
Lecture Notes on
Types as Propositions

15-814: Types and Programming Languages
Frank Pfenning

Lecture 17
Thursday, November 4, 2021

1 Introduction

These lecture notes are pieced together from several lectures in an
undergraduate course on Constructive Logic, so they are a bit more
extensive than what we discussed in the lecture.

2 Natural Deduction

The goal of this section is to develop the two principal notions of logic,
namely propositions and proofs. There is no universal agreement about the
proper foundations for these notions. One approach, which has been par-
ticularly successful for applications in computer science, is to understand
the meaning of a proposition by understanding its proofs. In the words of
Martin-Löf [ML96, Page 27]:

The meaning of a proposition is determined by [. . .] what counts as a
verification of it.

A verification may be understood as a certain kind of proof that only
examines the constituents of a proposition. This is analyzed in greater detail
by Dummett [Dum91] although with less direct connection to computer
science. The system of inference rules that arises from this point of view is
natural deduction, first proposed by Gentzen [Gen35] and studied in depth
by Prawitz [Pra65].

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.2 Types as Propositions

In this chapter we apply Martin-Löf’s approach, which follows a rich
philosophical tradition, to explain the basic propositional connectives.

We will define the meaning of the usual connectives of propositional
logic (conjunction, implication, disjunction) by rules that allow us to infer
when they should be true, so-called introduction rules. From these, we derive
rules for the use of propositions, so-called elimination rules. The resulting
system of natural deduction is the foundation of intuitionistic logic which has
direct connections to functional programming and logic programming.

3 Judgments and Propositions

The cornerstone of Martin-Löf’s foundation of logic is a clear separation of
the notions of judgment and proposition. A judgment is something we may
know, that is, an object of knowledge. A judgment is evident if we in fact
know it.

We make a judgment such as “it is raining”, because we have evidence for
it. In everyday life, such evidence is often immediate: we may look out the
window and see that it is raining. In logic, we are concerned with situation
where the evidence is indirect: we deduce the judgment by making correct
inferences from other evident judgments. In other words: a judgment is
evident if we have a proof for it.

The most important judgment form in logic is “A is true”, where A is a
proposition. There are many others that have been studied extensively. For
example, “A is false”, “A is true at time t” (from temporal logic), “A is neces-
sarily true” (from modal logic), “program M has type τ” (from programming
languages), etc.

Returning to the first judgment, let us try to explain the meaning of
conjunction. We write A true for the judgment “A is true” (presupposing
that A is a proposition. Given propositions A and B, we can form the
compound proposition “A and B”, written more formally as A ∧ B. But
we have not yet specified what conjunction means, that is, what counts as a
verification of A ∧B. This is accomplished by the following inference rule:

A true B true
A ∧B true

∧I

Here the name ∧I stands for “conjunction introduction”, since the conjunc-
tion is introduced in the conclusion.

This rule allows us to conclude that A ∧B true if we already know that
A true and B true. In this inference rule, A and B are schematic variables,

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.3

and ∧I is the name of the rule. Intuitively, the ∧I rule says that a proof of
A ∧B true consists of a proof of A true together with a proof of B true.

The general form of an inference rule is

J1 . . . Jn

J
name

where the judgments J1, . . . , Jn are called the premises, the judgment J is
called the conclusion. In general, we will use letters J to stand for judgments,
while A, B, and C are reserved for propositions.

We take conjunction introduction as specifying the meaning of A ∧ B
completely. So what can be deduced if we know that A ∧B is true? By the
above rule, to have a verification for A ∧B means to have verifications for
A and B. Hence the following two rules are justified:

A ∧B true
A true

∧E1
A ∧B true
B true

∧E2

The name ∧E1 stands for “first/left conjunction elimination”, since the
conjunction in the premise has been eliminated in the conclusion. Similarly
∧E2 stands for “second/right conjunction elimination”. Intuitively, the ∧E1

rule says that A true follows if we have a proof of A ∧B true, because “we
must have had a proof of A true to justify A ∧B true”.

We will later see what precisely is required in order to guarantee that
the formation, introduction, and elimination rules for a connective fit to-
gether correctly. For now, we will informally argue the correctness of the
elimination rules, as we did for the conjunction elimination rules.

As a second example we consider the proposition “truth” written as
>. Truth should always be true, which means its introduction rule has no
premises.

> true
>I

Consequently, we have no information if we know > true, so there is no
elimination rule.

A conjunction of two propositions is characterized by one introduction
rule with two premises, and two corresponding elimination rules. We may
think of truth as a conjunction of zero propositions. By analogy it should
then have one introduction rule with zero premises, and zero corresponding
elimination rules. This is precisely what we wrote out above.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.4 Types as Propositions

4 Hypothetical Judgments

Consider the following derivation, for arbitrary propositions A, B, and C:

A ∧ (B ∧ C) true

B ∧ C true
∧E2

B true
∧E1

Have we actually proved anything here? At first glance it seems that cannot
be the case: B is an arbitrary proposition; clearly we should not be able to
prove that it is true. Upon closer inspection we see that all inferences are
correct, but the first judgment A ∧ (B ∧ C) true has not been justified. We
can extract the following knowledge:

From the assumption that A∧ (B ∧C) is true, we deduce that B must
be true.

This is an example of a hypothetical judgment, and the figure above is an
hypothetical deduction. In general, we may have more than one assumption,
so a hypothetical deduction has the form

J1 · · · Jn...
J

where the judgments J1, . . . , Jn are unproven assumptions, and the judg-
ment J is the conclusion. All instances of the inference rules are hypothetical
judgments as well (albeit possibly with 0 assumptions if the inference rule
has no premises).

Many mistakes in reasoning arise because dependencies on some hid-
den assumptions are ignored. When we need to be explicit, we will write
J1, . . . , Jn ` J for the hypothetical judgment which is established by the
hypothetical deduction above. We may refer to J1, . . . , Jn as the antecedents
and J as the succedent of the hypothetical judgment. For example, the
hypothetical judgment A ∧ (B ∧ C) true ` B true is proved by the above
hypothetical deduction that B true indeed follows from the hypothesis
A ∧ (B ∧ C) true using inference rules.

Substitution Principle for Hypotheses: We can always substitute a
proof for any hypothesis Ji to eliminate the assumption. Into the above
hypothetical deduction, a proof of its hypothesis Ji

K1 · · · Km...
Ji

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.5

can be substituted in for Ji to obtain the hypothetical deduction

J1 · · ·

K1 · · · Km...
Ji · · · Jn...
J

This hypothetical deduction concludes J from the unproven assumptions
J1, . . . , Ji−1,K1, . . . ,Km, Ji+1, . . . , Jn and justifies the hypothetical judgment

J1, . . . , Ji−1,K1, . . . ,Km, Ji+1, . . . , Jn ` J

That is, into the hypothetical judgment J1, . . . , Jn ` J , we can always substi-
tute a derivation of the judgment Ji that was used as a hypothesis to obtain
a derivation which no longer depends on the assumption Ji. A hypothetical
deduction with 0 assumptions is a proof of its conclusion J .

One has to keep in mind that hypotheses may be used more than once,
or not at all. For example, for arbitrary propositions A and B,

A ∧B true
B true

∧E2
A ∧B true
A true

∧E1

B ∧A true
∧I

can be seen a hypothetical derivation of A∧B true ` B ∧A true. Similarly, a
minor variation of the first proof in this section is a hypothetical derivation
for the hypothetical judgment A ∧ (B ∧ C) true ` B ∧ A true that uses the
hypothesis twice.

With hypothetical judgments, we can now explain the meaning of im-
plication “A implies B” or “if A then B” (more formally: A⊃B). The intro-
duction rule reads: A⊃B is true, if B is true under the assumption that A is
true.

A true
u

...
B true

A⊃B true
⊃Iu

The tricky part of this rule is the label u and its bar. If we omit this annotation,
the rule would read

A true...
B true

A⊃B true
⊃I

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.6 Types as Propositions

which would be incorrect: it looks like a derivation of A⊃B true from the
hypothesis A true. But the assumption A true is introduced in the process
of proving A ⊃ B true; the conclusion should not depend on it! Certainly,
whether the implicationA⊃B is true is independent of the question whether
A itself is actually true. Therefore we label uses of the assumption with a new
name u, and the corresponding inference which introduced this assumption
into the derivation with the same label u.

The rule makes intuitive sense, a proof justifying A ⊃ B true assumes,
hypothetically, the left-hand side of the implication so that A true, and
uses this to show the right-hand side of the implication by proving B true.
The proof of A ⊃ B true constructs a proof of B true from the additional
assumption that A true.

As a concrete example, consider the following proof ofA⊃ (B⊃ (A∧B)).

A true
u

B true
w

A ∧B true
∧I

B ⊃ (A ∧B) true
⊃Iw

A⊃ (B ⊃ (A ∧B)) true
⊃Iu

Note that this derivation is not hypothetical (it does not depend on any
assumptions). The assumption A true labeled u is discharged in the last
inference, and the assumption B true labeled w is discharged in the second-
to-last inference. It is critical that a discharged hypothesis is no longer
available for reasoning, and that all labels introduced in a derivation are
distinct.

Finally, we consider what the elimination rule for implication should
say. By the only introduction rule, having a proof of A⊃B true means that
we have a hypothetical proof of B true from A true. By the substitution
principle, if we also have a proof of A true then we get a proof of B true.

A⊃B true A true
B true

⊃E

This completes the rules concerning implication.
With the rules so far, we can write out proofs of simple properties con-

cerning conjunction and implication. The first expresses that conjunction is
commutative—intuitively, an obvious property.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.7

A ∧B true
u

B true
∧E2

A ∧B true
u

A true
∧E1

B ∧A true
∧I

(A ∧B)⊃ (B ∧A) true
⊃Iu

When we construct such a derivation, we generally proceed by a com-
bination of bottom-up and top-down reasoning. The next example is a
distributivity law, allowing us to move implications over conjunctions. This
time, we show the partial proofs in each step. Of course, other sequences of
steps in proof constructions are also possible.

...
(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true

First, we use the implication introduction rule bottom-up.

A⊃ (B ∧ C) true
u

...
(A⊃B) ∧ (A⊃ C) true

(A⊃ (B ∧ C)⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

Next, we use the conjunction introduction rule bottom-up, copying the
available assumptions to both branches in the scope.

A⊃ (B ∧ C) true
u

...
A⊃B true

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

We now pursue the left branch, again using implication introduction
bottom-up.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.8 Types as Propositions

A⊃ (B ∧ C) true
u

A true
w

...
B true

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

Note that the hypothesis A true is available only in the left branch and
not in the right one: it is discharged at the inference ⊃Iw. We now switch to
top-down reasoning, taking advantage of implication elimination.

A⊃ (B ∧ C) true
u

A true
w

B ∧ C true
⊃E

...
B true

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

Now we can close the gap in the left-hand side by conjunction elimina-
tion.

A⊃ (B ∧ C) true
u

A true
w

B ∧ C true
⊃E

B true
∧E1

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

The right premise of the conjunction introduction can be filled in analo-
gously. We skip the intermediate steps and only show the final derivation.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.9

A⊃ (B ∧ C) true
u

A true
w

B ∧ C true
⊃E

B true
∧E1

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

A true
v

B ∧ C true
⊃E

C true
∧E2

A⊃ C true
⊃Iv

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

5 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implication.
The disjunction “A or B” (written as A ∨ B) is more difficult, but does
not require any new judgment forms. Disjunction is characterized by two
introduction rules: A ∨B is true, if either A or B is true.

A true
A ∨B true

∨I1
B true

A ∨B true
∨I2

Now it would be incorrect to have an elimination rule such as

A ∨B true
A true

∨E1?

because even if we know that A ∨ B is true, we do not know whether the
disjunct A or the disjunct B is true. Concretely, with such a rule we could
derive the truth of every proposition A as follows:

> true
>I

A ∨ > true
∨I2

A true
∨E1?

Thus we take a different approach. If we know that A ∨ B is true, we
must consider two cases: A true and B true. If we can prove a conclusion
C true in both cases, then C must be true! Written as an inference rule:

A ∨B true

A true
u

...
C true

B true
w

...
C true

C true
∨Eu,w

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.10 Types as Propositions

If we know that A ∨ B true then we also know C true, if that follows
both in the case where A ∨ B true because A is true and in the case where
A ∨B true because B is true. Note that we use once again the mechanism
of hypothetical judgments. In the proof of the second premise we may use
the assumption A true labeled u, in the proof of the third premise we may
use the assumption B true labeled w. Both are discharged at the disjunction
elimination rule.

Let us justify the conclusion of this rule more explicitly. By the first
premise we know A ∨B true. The premises of the two possible introduction
rules are A true and B true. In case A true we conclude C true by the
substitution principle and the second premise: we substitute the proof of
A true for any use of the assumption labeled u in the hypothetical derivation.
The case for B true is symmetric, using the hypothetical derivation in the
third premise.

Because of the complex nature of the elimination rule, reasoning with
disjunction is more difficult than with implication and conjunction. As a
simple example, we prove the commutativity of disjunction.

...
(A ∨B)⊃ (B ∨A) true

We begin with an implication introduction.

A ∨B true
u

...
B ∨A true

(A ∨B)⊃ (B ∨A) true
⊃Iu

At this point we cannot use either of the two disjunction introduction
rules. The problem is that neither B nor A follow from our assumption
A∨B! So first we need to distinguish the two cases via the rule of disjunction
elimination.

A ∨B true
u

A true
v

...
B ∨A true

B true
w

...
B ∨A true

B ∨A true
∨Ev,w

(A ∨B)⊃ (B ∨A) true
⊃Iu

The assumption labeled u is still available for each of the two proof obliga-
tions, but we have omitted it, since it is no longer needed.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.11

Now each gap can be filled in directly by the two disjunction introduction
rules.

A ∨B true
u

A true
v

B ∨A true
∨I2

B true
w

B ∨A true
∨I1

B ∨A true
∨Ev,w

(A ∨B)⊃ (B ∨A) true
⊃Iu

This concludes the discussion of disjunction. Falsehood (written as ⊥,
sometimes called absurdity) is a proposition that should have no proof!
Therefore there are no introduction rules.

Since there cannot be a proof of ⊥ true, it is sound to conclude the truth
of any arbitrary proposition if we know ⊥ true. This justifies the elimination
rule

⊥ true
C true

⊥E

We can also think of falsehood as a disjunction between zero alternatives.
By analogy with the binary disjunction, we therefore have zero introduction
rules, and an elimination rule in which we have to consider zero cases. This
is precisely the ⊥E rule above.

From this is might seem that falsehood it useless: we can never prove it.
This is correct, except that we might reason from contradictory hypotheses!
We will see some examples when we discuss negation, since we may think
of the proposition “not A” (written ¬A) as A⊃⊥. In other words, ¬A is true
precisely if the assumption A true is contradictory because we could derive
⊥ true.

6 Summary of Natural Deduction

The judgments, propositions, and inference rules we have defined so far col-
lectively form a system of natural deduction. It is a minor variant of a system
introduced by Gentzen [Gen35] and studied in depth by Prawitz [Pra65].
One of Gentzen’s main motivations was to devise rules that model math-
ematical reasoning as directly as possible, although clearly in much more
detail than in a typical mathematical argument.

The specific interpretation of the truth judgment underlying these rules
is intuitionistic or constructive. This differs from the classical or Boolean in-
terpretation of truth. For example, classical logic accepts the proposition
A ∨ (A⊃B) as true for arbitrary A and B, although in the system we have
presented so far this would have no proof. Classical logic is based on the

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.12 Types as Propositions

Introduction Rules Elimination Rules

A true B true
A ∧B true

∧I
A ∧B true
A true

∧E1
A ∧B true
B true

∧E2

> true
>I

no >E rule

A true
u

...
B true

A⊃B true
⊃Iu

A⊃B true A true
B true

⊃E

A true
A ∨B true

∨I1
B true

A ∨B true
∨I2

A ∨B true

A true
u

...
C true

B true
w

...
C true

C true
∨Eu,w

no ⊥I rule
⊥ true
C true

⊥E

Figure 1: Rules for intuitionistic natural deduction

principle that every proposition must be true or false. If we distinguish
these cases we see that A ∨ (A ⊃ B) should be accepted, because in case
that A is true, the left disjunct holds; in case A is false, the right disjunct
holds. In contrast, intuitionistic logic is based on explicit evidence, and
evidence for a disjunction requires evidence for one of the disjuncts. We will
return to classical logic and its relationship to intuitionistic logic later; for
now our reasoning remains intuitionistic since, as we will see, it has a direct
connection to functional computation, which classical logic lacks.

We summarize the rules of inference for the truth judgment introduced
so far in Figure 1.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.13

7 Propositions as Types

We now investigate a computational interpretation of constructive proofs
and relate it to functional programming. On the propositional fragment of
logic this is called the Curry-Howard isomorphism [How80]. From the very
outset of the development of constructive logic and mathematics, a central
idea has been that proofs ought to represent constructions. The Curry-Howard
isomorphism is only a particularly poignant and beautiful realization of
this idea. In a highly influential subsequent paper, Per Martin-Löf [ML80]
developed it further into a more expressive calculus called type theory.

In order to illustrate the relationship between proofs and programs we
introduce a new judgment:

M : A M is a proof term for proposition A

We presuppose thatA is a proposition when we write this judgment. We will
also interpret M : A as “M is a program of type A”. These dual interpretations
of the same judgment is the core of the Curry-Howard isomorphism. We
either think of M as a syntactic term that represents the proof of A true, or
we think of A as the type of the program M . As we discuss each connective,
we give both readings of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A
for some appropriate proof term M . But we want something more: every
deduction of M : A should correspond to a deduction of A true with an
identical structure and vice versa. In other words we annotate the inference
rules of natural deduction with proof terms. The property above should
then be obvious. In that way, proof termM ofM : Awill correspond directly
to the corresponding proof of A true.

Conjunction. Constructively, we think of a proof of A∧B true as a pair of
proofs: one for A true and one for B true. So if M is a proof of A and N is a
proof of B, then the pair 〈|M,N |〉 is a proof of A ∧B.

M : A N : B

〈|M,N |〉 : A ∧B
∧I

The elimination rules correspond to the projections from a pair to its first
and second elements to get the individual proofs back out from a pair M .

M : A ∧B
fstM : A

∧E1
M : A ∧B
sndM : B

∧E2

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.14 Types as Propositions

Hence the conjunction A ∧B proposition corresponds to the (lazy) product
type A N B. And, indeed, product types in functional programming lan-
guages have the same property that conjunction propositions A ∧B have.
Constructing a pair 〈|M,N |〉 of type ANB requires a program M of type A
and a program N of type B (as in ∧I). Given a pair M of type ANB, its first
component of type A can be retrieved by the projection fst M (as in ∧E1),
its second component of type B by the projection sndM (as in ∧E2).

Truth. Constructively, we think of a proof of > true as a unit element that
carries no information.

〈| |〉 : >
>I

Hence > corresponds to the (lazy) unit type with one element that we
haven’t encountered yet explicity, but is the nullary version of the lazy
product, also written as >. There is no elimination rule and hence no further
proof term constructs for truth. Indeed, we have not put any information
into 〈| |〉when constructing it via >I , so cannot expect to get any information
back out when trying to eliminate it.

Implication. Constructively, we think of a proof ofA⊃B true as a function
which transforms a proof of A true into a proof of B true.

We now use the notation of λ-abstraction to annotate the rule of implica-
tion introduction with proof terms.

u : A
u

...
M : B

λu.M : A⊃B
⊃Iu

The hypothesis label u acts as a variable, and any use of the hypothesis
labeled u in the proof of B corresponds to an occurrence of u in M . Notice
how a constructive proof of B true from the additional assumption A true to
establish A⊃B true also describes the transformation of a proof of A true to
a proof of B true. But the proof term λu.M explicitly represents this trans-
formation syntactically as a function, instead of leaving this construction
implicit by inspection of whatever the proof does.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.15

As a concrete example, consider the (trivial) proof of A⊃A true:

A true
u

A⊃A true
⊃Iu

If we annotate the deduction with proof terms, we obtain

u : A
u

(λu. u) : A⊃A
⊃Iu

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with the identity function id(u) = u
or id = (λu. u).

Constructively, a proof of A⊃B true is a function transforming a proof
of A true to a proof of B true. Using A ⊃ B true by its elimination rule
⊃E, thus, corresponds to providing the proof of A true that A ⊃ B true is
waiting for to obtain a proof of B true. The rule for implication elimination
corresponds to function application.

M : A⊃B N : A

M N : B
⊃E

What is the meaning of A ⊃ B as a type? From the discussion above
it should be clear that it can be interpreted as a function type A→B. The
introduction and elimination rules for implication can also be viewed as
formation rules for functional abstraction λu.M and applicationM N . Form-
ing a functional abstraction λu.M corresponds to a function that accepts
input parameter u of type A and produces M of type B (as in ⊃I). Using a
function M : A→B corresponds to applying it to a concrete input argument
N of type A to obtain an output M N of type B.

Note that we obtain the usual introduction and elimination rules for
implication if we erase the proof terms. This will continue to be true for
all rules in the remainder of this section and is immediate evidence for the
soundness of the proof term calculus, that is, if M : A then A true.

As a second example we consider a proof of (A ∧B)⊃ (B ∧A) true.

A ∧B true
u

B true
∧E2

A ∧B true
u

A true
∧E1

B ∧A true
∧I

(A ∧B)⊃ (B ∧A) true
⊃Iu

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.16 Types as Propositions

When we annotate this derivation with proof terms, we obtain the swap
function which takes a pair 〈M,N〉 and returns the reverse pair 〈N,M〉.

u : A ∧B
u

snd u : B
∧E2

u : A ∧B
u

fst u : A
∧E1

〈|snd u, fst u|〉 : B ∧A
∧I

(λu. 〈|snd u, fst u|〉) : (A ∧B)⊃ (B ∧A)
⊃Iu

Disjunction. Constructively, we think of a proof of A ∨ B true as either
a proof of A true or B true. Disjunction therefore corresponds to a disjoint
sum type A+B that either store something of type A or something of type
B. The two introduction rules correspond to the left and right injection into
a sum type.

M : A

l ·M : A ∨B
∨I1

N : B

r ·N : A ∨B
∨I2

When using a disjunction A ∨B true in a proof, we need to be prepared to
handle A true as well as B true, because we don’t know whether ∨I1 or ∨I2
was used to prove it. The elimination rule corresponds to a case construct
which discriminates between a left and right injection into a sum types.

M : A ∨B

u : A
u

...
N : C

w : B
w

...
P : C

caseM (l · u⇒ N | r · w ⇒ P) : C
∨Eu,w

Recall that the hypothesis labeled u is available only in the proof of the
second premise and the hypothesis labeled w only in the proof of the third
premise. This means that the scope of the variable u is N , while the scope of
the variable w is P .

Falsehood. There is no introduction rule for falsehood (⊥). We can there-
fore view it as the empty type 0. The corresponding elimination rule allows
a term of ⊥ to stand for an expression of any type when wrapped in a case
with no alternatives. There can be no valid reduction rule for falsehood,
which means during computation of a valid program we will never try to
evaluate a term of the form caseM ().

M : ⊥
caseM () : C

⊥E

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.17

Interaction Laws. This completes our assignment of proof terms to the
logical inference rules. Now we can interpret the interaction laws we intro-
duced early as programming exercises. Consider the following distributivity
law:

(L11a) (A⊃ (B ∧ C))⊃ (A⊃B) ∧ (A⊃ C) true
Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs
of type B ∧ C, returns two functions: one which maps A to B
and one which maps A to C.

This is satisfied by the following function:

λu. 〈|(λw. fst (uw)), (λv. snd (u v))|〉

The following deduction provides the evidence:

u : A⊃ (B ∧ C)
u

w : A
w

uw : B ∧ C
⊃E

fst (uw) : B
∧E1

λw. fst (uw) : A⊃B
⊃Iw

u : A⊃ (B ∧ C)
u

v : A
v

u v : B ∧ C
⊃E

snd (u v) : C
∧E2

λv. snd (u v) : A⊃ C
⊃Iv

〈|(λw. fst (uw)), (λv. snd (u v))|〉 : (A⊃B) ∧ (A⊃ C)
∧I

λu. 〈|(λw. fst (uw)), (λv. snd (u v))|〉 : (A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C))
⊃Iu

Programs in constructive propositional logic are somewhat uninteresting
in that they do not manipulate basic data types such as natural numbers,
integers, lists, trees, etc. We introduce such data types later in this course,
following the same method we have used in the development of logic.

Summary. To close this section we recall the guiding principles behind the
assignment of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction
of M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true
is a bijection.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.18 Types as Propositions

8 Reduction

In the preceding section, we have introduced the assignment of proof terms
to natural deductions. If proofs are programs then we need to explain
how proofs are to be executed, and which results may be returned by a
computation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction written M −→M ′ and read
“M reduces to M ′”. In the second step, a computation then proceeds by a
sequence of reductions M −→M1 −→M2 . . ., according to a fixed strategy,
until we reach a value which is the result of the computation.

As in the development of propositional logic, we discuss each of the
connectives separately, taking care to make sure the explanations are inde-
pendent. This means we can consider various sublanguages and we can
later extend our logic or programming language without invalidating the
results from this section. Furthermore, it greatly simplifies the analysis of
properties of the reduction rules.

In general, we think of the proof terms corresponding to the introduction
rules as the constructors and the proof terms corresponding to the elimination
rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.

fst 〈|M,N |〉 −→ M
snd 〈|M,N |〉 −→ N

These (computational) reduction rules directly corresponds to the proof
term analogue of the logical reductions for the local soundness detailed in
Section 11. For example:

M : A N : B

〈|M,N |〉 : A ∧B
∧I

fst 〈|M,N |〉 : A
∧E1

−→ M : A

Truth. The constructor just forms the unit element, 〈| |〉. Since there is no
destructor, there is no reduction rule.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.19

Implication. The constructor forms a function by λ-abstraction, while
the destructor applies the function to an argument. The notation for the
substitution of N for occurrences of u in M is [N/u]M . We therefore write
the reduction rule as

(λu.M)N −→ [N/u]M

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in N should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation
which clearly does not change the meaning of a proof term. Again, this
computational reduction directly relates to the logical reduction from the
local soundness using the substitution notation for the right-hand side:

u : A
u

...
M : B

λu.M : A⊃B
⊃Iu

N : A

(λu.M)N : B
⊃E

−→ [N/u]M

Disjunction. The constructors inject into a sum types; the destructor dis-
tinguishes cases. We need to use substitution again.

case l ·M (l · u⇒ N | r · w ⇒ P) −→ [M/u]N
case r ·M (l · u⇒ N | r · w ⇒ P) −→ [M/w]P

The analogy with the logical reduction again works, for example:

M : A

l ·M : A ∨B
∨I1

u : A
u

...
N : C

w : B
w

...
P : C

case l ·M (lcdotu⇒ N | r · w ⇒ P) : C
∨Eu,w

−→ [M/u]N

Falsehood. Since there is no constructor for the empty type there is no
reduction rule for falsehood. There is no computation rule and we will not
try to evaluate caseM ().

This concludes the definition of the reduction judgment. Observe that
the construction principle for the (computational) reductions is to investigate
what happens when a destructor is applied to a corresponding constructor.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.20 Types as Propositions

This is in correspondence with how (logical) reductions for local soundness
consider what happens when an elimination rule is used in succession on
the output of an introduction rule (when reading proofs top to bottom).

9 Summary of Proof Terms

Judgments.
M : A M is a proof term for proposition A, see Figure 2
M −→M ′ M reduces to M ′, see Figure 3

10 Summary of the Curry-Howard Correspondence

The Curry-Howard correspondence we have elaborated in this lecture has
three central components:

• Propositions are interpreted as types

• Proofs are interpreted as programs

• Proof reductions are interpreted as computation

This correspondence goes in both directions, but it does not capture every-
thing we have been using so far.

Proposition Type
A ∧B τ N σ
A⊃B τ → σ
A ∨B τ + σ
> >
⊥ 0

? A×B
? 1

?? µα. τ

For A×B and 1 we obtain other forms of logical conjunction and truth that
have the same introduction rules as A ∧B and >, respectively, but different
elimination rules:

A×B

A
u

B
w

...
C

C
×Eu,w 1 C

C
1E

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.21

Constructors Destructors

M : A N : B

〈|M,N |〉 : A ∧B
∧I

M : A ∧B
fstM : A

∧E1

M : A ∧B
sndM : B

∧E2

〈| |〉 : >
>I

no destructor for >

u : A
u

...
M : B

λu.M : A⊃B
⊃Iu

M : A⊃B N : A

M N : B
⊃E

M : A

l ·M : A ∨B
∨I1

N : B

r ·N : A ∨B
∨I2

M : A ∨B

u : A
u

...
N : C

w : B
w

...
P : C

caseM (l · u⇒ N | r · w ⇒ P) : C
∨Eu,w

no constructor for ⊥
M : ⊥

caseM () : C
⊥E

Figure 2: Proof term assignment for natural deduction

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.22 Types as Propositions

fst 〈|M,N |〉 −→ M
snd 〈|M,N |〉 −→ N

no reduction for 〈| |〉

(λu.M)N −→ [N/u]M

case (l ·M) (l · u⇒ N | r · w ⇒ P) −→ [M/u]N
case (r ·M) (l · u⇒ N | r · w ⇒ P) −→ [M/w]P

no reduction for caseM ()

Figure 3: Proof term reductions

These are logically equivalent to existing connectives (A×B ≡ A ∧B and
1 ≡ >), so they are not usually used in a treatment of intuitionistic logic, but
their operational interpretations are different (eager vs. lazy).

As for general recursive types ρα. τ , there aren’t any good propositional
analogues on the logical side in general. The overarching study of type
theory (encompassing both logic and its computational interpretation) treats
the so-called inductive and coinductive types as special cases. Similarly, the
fixed point construction fixx. e does not have a good logical analogue, only
special cases of it do.

11 Harmony

This is bonus material only touched upon in lecture. It elaborates on
how proof reduction arises in the study of logic.

In the verificationist definition of the logical connectives via their intro-
duction rules we have briefly justified the elimination rules. We now study
the balance between introduction and elimination rules more closely.

We elaborate on the verificationist point of view that logical connectives
are defined by their introduction rules. We show that for intuitionistic
logic as presented so far, the elimination rules are in harmony with the
introduction rules in the sense that they are neither too strong nor too weak.
We demonstrate this via local reductions and expansions, respectively.

In order to show that introduction and elimination rules are in harmony
we establish two properties: local soundness and local completeness.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.23

Local soundness shows that the elimination rules are not too strong: no
matter how we apply elimination rules to the result of an introduction we
cannot gain any new information. We demonstrate this by showing that we
can find a more direct proof of the conclusion of an elimination than one
that first introduces and then eliminates the connective in question. This is
witnessed by a local reduction of the given introduction and the subsequent
elimination.
Local completeness shows that the elimination rules are not too weak: there
is always a way to apply elimination rules so that we can reconstitute a
proof of the original proposition from the results by applying introduction
rules. This is witnessed by a local expansion of an arbitrary given derivation
into one that introduces the primary connective.

Connectives whose introduction and elimination rules are in harmony in
the sense that they are locally sound and complete are properly defined from
the verificationist perspective. If not, the proposed connective should be
viewed with suspicion. Another criterion we would like to apply uniformly
is that both introduction and elimination rules do not refer to other propo-
sitional constants or connectives (besides the one we are trying to define),
which could create a dangerous dependency of the various connectives
on each other. As we present correct definitions we will occasionally also
give some counterexamples to illustrate the consequences of violating the
principles behind the patterns of valid inference.

In the discussion of each individual connective below we use the notation

D
A true =⇒R

D′
A true

for the local reduction of a deduction D to another deduction D′ of the same
judgment A true. In fact, =⇒R can itself be a higher level judgment relating
two proofs, D and D′, although we will not directly exploit this point of
view. Similarly,

D
A true =⇒E

D′
A true

is the notation of the local expansion of D to D′.

Conjunction. We start with local soundness, i.e., locally reducing an elim-
ination of a conjunction that was just introduced. Since there are two elimi-
nation rules and one introduction, we have two cases to consider, because
there are two different elimination rules ∧E1 and ∧E2 that could follow the

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.24 Types as Propositions

∧I introduction rule. In either case, we can easily reduce.

D
A true

E
B true

A ∧B true
∧I

A true
∧E1 =⇒R

D
A true

D
A true

E
B true

A ∧B true
∧I

B true
∧E2 =⇒R

E
B true

These two reductions justify that, after we just proved a conjunction A ∧B
to be true by the introduction rule ∧I from a proof D of A true and a proof
E of B true, the only thing we can get back out by the elimination rules is
something that we have put into the proof of A ∧ B true. This makes ∧E1

and ∧E2 locally sound, because the only thing we get out is A true which
already has the direct proof D as well as B true which has the direct proof E .
The above two reductions make ∧E1 and ∧E2 locally sound.

Local completeness establishes that we are not losing information from
the elimination rules. Local completeness requires us to apply eliminations
to an arbitrary proof of A ∧B true in such a way that we can reconstitute a
proof of A ∧B from the results.

D
A ∧B true =⇒E

D
A ∧B true
A true

∧E1

D
A ∧B true
B true

∧E2

A ∧B true
∧I

This local expansion shows that, collectively, the elimination rules ∧E1 and
∧E2 extract all information from the judgment A ∧ B true that is needed
to reprove A ∧ B true with the introduction rule ∧I . Remember that the
hypothesis A ∧B true, once available, can be used multiple times, which is
very apparent in the local expansion, because the proof D of A ∧B true can
simply be repeated on the left and on the right premise.

As an example where local completeness fails, consider the case where
we “forget” the second/right elimination rule ∧E2 for conjunction. The
remaining rule is still locally sound, because it proves something that was
put into the proof of A ∧B true, but not locally complete because we cannot
extract a proof of B from the assumption A ∧ B. Now, for example, we
cannot prove (A ∧B)⊃ (B ∧A) even though this should clearly be true.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.25

Substitution Principle. We need the defining property for hypothetical
judgments before we can discuss implication. Intuitively, we can always
substitute a deduction of A true for any use of a hypothesis A true. In
order to avoid ambiguity, we make sure assumptions are labelled and we
substitute for all uses of an assumption with a given label. Note that we can
only substitute for assumptions that are not discharged in the subproof we
are considering. The substitution principle then reads as follows:

If

A true
u

E
B true

is a hypothetical proof of B true under the undischarged hypoth-
esis A true labelled u, and

D
A true

is a proof of A true then

D
A true

u

E
B true

is our notation for substituting D for all uses of the hypothesis
labelled u in E . This deduction, also sometime written as [D/u]E
no longer depends on u.

Implication. To witness local soundness, we reduce an implication intro-
duction followed by an elimination using the substitution operation.

A true
u

E
B true

A⊃B true
⊃Iu D

A true
B true

⊃E =⇒R

D
A true

u

E
B true

The conditions on the substitution operation is satisfied, because u is intro-
duced at the ⊃Iu inference and therefore not discharged in E .

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.26 Types as Propositions

Local completeness is witnessed by the following expansion.

D
A⊃B true =⇒E

D
A⊃B true A true

u

B true
⊃E

A⊃B true
⊃Iu

Here u must be chosen fresh: it only labels the new hypothesis A true which
is used only once.

Disjunction. For disjunction we also employ the substitution principle
because the two cases we consider in the elimination rule introduce hypothe-
ses. Also, in order to show local soundness we have two possibilities for the
introduction rule, in both situations followed by the only elimination rule.

D
A true

A ∨B true
∨IL

A true
u

E
C true

B true
w

F
C true

C true
∨Eu,w

=⇒R

D
A true

u

E
C true

D
B true

A ∨B true
∨IR

A true
u

E
C true

B true
w

F
C true

C true
∨Eu,w

=⇒R

D
B true

w

F
C true

An example of a rule that would not be locally sound is

A ∨B true
A true

∨E1?

and, indeed, we would not be able to reduce

B true
A ∨B true

∨IR

A true
∨E1?

In fact we can now derive a contradiction from no assumption, which means
the whole system is incorrect.

> true
>I

⊥ ∨> true
∨IR

⊥ true
∨E1?

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.27

Local completeness of disjunction distinguishes cases on the known
A ∨B true, using A ∨B true as the conclusion.

D
A ∨B true =⇒E

D
A ∨B true

A true
u

A ∨B true
∨IL

B true
w

A ∨B true
∨IR

A ∨B true
∨Eu,w

Visually, this looks somewhat different from the local expansions for con-
junction or implication. It looks like the elimination rule is applied last,
rather than first. Mostly, this is due to the notation of natural deduction:
the above represents the step from using the knowledge of A ∨B true and
eliminating it to obtain the hypotheses A true and B true in the two cases.

Truth. The local constant > has only an introduction rule, but no elimina-
tion rule. Consequently, there are no cases to check for local soundness: any
introduction followed by any elimination can be reduced, because > has no
elimination rules.

However, local completeness still yields a local expansion: Any proof of
> true can be trivially converted to one by >I .

D
> true =⇒E > true

>I

Falsehood. As for truth, there is no local reduction because local sound-
ness is trivially satisfied since we have no introduction rule.

Local completeness is slightly tricky. Literally, we have to show that
there is a way to apply an elimination rule to any proof of ⊥ true so that
we can reintroduce a proof of ⊥ true from the result. However, there will
be zero cases to consider, so we apply no introductions. Nevertheless, the
following is the right local expansion.

D
⊥ true =⇒E

D
⊥ true
⊥ true

⊥E

Reasoning about situation when falsehood is true may seem vacuous, but
is common in practice because it corresponds to reaching a contradiction.
In intuitionistic reasoning, this occurs when we prove A⊃⊥ which is often
abbreviated as ¬A. In classical reasoning it is even more frequent, due to
the rule of proof by contradiction.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

L17.28 Types as Propositions

Exercises

Exercise 1 One proposition is more general than another if we can instantiate
the propositional variables in the first to obtain the second. For example,
A⊃ (B⊃A) is more general than A⊃ (⊥⊃A) (with [⊥/B]), (C ∧D)⊃ (B⊃
(C ∧D)) (with [C ∧D/A], but not more general than C ⊃ (D ⊃ E).

For each of the following proof terms, give the most general proposition
proved by it. (We are justified in saying “the most general” because the
most general proposition is unique up to the names of the propositional
variables.)

1. λu. λw. λk.w (u k)

2. λw. 〈(λu.w (l · u)), (λk.w (r · k))〉

3. λx. (fstx) (sndx) (sndx)

4. λx. λy. λz. (x z) (y z)

Exercise 2 Write out a proof term for each of the following propositions. As
you know from this lecture, this is the same as writing a program of the
translated type in our program language without the use of fixed points.

1. (A ∧ (A⊃⊥))⊃B

2. (A ∨ (A⊃⊥))⊃ (((A⊃⊥)⊃⊥)⊃A)

References

[Dum91] Michael Dummett. The Logical Basis of Metaphysics. Harvard
University Press, Cambridge, Massachusetts, 1991. The William
James Lectures, 1976.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210, 405–431, 1935. English trans-
lation in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
pages 68–131, North-Holland, 1969.

[How80] W. A. Howard. The formulae-as-types notion of construction.
In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, pages 479–
490. Academic Press, 1980. Hitherto unpublished note of 1969,
rearranged, corrected, and annotated by Howard.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

Types as Propositions L17.29

[ML80] Per Martin-Löf. Constructive mathematics and computer pro-
gramming. In Logic, Methodology and Philosophy of Science VI,
pages 153–175. North-Holland, 1980.

[ML96] Per Martin-Löf. On the meanings of the logical constants and
the justifications of the logical laws. Nordic Journal of Philosophical
Logic, 1(1):11–60, 1996. Notes for three lectures given in Siena,
April 1983.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm,
1965.

LECTURE NOTES THURSDAY, NOVEMBER 4, 2021

	Introduction
	Natural Deduction
	Judgments and Propositions
	Hypothetical Judgments
	Disjunction and Falsehood
	Summary of Natural Deduction
	Propositions as Types
	Reduction
	Summary of Proof Terms
	Summary of the Curry-Howard Correspondence
	Harmony

