x' and y +y' then x/yf 3xf/y.

Here (f) follows from x y 3 x y by (c), (g) follows from z/y+z/y by (d), (h) fol
lows from (g) by (c'), (j) follows from (i) by (c). Proofs of (i), (k) and (1) are a
bit longer; we omit them in view of the decision procedure established in Section
8. Proofs of (m) and (n) are arranged in tree form.

Proof of (m).

x'y -+ x'y x'y' +x'y'
X 3X' X' 3(xfy)/y

(c) y + y' yf -+ x'\(xfy') (c')
(e) (e)

x + (x'Y)/Y Y xf\(x'y')-+

xy --t x'y (d) x'y -+ x'y' (d')

xy -+ x'y' (e)

Proof of (n).

X/Y' +X/Y'
(4

(x/Y')Y' + x
(c')

Y 3Y' Y' -+ (x/yf)\x (e) X/Y +X/Y

Y + (x/yf)\x (x/y) y + x
(d)x -+ x'

(d') (e)
(~ I Y ') Y+x (X/Y)Y+x'

(4 (d)
X/Y' +X/Y X/Y --, X'/Y

(e)
X/Y' --,x'ly

The syntactic theorems (g), (h), (i), and (k) coincide with the Rules (I)
(IV), (111), and (11), respectively. An illustration of (j) , or rather its symmetric
dual, appeared in Section 3, where i t was pointed out tha t every sentence-
modifying adverb is also a predicate-modifying adverb, symbolically,

Rule (1) is due to Schijnfinkel [20] , who observed that a function of two
variables may be regarded as an ordinary function of one variable whose value
is again an ordinary function, so t ha t

19581 165THE MATHEMATICS OF SENTENCE STRUCTURE

If a, b and f(a, b) have types x, y and z respectively, then f occurs in f(a, b)
with type z/(xy) and in (fa)b with type (z/y)/x, these two types being equivalent
by (1).

8. Decision procedure. Is there an effective method for testing whether a
sentence x--y of the syntactic calculus is deducible from rules (a) to (e)? This
is the so-called decision problem for the syntactic calculus. I t turns out that the
decision procedure discovered by Gentzen [IS,XV] for the intuitionistic prop-
ositional calculus can be adapted for the present purpose.

Following Gentzen, we define the sequent

to stand for

where xl, . . . , x,, y are types. Now let x be any of the possible products of the
xi obtained from some way of grouping the string ~ 1 x 2 - x,. Then i t follows
by repeated application of rules (b), (b'), (m) and (e) that

Hence the above sequent is also equivalent to the formula x+y.
Let capitals denote sequences of types, possibly empty sequences. By

"U, V" we mean the sequence obtained by juxtaposing U and V; if U is empty
it means V, and if V is empty i t means U.The following rules are consequences
of (a) to (e), provided T, P and Q are not empty.

(1) X + X

(2) if T, y -+ x (2') i fy, T-+ x
then T -+ x/y then T -+ y\x

(3) if T-+yand U,x,V-+z (3') ij T +y and U,x, V -+ z
the% U, x/y, T, V -+ z the% U, T, y\x, V -+ z

(4) if U, x, y, v -+ z
then U, xy, V -+ z

(5) i f P - + x a n d Q + y
then P, Q -+ xy

Note that each of Rules (2) to (5) introduces an occurrence of one of the con-
nectives . , /, \ into the conclusion.

T o derive Rules (1) to (5) from (a) to (e), we observe that (1) is the same
as (a), (2) becomes (c), (2') becomes (c'), (4) is immediate, and (5) becomes (m),
if the sequences T, U, V ,P, and Q are replaced by the products of the terms in
them. I t remains only to prove (3), since (3') is its symmetric dual.

166 THE MATHEMATICS OF SENTENCE STRUCTURE [March

First let us take the case where U and V are empty sequences. We replace
T by some product t of its terms. Then (3) takes the form: if t-y and x+z then
(x/y)t+z. This may be shown thus:

Next suppose U is empty but V is not. Replace the latter by a product v of its
terms. Then (3) takes the form: if t+y and xv-+z then ((x/y)t)v+z. This is
established thus:

xv -+ Z
(4x -+ z/v '--r (as above)

(x/y)t +z/v (4
((x/y)t)v - z

Similarly we deal with the remaining two cases in which U is not empty.
Conversely, we shall deduce rules (a) t o (e) from (1) to (5), so that the two

sets of rules are equivalent. For the moment we assume one additional rule, the
so-called cut,

(6) if T - + x a n d U, x, V+ythen U,T, V-y

I t will appear later (Gentzen's theorem) that this new rule does not increase
the set of theorems deducible from (1) to (5).

Now (a) coincides with (I) , and (e) is a special case of (6) , hence i t suffices
t o prove (b), (c) and (d). Proofs are arranged in tree form.

Proof of (b)

Proof of (c).
x-x y + y

(5)
x , Y -XY Y - Y XY-z

(2) (3)
x+ (XY)/Y (xY)/Y,Y+Z (6)

X , Y + Z
(2)

x --t Z/Y

T H E MATHEMATICS O F SENTENCE STRUCTURE

Proof of (d).

Let us verify that we have, in fact, a decision procedure. Given a sequent
U+x, we attempt to construct a proof in tree form, working from the bottom
up, using Rules (1) to (5), but not (6). Every upward step eliminates an occur-
rence of one of the connectives . , /, \, and there are only a finite number of
ways of making this step. Therefore the total number of proofs that can be
attempted is finite. The sequent U+x is deducible if and only if one of the
attempted proofs is successful.

9. Proof of Gentzen's theorem. If T+x and U , x, V-ty are both provable
according to Rules (1) t o (5), we will show that U, T, V+y is also provable, so
that we may adopt as a new rule of inference the cut

We prove this by reduction on the degree of the cut, which is defined thus: Let
d(x) be the number of separate occurrences of the connectives /, \ in the type a ,

formula x, and let

then the degree of the above cut is

d(T) + d(U) + d(V) + 4 %)+ d(y).

We will now show that in any cut, whose premises have been proved without
cut, the conclusion is either identical with one of the premises, or else the cut
can be replaced by one or two such cuts of smaller degree. Since no degree is
negative, this will establish Gentzen's theorem. We consider seven cases, which
need not be mutually exclusive.

Case 1. T 4 x is an instance of (1); then T = x and the conclusion coincides
with the other premise.

Case 2. U, x, V+y is an instance of (1) ; then U and V are empty and x = y.
Hence the conclusion coincides with the premise T-tx.

Case 3. The last step in the proof of T-tx uses one of Rules (2) t o (5), but
does not introduce the main connective of x. Then T-+x is inferred by Rule (3),
(3') or (4) from one or two sequents, one of which has the form Tt-+x with

168 THE MATHEMATICS OF SENTENCE STRUCTURE [March

d(T f) <d(T). The cut
T 1 - + x U , x , V - + y

(6)U , T', V --,y

has smaller degree than the given cut. Moreover the rule which led from
T'-+x to T-+x will also lead from U, TI, V 4 x to U, TI V+x, as may be easily
verified in the different subcases.

Case 4. The last step in the proof of U , x , V+y uses one of Rules (2) to (5) ,
but does not introduce the main connective of x. Then U, x , V+y is inferred
from one or two sequents, one of which has the form U', x , V'+yl. Since the
inference introduces an occurrence of one connective,

d(U1)+ d(V1)+ 4 ~ ')< d(U) + d(V)+ 4 y) .
Therefore the cut

T -+ x U', x, V' --,y'
(6)U', T , V' -+ y'

has smaller degree than the given cut. Moreover, the same rule which led from
U', x , V ' 4 y 1 to U , x , V+y will lead from U', TI Vr-+y' to U , TI V 4 y 1as is
easily verified in the different subcases.

Case 5. The last steps in the proofs of both premises introduce the main
connective of x =x'x" =x's x". We may replace

T' +x' TI' x" u, x', x", v -+ y
T', T" +x x ' 'is) u,x'x", V 4 y (4)

(6)U , TI, T", V + y

T' + x' U , x', x", V +y
TI' -+ x" U , T', x", V + y (6)

(6)U , T', TI', V + y

where both new cuts have smaller degree.

Case 6. The last steps in the proofs of both premises introduce the main con-
nective of x=xl/x" . We may replace

T , x" +x' V' 4 XI' U , X I , V" +y
T +xl/x" (2) U , x'/xl', V', V" +y (3)

,*,

U , T , V', V" +y (6)

THE MATHEMATICS OF SENTENCE STRUCTURE

where both new cuts have smaller degree.

Case 7. This last case is like Case 6, except that x=xl'\x', and is treated
symmetrically.

10. Algebraic remarks. The following remarks may be of mathematical inter-
est. If we write = instead of &, the deductive system studied here becomes a
partially ordered system which resembles a residuated lattice [3, XIII] . I t
may be mapped homomorphically onto a free group by mapping each element
x onto its congruence class modulo =, where x = y means that there exists a
sequence x =XI, . , xn=y (n 2 I), such that xi-+xi+l or x;+l+x; (1 si<n).If
this group is abelianized, we obtain something very much like the group of
dimension symbols, which plays an important role in the grammar of physics.

I t turns out that x = y if and only if

(1) x-t and y- t for svmet,
or equivalently

(2) z -+ x and z -+y for some z .

This result is easily proved by induction on the length of the given sequence
connecting x with y, once the equivalence of (1) and (2) has been established.

Assuming (I), we put

and verify (2) by computation; assuming (2), we put

and verify (1) by computation.

References
1. K. Ajdukiewicz, Die Syntaktische Konnexitat, Studia Philosophica, vol. 1, 1935, pp. 1-27.
2. Y. Bar-Hillel, A quasiarithmetical notation for syntactic description, Language, vol. 29,

1953, pp. 47-58.
3. G. Birkhoff, Lattice Theory, New York, 1948.
4. L. Bloomfield, Language, New York, 1933.
5. R. Carnap, Logical Syntax of Language, New York, 1937.
6. N. Chomsky, Three models for the description of language, I.R.E. Transactions on In-

formation Theory, vol. IT-2, 1956, pp. 113-124.
7. -,Syntactic Structures, The Hague, 1957.
8. A. Church, A formulation of the simple theory of types, J. Symb. Logic, vol. 5, 1940, pp.

56-68.
9. -, Introduction to Mathematical Logic, vol. 1, Princeton, 1956.
10. H. B. Curry, A Theory of Formal Deducibility, University of Notre Dame, 1950.

170 VARIABLE MATRIX I N ALGEBRAIC CRYPTOGRAPHY [March

11. -,Lesons de Logique Algtbrique, Paris, 1952.
12. C. C. Fries, The Structure of English, New York, 1952.
13. G. Gentzen, Untersuchungen iiber das logische Schliessen, Math. Z., vol. 39, 1934, pp.

176-210, 405-431.
14. 0. Jespersen, The Philosophy of Grammar, New York, 1924.
15. S. C. Kleene, Introduction to Metamathematics, New York, 1952.
16. W. N. Locke and A. Booth (editors), Machine translation of languages, Massachusetts

Institute of Technology, 1955.
17. W. V. 0. Quine, Mathematical Logic (rev. ed.), Cambridge, 1951.
18. P. Rosenbloom, The Elements of Mathematical Logic, New York, 1950.
19. E. Sapir, Language, New York, 1949.
20. M. Schonfinkel, Uber die Bausteine der Mathematischen Logik, Math. Ann., vol. 92,

1924, pp. 305-316.
21. A. Tarski, Logic, Semantics, Metamathematics, Oxford, 1956.

VARIABLE MATRIX SUBSTITUTION IN ALGEBRAIC
CRYPTOGRAPHY

JACK LEVINE, North Carolina State College

1. Introduction. The use of algebraic methods in cryptography is well-known
through two important papers by Hill [I], [2]. Briefly, the basic idea can be
formulated in the following way. Consider the system of simultaneous congru-
ences

n

yi = adjxj (mod 26)) i = l , . - . , n)
j- 1

where the constants a;* are chosen so that the determinant I aijl is prime to 26.
By means of (1.1) the set of n variables (xl, . . , x,) is transformed to the
set (yl, . . . , y,) and, conversely, the set (yl, , y,) will be transformed to
the unique set (xl, . . . , xn) by means of the inverse transformation which
exists by the assumption on I ai j l .

T o each of the 26 letters of the alphabet we associate an integer from the set
0, 1, . . . , 25, so that no two letters correspond to the same integer. For sim-
plicity we illustrate with the correspondence (used throughout this paper)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
(1.2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0

Now to encipher a message, or plain text, by means of (1.1), first replace
each letter of the text by means of its numerical equivalent, using for illustra-
tion, (1.2). Then divide the resulting sequence of numbers into groups contain-
ing n numbers each. Call these

(1.3) piipia ' ' ' pin P21p22 ' ' ' P2n ' ' ' pilpi2 ' ' ' pin ' ' ' .
Each group of (1.3) is then used in (1.1) for xl . . . x,, and the transformed set

