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1 Introduction

Since we have moved from the pure λ-calculus to functional programming
languages we have added rich type constructs starting from functions,
disjoint sums, eager and lazy pairs, recursive types, and parametric poly-
morphism. The primary reasons often quoted for such a rich static type
system are discovery of errors before the program is ever executed and the
efficiency of avoiding tagging of runtime values. There is also the value of
the types as documentation and the programming discipline that follows the
prescription of types. Perhaps more important than all of these is the strong
guarantees of data abstraction that the type system affords that are sadly
missing from many other languages. Indeed, this was one of the original
motivation in the development of ML (which stands for MetaLanguage)
by Milner and his collaborators [GMM+78]. They were interested in de-
veloping a theorem prover and wanted to reduce its overall correctness to
the correctness of a trusted core. To this end they specified an abstract type
of theorem on which the only allowed operations are inference rules of the
underlying logic. The connection between abstract types and existential
types was made made Mitchell and Plotkin [MP88].

In this lecture we will first explore some more consequences of Reynolds’s
parametricity theorem that are used in modern compilers and then move
towards questions of data abstraction and modularity.
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L15.2 Data Abstraction

2 Theorems for Free!

A slightly different style of application of parametricity is laid out in Philip
Wadler’s Theorems for Free! [Wad89]. Let’s see what we can derive from

f : ∀α. α→ α

for a value f . First, parametricity tells us

f ∼ f ∈ [∀α. α→ α]

This time, we pick types τ and τ ′ and a relation R which is in fact a function
R : τ → τ ′. Then

f [τ ] ≈ f [τ ′] ∈ JR→RK

which means that f [τ ] 7→∗ fτ and f [τ ′] 7→∗ fτ ′ with

fτ ∼ fτ ′ ∈ [R→R]

Now, for arbitrary values v : τ and v′ : τ ′, v R v′ actually means Rv 7→∗ v′.
Using the definition of ∼ at function type we get

fτ v ≈ fτ ′ (Rv) ∈ JRK

but this in turn means

R (fτ v) 7→∗ w and fτ ′ (Rv) 7→∗ w for some value w

Wadler summarizes this by stating that for any function R : τ → τ ′,

R ◦ f [τ ] = f [τ ′] ◦R

that is, f commutes with any function R. If τ is non-empty and we have
v0 : τ and choose τ ′ = τ and R = λx. v0 we obtain

R (f [τ ] v0) 7→∗ v0
f [τ ] (Rv0) 7→∗ f [τ ] v0

so we find f [τ ] v0 7→∗ v0 which, since v0 was arbitrary, is another way of
saying that f behaves like the identity function.
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3 Parametricity on Lists

For more interesting examples, we extend the notion of logical equivalence
to lists. Since lists are inductively defined, we can call upon a general theory
to handle them, but since we haven’t discussed this theory we give the
specific definition. Here, we think of lists defined with

list τ = µα. (nil : 1) + (cons : τ × α)

even though type constructors like list haven’t been formally introduced into
our language. Then we use a shorthand notation for lists, that is, elaborate
the left-hand side into the right-hand side:

[e1, . . . , en] , fold cons · 〈e1, . . . fold cons · 〈en, fold nil · 〈 〉〉〉

We then extend the notion of logical equalities to values of list type induc-
tively over the structure of the list, which reduces the type of the relation
because each element has a smaller type.

v ∼ v′ ∈ [list τ ] iff v = [v1, . . . , vn], v′ = [v′1, . . . , v
′
n] and vi ∼ v′i ∈

[τ ] for all 1 ≤ i ≤ n.

Then we have, for example, a polymorphic map function:

map : ∀α.∀β. (α→ β)→ list α→ list β
map = Λα.Λβ. fix m.λf. λl.

case (unfold l) (nil · 〈 〉 ⇒ foldnil · 〈 〉
| cons · 〈x, l′〉 ⇒ fold cons · 〈f x,m f l′〉 )

The map function then satisfies (for f : τ → τ ′):

map [τ ] [τ ′] f [v1, . . . , vn] = [f v1, . . . , f vn]

where equality here is Kleene equality (both sides reduce to the same value).
The example(s) are easier to understand if we isolate the special case list R
for a relation R : τ → τ ′ which is actually a function. In this case we obtain

v ∼ v′ ∈ [list R] for an R : τ → τ ′ iff (map [τ ] [τ ′]R) v = v′.

Returning to examples, what can the type tell us about a function

f : ∀α. list α→ α list α ?

If the function is parametric, it should not be able to examine the list ele-
ments, or create new ones. However, it should be able to drop elements,
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duplicate elements, or rearrange them. We will try to capture this equation-
ally, just following our nose in using parametricity to see what we end up
at.

We start with

f ∼ f ∈ [∀α. list α→ list α] by parametricity.

Now let R : τ → τ ′ be a function. Then f [τ ] 7→∗ fτ , f [τ ′] 7→∗ fτ ′ , and

fτ ∼ fτ ′ ∈ [list R→ list R] by definition of ≈.

Using the definition of ∼ on function types, we obtain

For any values l : list τ and l′ : list τ ′ with l (R list) l′ we have
fτ l (R list) fτ ′ l

′

By the remark on the interpretation of R list when R is a function, this
becomes

If (map [τ ] [τ ′]R) l = l′ then (map [τ ] [τ ′]R) (fτ l) = fτ ′ l
′

or, equivalently,

(map [τ ] [τ ′]R) (f [τ ] l) = f [τ ′] ((map [τ ] [τ ′]R) l).

In short, f commutes with map R. This means we can either map R over the
list and then apply f to the result, or we can apply f first and then map R
over the result. This implies that f could not, say, make up a new element v0
not in l. Such an element would occur in the list returned by the right-hand
side, but would occur asRv0 on the left-hand side. So if we have a type with
more than one element we can choose R so that Rv0 6= v0 (like a constant
function) and the two sides would be different, contradicting the equality
we derived.

We can use this equation of improve efficiency of code. For example,
if we know that f might reduce the number of elements in the list (for
example, skipping every other element), then mapping R over the list after
the elements have been eliminated is more efficient than the other way
around. Conversely, if f may duplicate some elements then it would be
more efficient to map R over the list first and then apply f . The equality we
derived from parametricity allows this kind of optimization.

We have, however, to be careful when nonterminating functions may
be involved. For example, if R diverges on an element v0 then the two
sides may not be equal. For example, f might drop v0 from the list l so the
right-hand side would diverge while the left-hand side would have a value.
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Here are two other similar results provided by Wadler [Wad89].

f : ∀α. (α list) list→ α list
(map [τ ] [τ ′]R) (f [τ ] l) = f [τ ′] ((map [list τ ] [list τ ′] (map [τ ] [τ ′]R)) l)

f : ∀α. (α→ bool)→ α list→ α list
(map [τ ] [τ ′]R) (f [τ ] (λx. p (Rx)) l) = f [τ ′] p ((map [τ ] [τ ′]R) l)

These theorems do not quite come “for free”, but they are fairly straightfor-
ward consequences of parametricity, keeping in mind the requirement of
termination.

4 Inductive Types

The theorems in the preceding section treat lists as a new primitive type. On
the other hand, we can define every instance list τ directly as a recursive type,
so it is worth considering if we can find a more general characterization of a
class of recursive types to which parametricity applies. These are inductive
types whose values are defined purely inductively. We call these here purely
positive types. Logical equality then does not have to reference computation
at all and write τ+. It is not a coincidence that we previously introduced
this class as the types whose values are directly observable. To be explicit, we
define the purely positive types as

Purely positive types τ+ ::= τ+1 × τ
+
2 | 1 |

∑
i∈I(i : τ+i ) | µα+. τ+ | α+

Then we can define:

Recursion: v ∼ v′ ∈ [µα+. τ+] iff v = fold v1 and v′ = fold v′1 and v1 = v′1 ∈
[[µα+. τ+/α+]τ+].

Even though the type becomes larger in the last clause, the definition is not
circular because the values we are comparing get smaller. In fact, we can
prove that v ∼ v′ ∈ [τ+] iff v = v′. So the clauses for positive types are
mostly useful if negative types are embedded in them.

This characterization means that we can obtain “theorems for free” for
free for functions operating over (polymorphic) purely positive types such
as lists, trees, and similar structures.
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5 Signatures and Structures

Data abstraction in today’s programming languages is usually enforced
at the level of modules (if it is enforced at all). As a running example we
consider a simple module providing an implementation of a counter with
constant init and functions inc and dec to increment and decrement the
counter. We will consider two implementations and their relationship. One
is using numbers in unary form (type nat) and numbers in binary form (type
bin), and we will eventually prove that they are logically equivalent. We are
making up some syntax (loosely based on ML) to specify interfaces between
a library and its client.

Below we name CTR as the signature that describes the interface of a
module.

CTR = {
type ctr
init : ctr
inc : ctr→ ctr
dec : ctr→ (none : 1) + (some : ctr)
}

The value init will be a counter with initial value 0. The decrement function
dec returns an optional counter with the new value, where we consider the
predecessor of 0 to be undefined (returning l · 〈 〉). This provides the only
means for the client to observe the value of a counter. The implementations
are straightforward so we elide them for now, and just assume we have type
nat and bin and suitable functions on them.

NatCtr : CTR = {
type ctr = nat
init = zero
inc = succ
dec = pred′

}

An interesting aspect of this definition is that, for example, zero : nat while
the interface specifies init : ctr. But this is okay because the type ctr is in fact
implemented by nat in this version. Next, we show the implementation us-
ing numbers in binary representation (type bin). Again, we assume we have
suitable functions plus1 and minus1 on binary numbers already defined.

bin = (b0 : bin) + (b1 : bin) + (e : 1)
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bzero : bin
bsucc : bin→ bin = . . .
bpred′ : bin→ bin = . . .

BinCtr : CTR = {
type ctr = bin
init = bzero
inc = bsucc
dec = bpred′

}

Now what does a client look like? Assume it has an implemention C : CTR.
It can then “open” or “import” this implementation to use its components,
but it will not have any knowledge about the type of the implementation.
For example, we would write

open C : CTR
isZero : ctr→ bool
isZero = λx. case dec x (none · _⇒ true

| some · _⇒ false )

but not

open C : CTR
isZero : ctr→ bool
isZero = λn. case (unfold n) ( zero · _⇒ true

| succ · _⇒ false )

because the latter supposes that the library C : CTR implements the type ctr
by nat, which it may not.

6 Formalizing Abstract Types

We will write a signature such as

CTR = {
type ctr
init : ctr
inc : ctr→ ctr
dec : ctr→ 1 + ctr
}
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in abstract form as

∃α. α︸︷︷︸
init

× (α→ α)︸ ︷︷ ︸
inc

× (α→ 1 + α)︸ ︷︷ ︸
dec

where the name annotations are just explanatory and not part of the syntax.
Note that α stands for ctr which is bound here by the existential quantifier.

Now what should an expression

e : ∃α. α× (α→ α)× (α→ 1 + α)

look like? It should provide a concrete implementation type (such as nat or
bin) for α, as well as an implementation of the three functions. We obtain
this with the following rule

Γ ` σ type Γ ` e : [σ/α]τ

Γ ` 〈[σ], e〉 : ∃α. τ
tp/paire

Besides checking that σ is indeed a type with respect to all the type variables
declared in Γ, the crucial aspect of this rule is that the implementation e is at
type [σ/α]τ .

For example, to check that init, inc, and dec are well-typed we substitute
the implementation type for α (namely nat in one case and bin in the other
case) before we proceed to check the definitions.

The pair 〈[σ], e〉 is sometimes referred to as a package, which is opened
up by the destructor. This destructor is often called open, but for uniformity
with all analogous cases, and to support general pattern matching, we’ll
write is as a case.

Types τ ::= . . . | ∃α. τ
Expressions e ::= . . . | 〈σ, e〉 | case e (〈α, x〉 ⇒ e′)

The elimination form provides a new name α for the implementation types
and a new variable x for the (eager) pair making up the implementations.

Γ ` e : ∃α. τ
(α 6∈ dom(Γ) ∪ FTV(Γ) ∪ FTV(τ ′))
Γ, α type, x : τ ` e′ : τ ′

Γ ` case e (〈α, x〉 ⇒ e′) : τ ′
tp/casee

The fact that the type α must be new is explicit here in the conditions that
it does not already appear in Γ or τ ′ (that is, is not in the set of its free
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type variables FTV(−). Such a condition is often left implicit, relying on
the well-formedness presuppositions of the judgments. For example, the
presupposition that Γ may not contain any repeated variables means that
if we happened to have used the name α before then we can just rename it
and then apply the rule. It is crucial for data abstraction that this variable α
is new because we cannot and should not be able to assume anything about
what α might stand for, except the operations that are exposed in τ and are
accessible via the name x. Among other things, α may not appear in τ ′.

To be a little more explicit about this (because it is critical here), whenever
we write Γ ` e : τ we make the following presuppositions:

1. All the variables and type variables in Γ are distinct.

2. Γ ctx

3. Γ ` τ type

where the validity of context is defined by the following rules:

(·) ctx
ctx/emp

Γ ctx
(Γ, α type) ctx

ctx/tpvar
Γ ctx Γ ` τ type

(Γ, x : τ) ctx
ctx/var

With these presuppositions the condition on α in the tp/casee rule is
automatically satisfied. Whenever we write a rule we assume this presup-
positions holds for the conclusion and we have to make sure they hold for
all the premises. Let’s look at case/exists again in this light.

1. We assume all variables in Γ are distinct, which also means they are
distinct in the first premise. In the second premise they are distinct
because that’s how we interpret Γ, α type, x : τ , which may include an
implicit renaming of the type variable α or the variable x bound in the
the expression 〈α, x〉 ⇒ e′.

2. By presupposition (from the conclusion), Γ ctx, which means that there
are no free type variables in it, but variables declared in it can occur to
their right. But what about τ? Actually, it is okay (and in fact mostly
needed) for α to appear in τ .

3. By presupposition (from the conclusion), Γ ` τ ′ type. This covers
the second premise. Often, this rule is given with an explicit premise
Γ ` τ ′ type to emphasize τ ′ must be independent of α. Indeed, the
scope of α is the type of x and the expression e′.
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We also see that the client e′ is parametric in α, which means that it cannot
depend on what α might actually be at runtime. It is this parametricity
that will allow us to swap one implementation out for another without
affecting the client as long as the two implementations are equivalent in an
appropriate sense.

The dynamics is straightforward and not very interesting.

v value
〈[σ], v〉 value

val/paire
e 7→ e′

〈[σ], e〉 7→ 〈[σ], e′〉
step/pack1

e0 7→ e′0

case e0 (〈α, x〉 ⇒ e1) 7→ case e′0 (〈α, x〉 ⇒ e1)
step/casee0

case 〈[σ], v〉 (〈α, x〉 ⇒ e) 7→ [σ/α, v/x]e
step/casee/paire

The hypothetical open construct now corresponds a pattern match, with the
scope of the openend module extending to the end of the case expression.
For example, we can test an implementation of CTR by creating a fresh
counter and then verifying that incrementing it followed by a decrement has
a well-defined answer. In the definition of test we exploit general pattern
matching so an exception is raised if a decrement of zero was attempted.

test : CTR→ 1
test = λc. case c ( 〈α, 〈init, 〈inc, dec〉〉〉 ⇒

case dec (inc init) ( some · _⇒ 〈 〉 ) )

Note that the case opens the package (representing the module) and matches
against its components so it can refer to them in the body of the function.
The following two expressions will evaluate to unit (instead of raising an
exception) if the implementation is correct (to the very limited extent that is
tested here).

test NatCtr
test BinCtr
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7 Existential Types and Parametricity

We have said that the client of a module (expressed as having an existential
type) is parametric in the implementation type. Let’s recall the crucial rules.

Γ ` σ type Γ ` e : [σ/α]τ

Γ ` 〈[σ], e〉 : ∃α. τ
tp/paire

Γ ` e : ∃α. τ Γ, α type, x : τ ` e′ : τ ′

Γ ` case e (〈α, x〉 ⇒ e′) : τ ′
tp/casee

The client here is e′ in the tp/casee rule. From typing judgment for e′ in the
second premise we can infer

Γ, α type, x : τ ` e′ : τ ′

Γ, α type ` λx. e′ : τ → τ ′
tp/lam

Γ ` Λα. λx. e′ : ∀α. τ → τ ′
tp/tplam

to see that, indeed, λx. e′ (and therefore also e′) is parametric in α.

8 Logical Equality for Existential Types

We extend our definition of logical equivalence to handle the case of exis-
tential types. Following the previous pattern for parametric polymorphism,
we cannot talk about arbitrary instances of the existential type, but we must
instantiate it with a relation between the two given implementation types.

Recall from Lecture 14:

(∀) v ∼ v′ ∈ [∀α. τ ] iff for all closed types σ and σ′ and relations R : σ ↔ σ′

we have v [σ] ≈ v′ [σ′] ∈ J[R/α]τK

(R) v ∼ v′ ∈ [R] iff v R v′.

We add

(∃) v ∼ v′ ∈ [∃α. τ ] iff v = 〈[σ], v1〉 and v′ = 〈[σ′], v′1〉 for some closed types
σ, σ′ and values v1, v′1, and there is a relation R : σ ↔ σ′ such that
v1 ∼ v′1 ∈ [[R/α]τ ].
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It is critical that we only need to find some relation R between the types;
requiring this to hold for all relations would be much to strong a condition.
We can see this from the example: the two implementations of counters
should be equivalent from the clients point of view. But there are many
relations between nat and bin where the implementations are not related,
such as one that swaps 0 and 1. Then zero is not related to fold (e · 〈 〉) and
we would refute the equivalence of the unary and binary implementations
of the counter signature.
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