
Lecture Notes on
Subject Reduction

15-814: Types and Programming Languages
Frank Pfenning

Lecture 4
Thursday, September 9, 2021

1 Introduction

In the last lecture we defined the notion of type and explored how to type
Booleans and natural numbers laying the groundwork for a representation
theorem on Booleans, which will prove in the next lecture.

In this lecture we first explore the limits of typing, and then discuss
some properties that tie together computation (here in the form of reduction)
and typing. Prove these properties requires a form of induction called rule
induction and we will spend some time on how to perform rule inductions
to prove properties of judgments defined by inference rules.

The eventual representation theorems for Booleans will say something
along the following lines (perhaps to be refined):

If · ` e : α→ (α→ α) and e does not reduce, then e = true =
λx. λy. x or e = false = λx. λy. y.

How do we use a programming language to perform computation? We
provide some definitions and then an expression e. The implementation
will then normalize the expression e by reducing it until it can no longer be
reduced, at least conceptually. In actuality, it may translate or compile the
expression and then execute the compiled form for efficiency.

With types, we check that our expression e has the type we intended
(for example, · ` e : τ) before we reduce it, because only typed expressions
are seen as meaningful. Also, we usually require the context to be empty
because we might view a free variable as an “undefined function”. So just

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

L4.2 Subject Reduction

as in the representation of Booleans and natural numbers, we focus on the
computation with closed terms.

Now we would like to be assured that the result of the computation, that
is, the normal form e′ of e (with e −→∗ e′) is still of the same type! It would
not make sense if we start an expression e : nat and are presented with an
answer of true : bool. To prevent this situation, we would like to prove for
our programming language (so far, just the λ-calculus) that

If · ` e : τ and e −→∗ e′ and e′ does not reduce, then · ` e′ : τ .

We usually breaks this down into a subject reduction also called type preserva-
tion for the single-step reduction relation, since multi-step reduction then
follows by a simple induction (see Exercise 1).

Conjecture 1 (Subject Reduction, v1) If · ` e : τ and e −→ e′ then · ` e′ : τ .

Before we investigate its proof and refine its statements, let’s consider
the limits of typing.

2 The Limits of Simple Types

We have proposed types as a way to classify functions, fixing their domain
and their codomain, and making sure that functions are applied to argu-
ments of the correct type. We also started to observe some patterns, such
as true : α→ (α→ α) and false : α→ (α→ α), possibly using this type to
characterize Booleans.

But what do we give up? Are there expressions that cannot be typed?
From the historical perspective, this should definitely be the case, because
types were introduced exactly to rule out certain “paradoxical” terms such
as Ω, which does not have a normal form.

One term that is no longer typeable is self-application ω = λx. x x. As a
result, we also can type neither Ω = ω ω nor Y , which can be seen as achiev-
ing a goal from the logical perspective, but it does give up computational
expressiveness. How do we prove that ω cannot be typed? We begin by
creating the skeleton of a typing derivation, which is unique due to the
syntax-directed nature of the rules (that is, for each language construct there
is exactly one typing rule). We highlight in red rules whose constraints on
types have not yet been considered. When all the rules are black, we know
that every solution to the accumulated constraints leads to a valid typing

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

Subject Reduction L4.3

derivation (and therefore a valid type in the conclusion).

x : ` x :
tp/var

x : ` x :
tp/var

x : ` xx :
tp/app

· ` λx. x x :
tp/lam

The type in the final judgment must be ?τ1→ ?τ2 for some types ?τ1 and ?τ2.

x : ` x :
tp/var

x : ` x :
tp/var

x : ?τ1 ` xx : ?τ2

tp/app

· ` λx. x x : ?τ1→ ?τ2

tp/lam

Once the type of a variable is available in the context, this types is propa-
gated upwards unchanged in a derivation, so we can fill in some more of
the types.

x : ?τ1 ` x :
tp/var

x : ?τ1 ` x :
tp/var

x : ?τ1 ` xx : ?τ2

tp/app

· ` λx. x x : ?τ1→ ?τ2

tp/lam

In the tp/var rules the type of variable is just looked up in the context, so we
can fill in those two types as well.

x : ?τ1 ` x : ?τ1

tp/var
x : ?τ1 ` x : ?τ1

tp/var

x : ?τ1 ` xx : ?τ2

tp/app

· ` λx. x x : ?τ1→ ?τ2

tp/lam

Finally, for the application of the tp/app rule to be correct, the type of x in
the first premise must be a function type, expecting an argument of type ?τ1

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

L4.4 Subject Reduction

(the type of x in the second premise) and returning a result of type ?τ2. That
is:

x : ?τ1 ` x : ?τ1

tp/var
x : ?τ1 ` x : ?τ1

tp/var

x : ?τ1 ` xx : ?τ2

tp/app

· ` λx. x x : ?τ1→ ?τ2

tp/lam

provided ?τ1 = ?τ1→ ?τ2

Now we observe that there cannot be a solution to the required equation:
there are no types τ1 and τ2 such that τ1 = τ1→ τ2 since the right-hand side
is always bigger (and therefore not equal) to the left-hand side.

To recover from this in full generality we would need so-called recursive
types. In this example, we see

τ1 = F τ1

where F = λα. α→ τ2 and we might then have a solution with τ1 = Y F .
But such a solution is not immediately available to us. For one thing, we
do not have function from types to types such as F . For another, we don’t
have a Y combinator at the level of types. However, it is perfectly possible
to construct recursive types, and we will do so later in the course. We can
also think of such recursive types as infinite types

τ1 = τ1→ τ2 = (τ1→ τ2)→ τ2 = ((τ1→ τ2)→ τ2)→ τ2 = · · ·

Another way to recover some, but not all of the functions that can be typed
in the λ-calculus is to introduce polymorphism, which we will also consider.

3 Reduction as a Judgment

Our characterization of normal forms so far is quite simple: they are terms
that do not reduce. But this is a negative condition, and negative conditions
can be difficult to work with in proofs. So we would like a positive definition
normal forms. Just like typing, we tend to give such definitions in the form
of inference rules. The property then holds if the judgment of interest (here,
that an expression is normal) can be derived using the given rules. This is a
form of inductive definition.

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

Subject Reduction L4.5

Before we get to defining normal forms by rules, we formally define
β-reduction by inference rules. Previously, we just stated informally that a
step of β-reduction can be “applied anywhere in an expression”. Now we
write this out. We refer to the last three rules as congruence rules because they
allow the reduction of a subterm. The judgment is here e −→ e′ (omitting
the β for brevity) expressing that e reduces to e′.

(λx. e1) e2 −→ [e2/x]e1
red/beta

e −→ e′

λx. e −→ λx. e′
red/lam

e1 −→ e′1

e1 e2 −→ e′1 e2
red/app1

e2 −→ e′2

e1 e2 −→ e1 e
′
2

red/app2

This rules are not syntax-directed: there are three rules for application
(red/beta, red/app1, and red/app2), one for λ (red/lam) and none for variables.
So if we use them to construct a derivation, we may have to backtrack or
presciently make a choice. When construction a derivation we usually
assume e is given and we simultaneously construct a derivation and an
expression e′ such that e −→ e′. For example:

((λx. λy. x)K) I −→
?

We realize that this is not a redex at the top level, and we also know that I
can’t be reduced, so we use the red/app1 rule:

(λx. λy. x)K −→
?

((λx. λy. x)K) I −→
red/app1

Again, a priori three rules could be applied, but only red/beta will succeed
in building a derivation:

(λx. λy. x)K −→
red/beta

((λx. λy. x)K) I −→
red/app1

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

L4.6 Subject Reduction

At this point the structure of the derivation is complete, and we just need to
fill in the blanks. Starting from the top, we get [K/x](λy. x) = λy.K

(λx. λy. x)K −→ λy.K
red/beta

((λx. λy. x)K) I −→
red/app1

The final blank is the result from the previous line applied to I , and we
obtain:

(λx. λy. x)K −→ λy.K
red/beta

((λx. λy. x)K) I −→ (λy.K) I
red/app1

4 Subject Reduction

Now we return to the main topic of this lecture, namely subject reduction.
Recall our characterization of reduction:

e −→ e′

λx. e −→ λx. e′
red/lam

e1 −→ e′1

e1 e2 −→ e′1 e2
red/app1

e2 −→ e′2

e1 e2 −→ e1 e
′
2

red/app2

(λx. e1) e2 −→ [e2/x]e1
beta

And, for reference, here are the typing rules.

Γ, x1 : τ1 ` e2 : τ2

Γ ` λx1. e2 : τ1→ τ2
lam

x : τ ∈ Γ

Γ ` x : τ
var

Γ ` e1 : τ2→ τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1
app

Conjecture 2 (Subject Reduction, v1)
If · ` e : τ and e −→ e′ then · ` e′ : τ .

Proof: (Attempt) Proving this will require some analysis of the derivations
of · ` e : τ and e −→ e′. We hope that in all cases, · ` e′ : τ . But just a proof
by cases will not work, because the judgments of typing and reduction are
defined inductively by a collection of inference rules. That is, for example, the

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

Subject Reduction L4.7

judgment e −→ e′ holds if and only if there is a derivation for it. To mirror
this inductive definition, we have to carry out a proof by induction. Such
proofs are by induction over the structure of the derivation of a judgment.
What this means is that for each rule, we get to assume our conjecture for
all the premises of the rule (the induction hypothesis) and have to prove it
for the conclusion. A rule with no premises (such as red/beta) is then a base
case because we have no inductive hypotheses to work with. Rules with
premises correspond to induction steps.

Another way to think about such a proof is: if a property of a judgment
preserved by all rules of inference and holds for the axioms (the rules with
no premises), then it must hold of all judgments.

So, let’s get started. We call this form of induction rule induction. In
this particular statement, we could use rule induction on the judgment
· ` e : τ or e −→ e′. In principle, we might also be able to use induction
over the structure of e, e′, or τ , but the derivations we have give us more
information. So, generally speaking, it is unlikely that we perform induction
over expressions or types when we have richer assumptions. Again, a
general heuristic says that if we have a syntax-directed judgment and one
that is not, it is often better to induct over the judgment that is not syntax-
directed. This suggest a proof by rule induction over e −→ e′.

We have to distinguish the various rules for this judgment.

Case:

e1 −→ e′1

e1 e2 −→ e′1 e2
red/app1

where e = e1 e2 and e; = e′1 e2. We start by restating what we know in
this case.

· ` e1 e2 : τ Assumption

Now we perform a key step, namely inversion. We know that · `
e1 e2 : τ and we see that there is only inference rule whose conclusion
matches this: tp/app. Since some instance of the rule must have been
used, we conclude:

· ` e1 : τ2→ τ and
· ` e2 : τ2 for some τ2 By inversion

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

L4.8 Subject Reduction

We have to be extremely careful, because it looks like we are using a
rule of inference in the wrong direction. I guess that’s why it is called
inversion. So always make sure you know that a judgment is true, and
there is only one (or, more generally, a finite number of) judgments
that could have derived it.

At this point we have a type for e1 and a reduction for e1, so we can
apply the induction hypothesis.

· ` e′1 : τ2→ τ By ind.hyp.

Now we can just apply the typing rule for application. Intuitively, in
the typing for e1 e2 we have replaced e1 by e′1, which is okay since e′1
has the type of e1.

· ` e′1 e2 : τ By rule tp/app

Case:

e1 −→ e′1

λx. e1 −→ λx. e′1
red/lam

where e = λx. e′1.

We proceed as before, applying inversion to the typing of e.

· ` λx. e1 : τ Assumption
x : τ2 ` e1 : τ1 and τ = τ2→ τ1 for some τ1 and τ2 By inversion

However, at this point we are stuck because we cannot apply the
induction hypothesis! The problem is that in the typing for e1 the
context is not empty.

�

So it seems the property we want does not follow by rule induction! If
we get stuck like that, there are usually three possibilities to consider:

(1) The conjecture is false. Maybe the failed proof attempt helps us find a
counterexample so we can revise either our definitions or our conjecture.

(2) We need to generalize the induction hypothesis. Maybe the failed proof
attempt helps us find the right generalization.

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

Subject Reduction L4.9

(3) We need to find a suitable lemma. Maybe the failed proof attempt helps
us find such a lemma. In this case we can often keep the structure of the
proof intact.

In this particular example, the fact that the context was nonempty in an
attempted appeal to the induction hypothesis suggests we should allow
arbitrary nonempty contexts in our induction hypothesis.

Theorem 3 (Subject Reduction, v2)
If Γ ` e : τ and e −→ e′ then Γ ` e′ : τ .

Proof: We try again: rule induction on the derivation of e −→ e′.

Case:

e1 −→ e′1

λx. e1 −→ λx. e′1
red/lam

where e = λx. e′1. In the critical step we can now appeal to the induc-
tion hypothesis using Γ, x : τ2 as our context.

Γ ` λx. e1 : τ Assumption
Γ, x : τ2 ` e1 : τ1 and τ = τ2→ τ1 for some τ1 and τ2 By inversion
Γ, x : τ2 ` e′1 : τ1 By induction hypothesis
Γ ` λx. e′1 : τ2→ τ1 By rule tp/lam

Case:

e1 −→ e′1

e1 e2 −→ e′1 e2
red/app1

where e = e1 e2. We have to reconsider this case which worked before,
now for the generalized induction hypothesis. But it works the same
way.

Γ ` e1 e2 : τ Assumption
Γ ` e1 : τ2→ τ and
Γ ` e2 : τ2 for some τ2 By inversion

At this point we have a type for e1 and a reduction for e1, so we can
apply the induction hypothesis.

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

L4.10 Subject Reduction

Γ ` e′1 : τ2→ τ By ind.hyp.

Now we can just apply the typing rule for application. Intuitively, in
the typing for e1 e2 we have replaced e1 by e′1, which is okay since e′1
has the type of e1.

Γ ` e′1 e2 : τ By rule tp/app

Case:

e2 −→ e′2

e1 e2 −→ e1 e
′
2

red/app2

where e = e1 e2. This proceeds completely analogous to the previous
case.

Case:

(λx. e1) e2 −→ [e2/x]e1
β

where e = (λx. e1) e2. In this case we apply inversion twice, since the
structure of e is two levels deep.

Γ ` (λx. e1) e2 : τ Assumption
Γ ` λx. e1 : τ2→ τ
and Γ ` e2 : τ2 for some τ2 By inversion
Γ, x : τ2 ` e1 : τ By inversion

At this point we are once again truly stuck, because there is no obvious
way to complete the proof.

To Show: Γ ` [e2/x]e1 : τ

Fortunately, the gap that presents itself is exactly the content of the
substitution property, stated below. The forward reference here is ac-
ceptable, since the proof of the substitution property does not depend
on subject reduction.

Γ ` [e2/x]e1 : τ By the substitution property (Theorem 4)

�

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

Subject Reduction L4.11

The last case in the proof of subject reduction represents option (3) in the
heuristic list of “ways out” if we get stuck in our induction proof.

Theorem 4 (Substitution Property)
If Γ ` e : τ and Γ, x : τ,Γ′ ` e′ : τ ′ then Γ,Γ′ ` [e/x]e′ : τ ′

Proof sketch: By rule induction on the derivation of Γ, x : τ,Γ′ ` e′ : τ ′.
Intuitively, in this derivation we can use x : τ only at the leaves, and there
to conclude x : τ . Now we replace this leaf with the given derivation of
Γ ` e : τ which concludes e : τ . Luckily, [e/x]x = e, so this is the correct
judgment.

There is only a small hiccup: we have to adjoin the additional variables
declared in Γ′. This would be yet another lemma, namely, that we can always
add unused variable and type to a typing derivation, a property called
weakening. Since it is straightforward to prove, once again by induction, we
will not formalize it even if we have multiple occasions to use it. �

We recommend you write out the cases of the substitution property in
the style of our other proofs, just to make sure you understand the details.

The substitution property is so critical that we may elevate it to an
intrinsic property of the turnstile (`). Whenever we write Γ ` J for any
judgment J we imply that a substitution property for the judgments in Γ
must hold. This is an example of a hypothetical and generic judgment [ML83].
We may return to this point in a future lecture, especially if the property
appears to be in jeopardy at some point. It is worth remembering that,
while we may not want to prove an explicit substitution property, we still
need to make sure that the judgments we define are hypothetical/generic
judgments.

Looking back at Conjecture 2, this also holds as a consequence of The-
orem 3: we just use it for Γ = (·). So it was not wrong, we just couldn’t
prove it the way we wanted because the induction hypothesis for our rule
induction wasn’t strong enough.

5 Normal Forms

A normal form is an expression e such that there does not exists an e′ such that
e −→ e′. Basically, we have to rule out β-redices (λx. e1) e2, but we would
like to describe normal forms via inference rules so we can easily prove
inductive theorems on them. We might start with the following incorrect

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

L4.12 Subject Reduction

attempt:

x normal
norm/var

e normal
λx. e normal

norm/lam

e1 normal e2 normal

e1 e2 normal
norm/app

It is easy to see that under such a definition every term would be normal.
The culprit here is the rule of application, because, for example, in the
application (λx. x) (λy. y) both function and argument are normal, but their
application is not. So we need a separate judgment for neutral expressions,
namely those which are normal already and do not create a redex when they
are applied to an argument. In particular, a λ-abstraction is not neutral, but
a variable is. Then e1 e2 is normal if e1 is neutral and e2 is normal.

e normal
λx. e normal

norm/lam
e neutral
e normal

norm/neut

x neutral
neut/var

e1 neutral e2 normal

e1 e2 neutral
neut/app

This definition captures terms of the form

λx1. . . . λxn. ((x e1) . . . ek)

where e1, . . . ek are again in normal form. It is not strictly syntax-directed
in the given form because, for a λ-abstraction, both rules norm/lam and
norm/neut could be used. However, norm/neut will fail immediately in the
next step, so we only need to “look ahead” one rule to make the construction
deterministic.

As an example, to show that λx. x x normal we construct the following
derivation, starting from the bottom.

x neutral
neut/var

x neutral
neut/var

x normal
norm/neut

xx neutral
neut/app

xx normal
norm/neut

λx. x x normal
norm/lam

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

Subject Reduction L4.13

But does this new judgment e normal really capture exactly the normal
expressions, namely those that cannot be reduced? We will consider this
question in the next lecture. Only once we are sure about this does it make
sense to consider the representation theorem, now referencing the e normal
judgment rather than saying that e cannot be reduced.

Exercises

Exercise 1 In lecture, we defined the reflexive and transitive closure (−→∗)
of the single-step reduction (−→) with the following:

e −→∗ e
red∗/refl

e1 −→∗ e2 e2 −→∗ e3
e1 −→∗ e3

red∗/trans

e1 −→ e2

e1 −→∗ e2
red∗/step

However, it is more common to define multistep reduction with only
two rules, as is done for the =⇒ judgment below:

e =⇒ e
reds/refl

e1 −→ e2 e2 =⇒ e3
e1 =⇒ e3

reds/step

Prove by rule induction that these two definitions are equivalent in the
sense that e =⇒ e′ iff e −→∗ e′.

Exercise 2 Recall the relation −→∗ defined in Exercise 1. Prove by rule
induction that if Γ ` e : τ and e −→∗ e′ then Γ ` e′ : τ . Here (as in general
in the course), you may use theorems we have proved in the course (lecture
or notes).

Exercise 3 Recall the relation =⇒ defined in Exercise 1. Prove by rule
induction that if Γ ` e : τ and e =⇒ e′ then Γ ` e′ : τ . Here (as in
general in the course), you may use theorems we have proved in the course
(lecture or notes).

Exercise 4 Define a new single-step relation e 7→ e′ which means that e re-
duces to e′ by leftmost-outermost reduction, using a collection of inference rules.
Recall that I claimed this strategy is sound (it only performs β-reductions)
and complete for normalization (if e has a normal form, we can reach it by
performing only leftmost-outermost reductions). Prove the following state-
ments about your reduction judgment:

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

L4.14 Subject Reduction

(i) If e 7→ e′ then e −→ e′.

(ii) 7→ is small-step deterministic, that is, if e 7→ e1 and e 7→ e2 then e1 = e2.

You should interpret = as α-equality, that is, the two terms differ only in
the names of their bound variables (which we always take for granted). For
each of the following statements, either indicate that they are true (without
proof) or provide a counterexample.

(iii) For all e, either e 7→ e′ for some e′ or e normal.

(iv) There does not exist an e such that e 7→ e′ for some e′ and e normal.

(v) If e −→ e′ then e 7→ e′.

(vi) −→ is small-step deterministic.

(vii) −→ is big-step deterministic, that is, if e −→∗ e1 and e −→∗ e2 where
e1 normal and e2 normal, then e1 = e2.

(viii) For arbitrary e and normal e′, e −→∗ e′ iff e 7→∗ e′.

References

[ML83] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Notes for three lectures given in
Siena, Italy. Published in Nordic Journal of Philosophical Logic, 1(1):11-
60, 1996, April 1983.

LECTURE NOTES THURSDAY, SEPTEMBER 9, 2021

	Introduction
	The Limits of Simple Types
	Reduction as a Judgment
	Subject Reduction
	Normal Forms

