
Lecture Notes on
Bisimulation

15-814: Types and Programming Languages
Frank Pfenning

Lecture 13
Thursday, October 21, 2021

1 Introduction

In the last lecture we introduced the K Machine as an alternative way to
define the dynamics of programs in our language. In this lecture we would
like to prove (part of) the correctness of the machine. After this, we show
how to add a simple form of exceptions to our language, as a second form
of control construct after fixed points.

2 Eager Pairs in the K Machine

The fragment of the machine we pick to illustrate the proof technique is
eager pairs. Since no new ideas are required, we just recall the small-step
dynamics and then present the corresponding rules for the K machine.

e1 value e2 value

〈e1, e2〉 value
val/pair

v1 value v2 value

case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) 7→ [v1/x1][v2/x2]e3
step/casep/pair

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
step/pair1

v1 value e2 7→ e′2

〈v1, e2〉 7→ 〈v1, e′2〉
step/pair2

e0 7→ e′0

case e0 (〈x1, x2〉 ⇒ e3) 7→ case e′0 (〈x1, x2〉 ⇒ e3)
step/casep0

LECTURE NOTES THURSDAY, OCTOBER 21, 2021

L13.2 Bisimulation

k . 〈e1, e2〉 7→ k ◦ 〈_, e2〉 . e1
k ◦ 〈_, e2〉 / v1 7→ k ◦ 〈v1,_〉 . e2
k ◦ 〈v1,_〉 / v2 7→ k / 〈v1, v2〉

k . case e0 (〈x1, x2〉 ⇒ e) 7→ k ◦ case _ (〈x1, x2〉 ⇒ e) . e0
k ◦ case _ (〈x1, x2〉 ⇒ e) / 〈v1, v2〉 7→ k . [v1/x1, v2/x2]e

States s ::= k . e evaluate e with continuation k
| k / v return value v to continuation k

Continuations k ::= ε | · · ·
| k ◦ 〈_, e2〉 | k ◦ 〈v1,_〉 | k ◦ (case _ (〈x1, x2〉 ⇒ e))

3 Correctness of the K Machine

Given the relatively simple construction of the machine it is surprisingly
tricky to prove its correctness. We refer to the textbook [Har16, Chapter 28]
for a complete formal development. We already stated a central property:

For any continuation k, expression e and value v,
k . e 7→∗ k / v iff e 7→∗ v

This implies that k . v 7→∗ k / v because v 7→0 v.
A key step in the proof is to find a relation between expressions and

machine states k . e and k / v. In this case we actually define this relation
as a function that folds the state back into an expression. As stated in the
property above, the state k . e expects the value of e being passed to k.
When we unravel the state we don’t wait for evaluation finish, but we just
substitute expression e back into k. Consider, for example,

k . e1 e2 7→ k ◦ (_ e2) . e1

If we plug e1 into the hole of the continuation (_ e2) we recover e1 e2, which
we can then pass to k.

We write k(e) = e′ for the operation of reconstituting an expression from
the state k . e or k / e (ignoring the additional information that e is a value
in the second case). We define this inductively over the structure of k. First,
when the stack is empty we just take the expression.

ε(e) = e

LECTURE NOTES THURSDAY, OCTOBER 21, 2021

Bisimulation L13.3

Otherwise, we plug the expression into the frame on top of the stack (which
is the rightmost part of the continuation), and then recursively plug the
result into the remaining continuation.

ε(e) = e
(k ◦ 〈_, e2〉)(e1) = k 〈e1, e2〉
(k ◦ 〈v1,_〉)(e2) = k 〈v1 e2〉
(k ◦ case _ b)(e0) = k(case e0 b)

Here we wrote b for the single branch of a case expression over pairs. We
now observe that the rules of the K Machine that decompose an expression
all reconstitute the same expression!

As a unifying notation for the two forms of machine state, we write
k ./ e to stand for either k . e or k / e. We relate machine states k ./ e to
expressions k(e) written in infix notation as k ./ e R k(e). This relation R is
weak bisimulation if it satisfies

(i) If k ./ e 7→ k′ ./ e′ then k(e) 7→∗ k′(e′)

(ii) If k(e) 7→ k′(e′) then k ./ e 7→∗ k′ ./ e′

While the first statement is transparent, the second statement here has to be
read carefully. In more detail, we are given an e0, e′0, and transition e0 7→ e′0.
Then for any k ./ e such that k ./ e R e0 there exist k′ and e′ such that
k ./ e 7→∗ k′ ./ e′ and k′ ./ e′ R e′0. Expanding the definition of R yields the
second assertion above.

This form of relationship is often displayed in pictorial form, where solid
lines denote given relationship and dashed lines denote relationship whose
existence is to be proved. In this case we might display the two properties
as

k ./ e k(e)

k′ ./ e′ k′(e′)

R

∗

R

and

k ./ e k(e)

k′ ./ e′ k′(e′)

R

∗

R

This is an example of a weak bisimulation, where “weak” indicates that
the two sides do not have to proceed in lockstep. In the diagram this is
represented by allowing zero or more steps 7→∗ in the transition we have
to construct. Sometimes (actually: today) we can be more precise than just
saying that there an unknown arbitrary number of steps. It is rare that a
transformation we might consider will preserve individual steps exactly,
so weak bisimulation is a more important notion that strong bisimulation.

LECTURE NOTES THURSDAY, OCTOBER 21, 2021

L13.4 Bisimulation

A more generic depiction of a weak bisimulation that does not bake in the
definition of R from this particular situation might look like

s e

s′ e′

R

∗

R

and
s e

s′ e′

R

∗

R

We now turn to our specific example, proving the first direction of the weak
bisimulation.

Theorem 1 (Weak Bisimulation for the K Machine, Part 1, v1)
If k ./ e 7→ k′ ./ e′ then k(e) 7→∗ k′(e′).

Proof: By cases on the definition of k ./ e 7→ k′ ./ e′. We write here “by
cases” instead of “by induction” because none of the transition rules have
any premises. A proof by cases is certainly a degenerate case of a proof by
induction, but we would like to express the proof principle as precisely as
possible.

Case: k . 〈e1, e2〉 7→ k ◦ 〈_, e2〉 . e1 where e = 〈e1, e2〉, k′ = k ◦ 〈_, e2〉 and
e′ = e1. Then

k〈e1, e2〉 = (k ◦ 〈_, e2〉)(e1)

so
k(e) = k〈e1, e2〉 7→0 (k ◦ 〈_, e2〉)(e1) = k′(e′)

Cases: The other cases where the rules just decompose the expression are
analogous. In particular, on the side of the expressions no reductions
are needed since the prestate and poststate of the transition reconsti-
tute the same expression.

Case: k0 ◦ (case _ (〈x1, x2〉 ⇒ e3)) / 〈v1, v2〉 7→ k0 . [v1/x1, v2/x2]e3 where
k = k0 ◦ (case _ (〈x1, x2〉 ⇒ e3)), e = 〈v1, v2〉, k′ = k0 and e′ =
[v1/x1, v2/x2]e3. Then

k0◦(case _ (〈x1, x2〉 ⇒ e3))(〈v1, v2〉) = k0(case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3))

and
case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) 7→ [v1/x1, v2/x2]e3

So what we need to know is that

k0(case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) 7→ k0([v1/x1, v2/x2]e3)

LECTURE NOTES THURSDAY, OCTOBER 21, 2021

Bisimulation L13.5

This does not follow directly from what we know in this case, but we
can prove a suitable lemma (2), namely that k(e) 7→ k(e′) whenever
e 7→ e′. Intuitively, this holds because k is just a representation of the
congruence rules.

This lemma completes the proof

�

Lemma 2 (Continuation Congruence)
If e 7→ e′ then k(e) 7→ k(e′) for any k.

Proof: We are given a reduction from e to e′, so the first instinct might be
to prove this by rule induction on the derivation of e 7→ e′. However, this
reduction will simply be embedded in the reduction of k(e) 7→ k(e′) rather
than analyzed and decomposed, so this cannot be right.

Instead, we prove it by induction on the structure of k which is “wrapped
around” e and e′.

Case: k = ε. Then

k(e) = ε(e) = e 7→ e′ = ε(e′) = k(e′)

Case: k = k1 ◦ 〈_, e2〉. Then

k(e) = (k1 ◦ 〈_, e2〉)(e) This case
(k1 ◦ 〈_ e2〉)(e) = k1〈e, e2〉 By definition of k(−)
e 7→ e′ Assumption
〈e, e2〉 7→ 〈e′, e2〉 By rule step/app1
k1〈e, e2〉 7→ k1〈e′, e2〉 By ind. hyp. on k1
k1〈e′, e2〉 = (k1 ◦ 〈_, e2〉)(e′) = k(e′) By definition of k(−)

Case: The remaining two cases for k are analogous.

�

We now refine the statement of the first direction of bisimulation to
express that each step of the K machine is simulated by zero or one steps of
reduction of our original dynamics. We write this in general as e 7→0,1 e′.

Theorem 3 (Weak Bisimulation for the K Machine, Part 1, v2)
If k ./ e 7→ k′ ./ e′ then k(e) 7→0,1 k′(e′).

LECTURE NOTES THURSDAY, OCTOBER 21, 2021

L13.6 Bisimulation

Proof: See proof of Theorem 1. �

One ultimate end-to-end property we are interested in is for complete
computations. We call this the soundness of the K machine because it ex-
presses that if the K Machine returns a final answer, then this final answer is
correct.

Corollary 4 (Soundness of the K Machine)
If ε . e 7→∗ ε / v then e 7→∗ v.

Proof: We extend Theorem 1 to multistep reduction in the K Machine (by
induction on the length of the reduction sequence) and then obtain the
statement with k = k′ = ε. �

Unfortunately, the other direction of the bisimulation is more difficult to
prove, so it remains a conjecture.

Conjecture 5 (Weak Bisimulation for the K Machine, Part 2)
If e0 7→ e′0 where e0 = k(e) for some k and e. Then k ./ e 7→∗ k′ ./ e′ for some k′

and e′ with e′0 = k′(e′).

Fortunately, the end-to-end result in the other direction is not in question.
It states that if evaluation returns a value, then the K Machine will do so as
well.

Theorem 6 (Completeness of the K Machine)
If e 7→∗ v then ε . e 7→∗ ε / v.

Proof: See the textbook [Har16, Chapter 28]. The proof uses an intermediate
big-step dynamics. �

However, this theorem still does not capture everything we want, be-
cause it only talks about terminating computation. The bisimulation itself
(if we could complete it) also speaks about arbitrary nonterminating compu-
tations.

4 Exceptions

Errors or exceptions are a fact of life. In programming, we have already seen
this in the last lecture: when we analyzed the cases of the return value of v1
of e1 for an application e1 e2 we only accounted for e1 = λx. e′1. In fact, we

LECTURE NOTES THURSDAY, OCTOBER 21, 2021

Bisimulation L13.7

cannot continue with evaluation if v1 is not a λ-expression. Furthermore, we
expect our (object language) expression to be well-typed, so this should be
the only possibility. But since we didn’t check this in our implementation,
we could certainly encounter a situation where the value (in the example of
type E that represents expression) does not match any of the patterns.

One solution within our language so far would be to add those cases and
simply not terminate when they are encountered. That would be difficult
to analyze. Another solution would be to change our return type (in the
metalanguage) to E+ 1: we either return an actual value or none, indicating
a runtime error. However, this change would require us to change code
pervasively. What we would like instead is to signal an error in the form of
an exception that aborts computation.

For this purpose we introduce a new form of expression.

Expressions e ::= · · · | raise E
Exceptions E ::= Match | Error | DivByZero | · · ·

Exceptions themselves are not first class expressions or values, but a new
syntactic category. From the typing perspective, exception could be raised
anywhere, that is, it has arbitrary type τ .

Γ ` raise E : τ
tp/raise

This emphasizes that, as a control construct, it is in some sense orthogonal
to all constructs already in the language, just as, for example, fixed points
are.

In the K machine, it is almost trivial to specify the behavior of exceptions.
We simply throw away the whole continuation (since we want to abort the
computation) and immediately transition to a final state raised E.

k . raise E 7→ raised E

This means we now have three forms of machine states

States s ::= k . e | k / v | raised E

The final states are now ε / v (final answer is v) and raised E (the computation
raised exception E).

If we want to go back to our original small-step semantics, it is not so
easy. First, raise E is not value, but it also does not reduce. Instead, it is
propagated up through the expression under evaluation using new version

LECTURE NOTES THURSDAY, OCTOBER 21, 2021

L13.8 Bisimulation

of the congruence rules. For example, just for pairs we would have to add
the following rules:

〈raise E, e2〉 7→ raise E
step/pair/exn1

v1 value

〈v1, raise E〉 7→ raise E
step/pair/exn2

case (raise E) (〈x1, x2〉 ⇒ e3) 7→ raise E
step/casep/exn0

We observe that we need a new version of every congruence rule to prop-
agate exceptions. The same will be true for all the other constructs in the
language, so we the presentation is far from modular.

This is an excellent example of a more general observation: the specifi-
cation of language extensions, especially those that affect control, depends
heavily on choosing the most suitable base semantics. Here, it is clear that
exceptions are most naturally specified in the K machine.

But returning to our small-step semantics, let’s examine our collection of
theorems to see if they continue to hold.

Preservation continues to hold because the expression raise E can be of
arbitrary type.

Progress no longer holds as stated before. Instead we have

If · ` e : τ then either e 7→ e′ for some e, or e value, or e =
raise E.

Finality of Values does not change since we do not change the notion of
value.

Determinacy also still holds, because in the new rule step/pair/exn2 we
took care to require v1 to be a value just as for step/pair2.

Canonical Forms also still holds exactly as stated since raise E is not a
value.

Exercises

Exercise 1 One unnecessary expense in the K Machine is that values v may
be evaluated many times. With recursive types values v can be arbitrarily
large, so we would like avoid re-evaluation. For this purpose we introduce

LECTURE NOTES THURSDAY, OCTOBER 21, 2021

Bisimulation L13.9

a separate syntactic class of values w and a new expression constructor ↓w
that includes a value w as an expression. It is typed with

w val Γ ` w : τ

Γ ` ↓w : τ
tp/down

and included in expressions with

Expressions e ::= . . . | ↓w
Closed values w ::= λx. e | 〈w1, w2〉 | 〈 〉 | i · w | fold w

1. Update the K Machine so that the two machine states are k . e and
k / ↓w. In order to avoid re-evaluation, only expressions ↓w should
be substituted for variables. Your rules should not appeal to the e val
judgment but simply construct closed values w as a natural part of the
machine’s operation. Only show the rules for functions and pairs.

2. Establish a weak bisimulation between the machine with marked
values and those without, limiting yourself to eager pairs. This means
you should

(a) Define relation R between the states in the two machines.

(b) Prove that R is a weak bisimulation, which requires two separate
properties to be shown.

(c) Sketch the proofs of any lemmas you might need regarding the
operation of each of the two machines.

3. Analyze your proof in Part 3(b) to see if you can make a statement
about how the number of steps in the two machines are related.

References

[Har16] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, second edition, April 2016.

LECTURE NOTES THURSDAY, OCTOBER 21, 2021

	Introduction
	Eager Pairs in the K Machine
	Correctness of the K Machine
	Exceptions

