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1 Introduction

In this lecture we prove that we can replace the unary implementation of
counters with the binary one without breaking any clients (or vice versa).
This is a consequence of parametricity, and the definition of logical equality
we developed in the previous two lectures, extended to existential types.

We recall the definition of logical equality from the end of the last lecture.

(∃) v ∼ v′ ∈ [∃α. τ ] iff v = 〈[σ], v1〉 and v′ = 〈[σ′], v′1〉 for some closed types
σ, σ′ and values v1, v′1, and there is a relation R : σ ↔ σ′ such that
v1 ∼ v′1 ∈ [[R/α]τ ].

In our example, we ask if

NatCtr ∼ BinCtr ∈ [CTR]

which unfolds into demonstrating that there is a relation R : nat↔ bin such
that

〈zero, 〈succ, pred′〉〉 ∼ 〈bzero, 〈bsucc, bpred′〉〉 ∈ [R× (R→R)× (R→ 1 +R)]

Since logical equality at type τ1 × τ2 just decomposes into logical equality at
the component types, this just decomposes into three properties we need to
check. The key step is to define the correct relation R.

For reference, the complete implementation can be found in absnat.cbv.
In Listing 1 we show the implementation NatCtr and BinCtr in LAMBDA.
The concrete syntax for an existential type ∃α. τ is ?a.tau, and a package
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L16.2 Representation Independence

1 type bin = $bin. (’b0 : bin) + (’b1 : bin) + (’e : 1)
2

3 decl bzero : bin
4 decl bsucc : bin -> bin
5 decl bpred : bin -> (’zero : 1) + (’succ : bin)
6

7 defn bzero = fold ’e ()
8 defn bsucc = $bsucc. \x. case (unfold x) of
9 ( ’b0 y => fold ’b1 y

10 | ’b1 y => fold ’b0 (bsucc y)
11 | ’e () => fold ’b1 (fold ’e ()) )
12 defn bpred = $bpred. \x. case (unfold x) of
13 ( ’b0 y => case bpred y of
14 ( ’zero () => ’zero ()
15 | ’succ p => ’succ (fold ’b1 p) )
16 | ’b1 y => ’succ (fold ’b0 y)

% may introduce leading 0s
17 | ’e () => ’zero () )
18

19 type NAT = ?a. a * (a -> a) * (a -> (’zero : 1) + (’succ : a))
20

21 decl UNat : NAT
22 decl BNat : NAT
23

24 defn UNat = ([nat], zero, succ, out)
25 defn BNat = ([bin], bzero, bsucc, bpred)

Listing 1: Binary counters as an abstract type

〈[σ], e〉 is written as ([sigma],e). This notation means that, uniformly,
types occurring in expressions are enclosed in square brackets. In this code,
we have replaced the none and some labels by zero and succ, because the
implementation of NAT by unary numbers then just becomes unfold.

1 type nat = $nat. (’zero : 1) + (’succ : nat)
2 decl zero : nat
3 decl succ : nat -> nat
4 decl out : nat -> (’zero : 1) + (’succ : nat)
5

6 defn zero = fold ’zero ()
7 defn succ = \n. fold ’succ n
8 defn out = \n. unfold n

In fact, the implementation of NAT illustrates a general phenomenon that is
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exploited in languages such as Standard ML, OCaml, or Haskell. In these
languages we have data type declarations that are generative in the sense
that each declaration will generate a fresh type that’s different from all other
existing types. For example,

datatype nat = zero | succ of nat

will generate a fresh type called nat with constructors zero : nat and
succ : nat -> nat. However (at least conceptually) is also generates a
function out : nat -> (’zero : 1) + (’succ : nat)with unique
labels ’zero and ’succ so we can pattern-match against the structure of
natural numbers. These functions are then packaged up as an existential
type to guarantee generativity, which is then opened to make the construc-
tors and out function available in subsequent code. This is one idea behind
the Harper/Stone semantics of Standard ML [HS00].

2 Defining a Relation Between Implementations

The relation R : nat ↔ bin we seek needs to relate natural numbers in
two different representations. It is convenient and general to define such
relations by using inference rules. In particular, this will allow us to prove
properties by rule induction. An alternative approach would be to define
such relations as functions, but because representations are often not unique
this is not quite as general.

Once we have made this decision, the relation could be based on the
structure of x : bin or on the structure of n : nat. The latter may run into
difficulties because each number actually corresponds to infinitely many
numbers in binary form: just add leading zeros that do not contribute to its
value. Therefore, we define it based on the binary representation. In order
to define it concisely, we use a representation function for (mathematical)
natural numbers k into our language of values defined by

0 = fold zero · 〈 〉
n+ 1 = fold succ · n

We also write binary number representations in compressed form with the
least significant bit first:

0x = fold b0 · x
1x = fold b1 · x
e = fold e · 〈 〉
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Recall the ambiguity that e, 0e, 00e etc. all represent the natural number 0.
We then define:

0 R e
Re

k R x

2k R 0x
R0

k R x

2k + 1 R 1x
R1

As usual, we consider n R x to hold if and only if we can derive it using
these rules.

3 Verifying the Relation

Because our signature exposes three constants, we now have to check three
properties:

zero ∼ bzero ∈ [R]
succ ∼ bsucc ∈ [R→R]
out ∼ bpred ∈ [R→ 1 +R]

We already have by definition that v ∼ v′ ∈ [R] iff v R v′. For convenience,
we also define the notation e R e′ to stand for e ≈ e′ ∈ JRK, which means
that e 7→∗ v and e′ 7→∗ v′ with v R v′

Lemma 1 zero ∼ bzero ∈ [R].

Proof: Since 0 = zero and e = bzero this is just the contents of rule Re. �

Lemma 2 succ ∼ bsucc ∈ [R→R].

Proof: By definition of logical equality, this is equivalent to showing

For all values n : nat and x : bin with n R x we have (succ n) R
(bsucc x).

Since R is defined inductively by a collection of inference rules, the natural
attempt is to prove this by rule induction on the given relation, namely
n R x.

Case: Rule

0 R e
Re

with n = 0 and x = e. We have to show that (succ 0) R (bsucc e)
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succ 0 7→∗ 1 By defn. of succ
bsucc e 7→∗ 1e By defn. of bsucc
1 R 1e By rules R1 and Re

Case: Rule
k R y

2k R 0y
R0

where x = 0y and n = 2k. To prove is (succ 2k) R (bsucc 0y).

succ 2k 7→∗ 2k + 1 By defn of succ
bsucc 0y 7→∗ 1y By defn. of bsucc
k R y Premise in this case
2k + 1 R 1y By rule R1

Case: Rule
k R y

2k + 1 R 1y
R1

where n = 2k + 1 and x = 1y. To show: (succ 2k + 1) R (bsucc 1y).

succ 2k + 1 7→∗ 2k + 2 By defn. of succ
bsucc 1y 7→∗ b0 (bsucc y) 7→∗ 0z where bsucc y 7→∗ z By defn. of bsucc
Remains to show: 2k + 2 R 0z

k R y Premise in this case
(succ k) R (bsucc y) By ind. hyp.
k + 1 R z By defn. of R and succ
2(k + 1) R 0z By rule R0

2k + 2 R 0z By arithmetic

�

In order to prove the relation between the implementation of the prede-
cessor function we write out the interpretation of the type (zero : 1)+(succ :
R).

v ∼ v′ ∈ [(zero : 1) + (succ : R)] iff (v = zero · 〈 〉 and v′ = zero · 〈 〉)
or (v = succ · v1 and v′ = succ · v′1 and v1 R v′1.

Lemma 3 out ∼ bpred ∈ [R→ (zero : 1) + (succ : R)]
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Proof: By1 definition of logical equality, this is equivalent to showing

For all values n : nat and x : bin with n R x we have out n ≈
bpred x ∈ J1 +RK.

We break this down into two properties, based on n.

(i) For all 0 R x we have out 0 ≈ bpred x ∈ J(zero : 1)K.

(ii) For all k + 1 R x we have out k + 1 ≈ bpred x ∈ J(succ : R)K.

For part (i), we note that out 0 7→∗ zero · 〈 〉, so all that remains to show is
that bpred x 7→∗ zero · 〈 〉 for all 0 R x. We prove this by rule induction on
the derivation of 0 R x.
Case(i):

0 R e
Re

where x = e. Then bpred x = bpred e 7→∗ zero · 〈 〉.

Case(i):

k R y

2k R 0y
R0

where x = 0y and 2k = 0 and therefore also k = 0. Then

bpred y 7→∗ zero · 〈 〉 By ind. hyp.
bpred 0y 7→∗ zero · 〈 〉 By defn. of bpred and computation

Case(i):

k R y

2k + 1 R 1y
R1

This case is impossible since 2k + 1 6= 0.

Now we come to Part (ii). We note that out k + 1 7→∗ succ · k so what we
have to show is that

(ii)’ For all k + 1 R x we have bpred x 7→∗ succ · y with k R y.

1We skipped this part of the proof in lecture.
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We prove this by rule induction on the derivation of k + 1 R x.

Case(ii):

0 R e
Re

is impossible since 0 6= k + 1.

Case(ii):

j R y

2j R 0y
R0

where k + 1 = 2j and x = 0y.

j = j′ + 1 for some j′ Since j > 0 by arithmetic
bpred y 7→∗ succ · z with j′ R z By ind. hyp.
bpred 0y 7→∗ succ · 1z By defn. of bpred
2j′ + 1 R 1z By rule R1

k R 1z By equality

Case(ii):

j R y

2j + 1 R 1y
R1

for k + 1 = 2j + 1 and x = 1y. Then

bpred 1y 7→∗ succ · 0y By defn. of bpred
j R y Premise in this case
2j R 0y By rule R0

k R 0y By equality

�

4 Concrete Types vs. Abstract Types2

An interesting observation about the logical equivalence of the two imple-
mentation of counters is that, had we omitted the decrement operation from

2Not covered in lecture this year
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the interface, then universal relation (n U x for all values n : nat and x : bin)
also allows us to prove equivalence. This is because without the decrement
we can create a counter and increment it, but can never observe any of its
properties.

This raises the question how we should more generally observe prop-
erties of elements of abstract type. There is no universal answer: different
applications or libraries require different choices. A particularly frequent
and useful technique is to endow abstract types with a view, realized by a
function called expose or out.

As an example, let’s reconsider the (concrete) type of binary numbers:

bin = (b0 : bin) + (b1 : bin) + (e : 1)

This concrete type allows clients to construct numbers with leading zeros,
which may be undesirable because it complicates certain algorithms (e.g.,
equality of binary numbers). In this case, one solution would be to split the
type bin into positive numbers pos and numbers in standard form std (with
no leading zeros), which we did in an earlier exercise. However, now all
client code has to be aware of these two types and use them appropriately.
Alternatively, we can create an abstract type providing the constructors in
the interface. to start with, we would have

BIN = ∃α. (α→ α) % b0
×(α→ α) % b1
×α % e
× . . .

The implementation of these constructors can make sure that only numbers
with no leading zeros are ever created. But how do we observe a value of the
abstract type? The technique is to provide a function out : α→ τ where τ
is usually a sum that the client can pattern match against. Here we would
have

BIN = ∃α. (α→ α) % b0
×(α→ α) % b1
×α % e
×(α→ (b0 : α) + (b1 : α) + (e : 1)) % out

The result out v where v is a value of the abstract type allows one level of
pattern matching. The value tagged by b0 or b1 is again of abstract type
and we must apply out again. If we want to allow multiple levels of pattern
matching we would need some special syntax to designate out as a view
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with a corresponding pattern constructor, say, out−1. Then matching the
value v : α against the pattern out−1 p will evaluate out v 7→∗ w and match
w against p.

We show the implementation of this abstract type in LAMBDA. In this
example, the out function just has to unfold the recursive type to expose the
sum underneath.

1 type BIN = ?a. (a -> a) % b0 = \n. 2n
2 * (a -> a) % b1 = \n. 2n+1
3 * a % e = 0
4 * (a -> ((’b0 : a) + (’b1 : a) + (’e : 1))) % out
5

6 decl Bin : BIN
7 defn Bin = ([bin], \x. case x of ( fold ’e () => e
8 | _ => fold ’b0 x ),
9 \x. fole ’b1 x, e, \x. unfold x)

The only other interesting part of this is the constructor corresponding to
the tag b0 ensures that it never constructs 0e but returns e instead, thereby
making the representation unique.

5 Polymorphic Lists

In functional languages lists are usually represented by a so-called type
constructor list : type→ type. That is, for any type τ , we would have

list τ = µβ. (nil : 1) + (cons : τ × β)

We have not introduced type constructors into our language, so we cannot
express this directly. But we can formulate it as an abstract type. Essen-
tially, the implementation is a function which takes an element type τ as an
argument and returns in instance of an existential type for this particular τ .

1 type LIST = !a. ?b. b % nil
2 * (a * b -> b) % cons x l
3 * (b -> (’nil : 1) + (’cons : a * b)) % out l

There is, however, a quirk with the implementation that often comes up
with abstract types. If we have an implementation of lists, for example

1 decl List : LIST
2 defn List = /\a. ([$list. (’nil : 1) + (’cons : a * list)],
3 fold ’nil (),
4 \p. fold ’cons p,
5 \l. unfold l)
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then two different uses of this, e.g., List [nat] and List [nat] are incompatible
because there is no way the type checker can know that the different abstract
types are actually equal. We summarize this sometimes by saying that
abstract types are generative as explained earlier in this lecture because every
time an implementation of an abstract type is opened, a fresh type variable
is generated to stand for the implementation type.

This implementation of lists, by the way, is called a functor in languages
in the ML family, because it is a module-level function. We think of it this
way because it is a function that returns an abstract type when given a type.

6 The Upshot

Because the two implementations are logically equal we can replace one
implementation by the other without changing any client’s behavior. This is
because all clients are parametric, so their behavior does not depend on the
library’s implementation.

It may seem strange that this is possible because we have picked a
particular relation to make this proof work. Let us reexamine the tp/casee
rule:

Γ ` e : ∃α. τ Γ, α type, x : τ ` e′ : τ ′

Γ ` case e (〈α, x〉 ⇒ e′) : τ ′
tp/casee

In the second premise we see that the client e′ is checked with a fresh type α
and x : τ which may mention α. If we reify this into a function, we find

Λα. λx. e′ : ∀α. τ → τ ′

where τ ′ does not depend on α.
By Reynolds’s parametricity theorem we know that this function is

parametric. This can now be applied for any σ and σ′ and relation R :
σ ↔ σ′ to conclude that if v0 ∼ v′0 ∈ [[R/α]τ ] then (Λαλx. e′)[σ] v0 ≈
(Λα. λx. e′)[σ′] v′0 ∈ J[R/α]τ ′K. But α does not occur in τ ′, so this is just
saying that [σ/α, v0/x]e′ ≈ [σ′/α, v′0/x]e′ ∈ Jτ ′K. So the result of substituting
the two different implementations is equivalent.

Exercises

Exercise 1 We can represent integers a as pairs 〈x, y〉 of natural numbers
where a = x− y. We call this the difference representation and call the repre-
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sentation type diff.

nat = µα. (zero : 1) + (succ : alpha)
diff = nat× nat

In your answers below you may use constructors zero : nat and succ : nat→nat
to construct terms of type nat. If you need auxiliary functions on natural
numbers, you should define them.

1. Define a function nat2diff : nat→ diff that, when given a representation
of the natural number n returns an integer representing n.

2. Define a constant d zero : diff representing the integer 0 as well as func-
tions dplus : diff→ diff→ diff and dminus : diff→ diff→ diff representing
addition and subtraction on integers, respectively.

3. Consider the type

ord = (lt : 1) + (eq : 1) + (gt : 1)

that represents the outcome of a comparison (lt = “less than”, eq =
“equal”, gt = “greater than”). Define a function dcompare : diff→ diff→
ord to compare the two integer arguments. Again, you may use lt, eq
and gt as constructors.

Exercise 2 We consider an alternative signed representation of integers where

sign = (pos : nat) + (neg : nat)

where pos · x represents the integer x and neg · x represents the integer −x.
In your answers below you may use pos and neg as data constructors, to
construct elements of type sign. Define the following functions in analogy
with Exercise 1:

1. nat2sign : nat→ sign

2. s zero : sign

3. s plus : sign→ sign→ sign

4. s minus : sign→ sign→ sign

5. s compare : sign→ sign→ ord
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Exercise 3 In this exercise we pursue two different implementations of an
integer counter, which can become negative (unlike the natural number
counter in this lecture). The functions are simpler than the ones in Exercise 1
and Exercise 2 so that the logical equality argument is more manageable.
We specify a signature

INTCTR = {
type ictr
new : ictr
inc : ictr→ ictr
dec : ictr→ ictr
is0 : ictr→ bool
}

where new, inc, dec and is0 have their obvious specification with respect to
integers, generalizing the CTR type defined in the last lecture and used in
this one.

1. Write out the definition of INTCTR as an existential type.

2. Define the constants and functions d zero, d inc, d dec and d is0 for the
implementation where type ictr = diff from Exercise 1.

3. Define the constants and functions szero, s inc, s dec and s is0 for the
implementation where type ictr = sign from Exercise 2.

Now consider the two definitions

DiffCtr : INTCTR = 〈diff, 〈d zero, d inc, d dec, d is0〉〉
SignCtr : INTCTR = 〈sign, 〈s zero, s inc, s dec, s is0〉〉

4. Prove that DiffCtr ∼ SignCtr ∈ [INTCTR] by defining a suitable rela-
tion R : diff↔ sign and proving that

〈d zero, d inc, d dec, d is0〉 ∼ 〈s zero, s inc, s dec, s is0〉
∈ [R× (R→R)× (R→R)× (R→ bool)]
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