
Lecture Notes on
Recursion

15-814: Types and Programming Languages
Frank Pfenning

Lecture 3
Tuesday, September 7, 2021

1 Introduction

In this lecture we first complete our development of recursion: from iteration
through primitive recursion to full recursion. Then we will introduce simple
types to sort out our data representations.

2 General Recursion

Recall the schemas of iteration and primitive recursion:

f 0 = c
f (n+ 1) = g (f n)

f 0 = c
f (n+ 1) = g n (f n)

We have already seen how functions defined by iteration and primitive
recursion can be represented in the λ-calculus. We can also see that functions
defined in this manner are terminating as long as c and g are.

But there are many functions that do not fit such of schema, for two
reasons: (1) their natural presentation differs from the rigid schema (even if
there actually is one that fits it), and (2) they simply fall out of the class of
functions. An example of (1) is below; an example of (2) would be a function
simulating a Turning machine. Since setting up a representation of Turing
machines is tedious, we just show simple examples of (1).

Let’s consider the subtraction-based specification of a gcd function for

LECTURE NOTES TUESDAY, SEPTEMBER 7, 2021



L3.2 Recursion

the greatest common divisor of strictly positive natural numbers a, b > 0.

gcd a a = a
gcd a b = gcd (a− b) b if a > b
gcd a b = gcd a (b− a) if b > a

Why is this correct? First, the result of gcd a b is a divisor of both a and b.
This is clearly true in the first clause. For the second clause, assume c is a
common divisor of a and b. Then there are n and k such that a = n× c and
b = k × c. Then a − b = (n − k) × c (defined because a > b and therefore
n > k) so c still divides both a− b and b. In the last clause the argument is
symmetric. It remains to show that the function terminates, but this holds
because the sum of the arguments to gcd becomes strictly smaller in each
recursive call because a, b > 0.

While this function looks simple and elegant, it does not fit the schema
of iteration or primitive recursion. The problem is that the recursive calls
are not just on the immediate predecessor of an argument, but on the results
of subtraction. So it might look like

f n = hn (f (g n))

but that doesn’t fit exactly, either, because the recursive calls to gcd are on
different functions in the second and third clauses.

So, let’s be bold! The most general schema we might think of is

f = h f

which means that in the right-hand side we can make arbitrary recursive
calls to f . For the gcd, the function h might look something like this:

h = λg. λa. λb. if (a = b) a
(if (a > b) (g (a− b) b)

(g (b− a) b))

Here, we assume functions for testing x = y and x > y on natural numbers,
for subtraction x − y (assuming x > y) and for conditionals (see Exercise
L1.4).

The interesting question now is if we can in fact define an f explicitly
when given h so that it satisfies f = h f . We say that f is a fixed point of h,
because when we apply h to f we get f back. Since our solution should
be in the λ-calculus, it would be f =β h f . A function f satisfying such an
equation may not be uniquely determined. For example, the equation f = f

LECTURE NOTES TUESDAY, SEPTEMBER 7, 2021



Recursion L3.3

(so, h = λx.x) is satisfied by every function f . On the other hand, if h is a
constant function such as λx.I then f =β (λx. I) f =β I has a simple unique
solution. For the purpose of this lecture, any function that satisfies the given
equation is acceptable.

If we believe in the Church-Turing thesis, then any partial recursive
function should be representable on Church numerals in the λ-calculus, so
there is reason to hope there are explicit representations for such f . The
answer is given by the so-called Y combinator.1 Before we write it out, let’s
reflect on which laws Y should satisfy? We want that if f = Y h and we
specified that f = h f , so we get Y h = h (Y h). We can iterate this reasoning
indefinitely:

Y h = h (Y h) = h (h (Y h)) = h (h (h (Y h))) = . . .

In other words, Y must iterate its argument arbitrarily many times.
The ingenious solution deposits one copy of h and the replicates Y h.

Y = λh. (λx. h (xx)) (λx. h (xx))

Here, the application xx takes care of replicating Y h, and the outer applica-
tion of h in h (xx) leaves a copy of h behind. Formally, we calculate

Y h =β (λx. h (xx)) (λx. h (xx))
=β h ((λx. h (xx)) (λx. h (xx)))
=β h (Y h)

In the first step, we just unwrap the definition of Y . In the second step we
perform a β-reduction, substituting [(λx. h (xx))/x]h (xx). In the third step
we recognize that this substitution recreated a copy of Y h.

You might wonder how we could ever get an answer since

Y h =β h (Y h) =β h (h (Y h)) =β h (h (h (Y h))) = . . .

Well, we sometimes don’t! Actually, this is important if we are to represent
partial recursive functions which include functions that are undefined (have
no normal form) on some arguments. Reconsider the specification f = f as
a recursion schema. Then h = λg. g and

Y h = Y (λg. g) =β (λx. (λg. g) (xx)) (λx. (λg. g) (xx)) =β (λx. x x) (λx. x x)

The term on the right-hand side here (called Ω) has the remarkable property
that it only reduces to itself! It therefore does not have a normal form. In

1For our purposes, a combinator is simply a λ-expression without any free variables.

LECTURE NOTES TUESDAY, SEPTEMBER 7, 2021



L3.4 Recursion

other words, the function f = Y (λg. g) = Ω solves the equation f = f by
giving us a result which always diverges.

We do, however, sometimes get an answer. Consider, for example, a
case where f does not call itself recursively at all: f = λn. succ n. Then
h0 = λg. λn. succ n. And we calculate further

Y h0 = Y (λg. λn. succ n)
=β (λx. (λg. λn. succ n) (xx)) (λx. (λg. λn. succ n) (xx))
=β (λx. (λn. succ n)) (λx. (λn. succ n))
=β λn. succ n

So, fortunately, we obtain just the successor function if we apply β-reduction
from the outside in. It is however also the case that there is an infinite reduction
sequence starting at Y h0. By the Church-Rosser Theorem (Theorem L2.3)
this means that at any point during such an infinite reduction sequence we
could still also reduce to λn. succ n. A remarkable and nontrivial theorem
about the λ-calculus is that if we always reduce the left-most/outer-most
redex (which is the first expression of the form (λx. e1) e2 we come to when
reading an expression from left to right) then we will definitely arrive at a
normal form when one exists. And by the Church-Rosser theorem such a
normal form is unique (up to renaming of bound variables, as usual).

3 Defining Functions by Recursion

As a simpler example than gcd, consider the factorial function, which we
deliberately write using general recursion rather than primitive recursion.

fact n = if n = 0 then 1 else n ∗ fact(n− 1)

To write this in the λ-calculus we first define a zero test if0 satisfying

if0 0 c d = c
if0 n+ 1 c d = d

which is a special case of if iteration and can be written, for example, as

if0 = λn. λc. λd. n (K d) c

Eliminating the mathematical notation from the recursive definition of fact
get the equation

fact = λn. if0 n (succ zero) (times n (fact (predn)))

LECTURE NOTES TUESDAY, SEPTEMBER 7, 2021



Recursion L3.5

where we have already defined succ, zero, times, and pred. Of course, this is
not directly allowed in the λ-calculus since the right-hand side mentions
fact which we are just trying to define. The function hfact which will be the
argument to the Y combinator is then

hfact = λf. λn. if0 n (succ zero) (times n (f (predn)))

and

fact = Y hfact

We can write and execute this now in LAMBDA notation (see file rec.lam)

1 defn I = \x. x
2 defn K = \x. \y. x
3 defn Y = \h. (\x. h (x x)) (\x. h (x x))
4

5 defn if0 = \n. \c. \d. n (K d) c
6

7 defn h_fact = \f. \n. if0 n (succ zero) (times n (f (pred n)))
8 defn fact = Y h_fact
9

10 norm _120 = fact _5
11 norm _720 = fact (succ _5)

Listing 1: Recursive factorial in LAMBDA

4 Introduction to Types

We have experienced the expressive power of the λ-calculus in multiple
ways. We followed the slogan of data as functions and represented types
such as Booleans and natural numbers. On the natural numbers, we were
able to express the same set of partial functions as with Turing machines,
which gave rise to the Church-Turing thesis that these are all the effectively
computable functions.

On the other hand, Church’s original purpose of the pure calculus of
functions was a new foundations of mathematics distinct from set the-
ory [?, ?]. Unfortunately, this foundation suffered from similar paradoxes
as early attempts at set theory and was shown to be inconsistent, that is,
every proposition has a proof. Church’s reaction was to return to the ideas
by Russell and Whitehead [?] and introduce types. The resulting calculus,
called Church’s Simple Theory of Types [?] is much simpler than Russell and

LECTURE NOTES TUESDAY, SEPTEMBER 7, 2021

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/03-recursion/rec.lam


L3.6 Recursion

Whitehead’s Ramified Theory of Types and, indeed, serves well as a foundation
for (classical) mathematics.

We will follow Church and introduce simple types as a means to classify
λ-expressions. An important consequence is that we can recognize the
representation of Booleans, natural numbers, and other data types and
distinguish them from other forms of λ-expressions. We also explore how
typing interacts with computation.

5 Simple Types, Intuitively

Since our language of expression consists only of λ-abstraction to form
functions, juxtaposition to apply functions, and variables, we would expect
our language of types τ to just contain τ ::= τ1→ τ2. This type might be
considered “empty” since there is no base case, so we add type variables α,
β, γ, etc.

Type variables α
Types τ ::= τ1→ τ2 | α

We follow the convention that the function type constructor “→” is right-
associative, that is, τ1→ τ2→ τ3 = τ1→ (τ2→ τ3).

We write e : τ if expression e has type τ . For example, the identity
function takes an argument of arbitrary type α and returns a result of the
same type α. But the type is not unique. For example, the following two
hold:

λx. x : α→ α
λx. x : (α→ β)→ (α→ β)

What about the Booleans? true = λx. λy. x is a function that takes an argu-
ment of some arbitrary type α, a second argument y of a potentially different
type β and returns a result of type α. We can similarly analyze false:

true = λx. λy. x : α→ (β→ α)
false = λx. λy. y : α→ (β→ β)

This looks like bad news: how can we capture the Booleans by their type
if true and false have a different type? We have to realize that types are not
unique and we can indeed find a type that is shared by true and false:

true = λx. λy. x : α→ (α→ α)
false = λx. λy. y : α→ (α→ α)

LECTURE NOTES TUESDAY, SEPTEMBER 7, 2021



Recursion L3.7

The type α→ (α→ α) then becomes our candidate as a type of Booleans in
the λ-calculus. Before we get there, we formalize the type system so we can
rigorously prove the right properties.

6 The Typing Judgment

We like to formalize various judgments about expressions and types in the
form of inference rules. For example, we might say

e1 : τ2→ τ1 e2 : τ2
e1 e2 : τ1

We usually read such rules from the conclusion to the premises, pronouncing
the horizontal line as “if ”:

The application e1 e2 has type τ1 if e1 maps arguments of type τ2 to
results of type τ1 and e2 has type τ2.

When we arrive at functions, we might attempt
x1 : τ1 e2 : τ2

λx1. e2 : τ1→ τ2
?

This is (more or less) Church’s approach. It requires that each variable x
intrinsically has a type that we can check, so probably we should write xτ .
In modern programming languages this can be bit awkward because we
might substitute for type variables or apply other operations on types, so
instead we record the types of variable in a typing context.

Typing context Γ ::= x1 : τ1, . . . , xn : τn

Critically, we always assume:

All variables declared in a context are distinct.

This avoids any ambiguity when we try to determine the type of a variable.
The typing judgment now becomes

Γ ` e : τ

where the context Γ contains declarations for the free variables in e. It is
defined by the following three rules

Γ, x1 : τ1 ` e2 : τ2

Γ ` λx1. e2 : τ1→ τ2
tp/lam

x : τ ∈ Γ

Γ ` x : τ
tp/var

Γ ` e1 : τ2→ τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1
tp/app

LECTURE NOTES TUESDAY, SEPTEMBER 7, 2021



L3.8 Recursion

As a simple example, let’s type-check true. Note that we always construct
such derivations bottom-up, starting with the final conclusion, deciding on
rules, writing premises, and continuing.

x : α, y : α ` x : α
var

x : α ` λy. x : α→ α
lam

· ` λx. λy. x : α→ (α→ α)
lam

In this construction we exploit that the rules for typing are syntax-directed:
for every form of expression there is exactly one rule we can use to infer its
type.

How about the expression λx. λx. x? This is α-equivalent to λx. λy. y
and therefore should check (among other types) as having type α→ (β→β).
It appears we get stuck:

??
x : α ` λx. x : β→ β

lam??

· ` λx. λx. x : α→ (β→ β)
lam

The worry is that applying the rule lam would violate our presupposition
that no variable is declared more than once and x : α, x : β ` x : β would be
ambiguous. But we said we can “silently” apply α-conversion, so we do it
here, renaming x to x′. We can then apply the rule:

x : α, x′ : β ` x′ : β
var

x : α ` λx. x : β→ β
lam

· ` λx. λx. x : α→ (β→ β)
lam

A final observation here about type variables: if · ` e : α→ (β→ β) then
also · ` e : τ1→ (τ2→ τ2) for any types τ1 and τ2. In other words, we can
substitute arbitrary types for type variables in a typing judgment Γ ` e : τ
and still get a valid judgment. In particular, the expressions true and false
have infinitely many types.

7 Type Inference

An important property of the typing rules we have so far is that they are
syntax-directed, that is, for every form of expression there is exactly one

LECTURE NOTES TUESDAY, SEPTEMBER 7, 2021



Recursion L3.9

typing rule that can be applied. We then perform type inference by construct-
ing the skeleton of the typing derivation, filling it with unknown types, and
reading off a set of equations that have be satisfied between the unknowns.
Fortunately, these equations are relatively straightforward to solve with an
algorithm called unification. This is the core of what is used in the imple-
mentation of modern functional languages such as Standard ML, OCaml, or
Haskell.

We sketch how this process work, but only for a specific example; we
might return to the general algorithm form in a future lecture. Consider the
representation of 2:

λs. λz. s (s z)

We know it must have type ?τ1→ (?τ2→ ?τ3) for some unknown types ?τ1,
?τ2, and ?τ3 where

s : ?τ1, z : ?τ2 ` s (s z) : ?τ3

Now, s z applies s to z, so ?τ1 = ?τ2 → ?τ4 for some new ?τ4. Next, the s
is applied to the result of s z, so ?τ4 = ?τ2. Also, the right-hand side is the
same as the result type of s, so ?τ3 = ?τ4 = ?τ2. Substituting everything out,
we obtain

s : ?τ2→ ?τ2, z : ?τ2 ` s (s z) : ?τ2

It is straightforward to write down the typing derivation for this judgment.
Also, because we did not need to commit to what ?τ2 actually is, we obtain

λs. λz. s (s z) : (τ2→ τ2)→ (τ2→ τ2) for any type τ2

We can express this by using a type variable instead, writing

λs. λz. s (s z) : (α→ α)→ (α→ α)

If the the type of an expression contains type variables we can alway substi-
tute arbitrary types for them and still obtain a valid type.

We find that
` n : (α→ α)→ (α→ α)

even though some of the representations (such as 0 = zero) also have other
types. So our current hypothesis is that this type is a good candidate as a
characterization of Church numerals, just as α→(α→α) is a characterization
of the Booleans.

LECTURE NOTES TUESDAY, SEPTEMBER 7, 2021



L3.10 Recursion

Exercises

Exercise 1 Give an implementation of the factorial function in the λ-calculus
as it arises from the schema of primitive recursion. How many β-reduction
steps are required for factorial of 0, 1, 2, 3, 4, 5 in each of the two implemen-
tations?

Exercise 2 The Fibonacci function is defined by

fib 0 = 0
fib 1 = 1
fib (n+ 2) = fib n+ fib (n+ 1)

Give two implementations of the Fibonacci function in the λ-calculus (us-
ing the LAMBDA implementation). You may use the functions in (see file
rec.lam).

(i) Exploit the idea behind the encoding of primitive recursion using pairs
to give a direct implementation of fib without using the Y combinator.

(ii) Give an implementation of fib using the Y combinator.

Test your implementation on inputs 0, 1, 9, and 11, expecting results 0, 1,
34, and 89. Which of the two is more “efficient” (in the sense of number of
β-reductions)?

Exercise 3 Recall the specification of the greatest common divisor (gcd) from
this lecture for natural numbers a, b > 0:

gcd a a = a
gcd a b = gcd (a− b) b if a > b
gcd a b = gcd a (b− a) if b > a

We don’t care how the function behaves if a = 0 or b = 0.
Define gcd as a closed expression in the λ-calculus over Church numerals.

You may use the Y combinator we defined, and any other functions like
succ, pred, and you should define other functions you may need such as
subtraction or arithmetic comparisons.

Also analyze how your function behaves when one or both of the argu-
ments a and b are 0.

LECTURE NOTES TUESDAY, SEPTEMBER 7, 2021

http://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/03-recursion/rec.lam


Recursion L3.11

References

[Chu32] A. Church. A set of postulates for the foundation of logic I. Annals
of Mathematics, 33:346–366, 1932.

[Chu33] A. Church. A set of postulates for the foundation of logic II. Annals
of Mathematics, 34:839–864, 1933.

[Chu40] Alonzo Church. A formulation of the simple theory of types.
Journal of Symbolic Logic, 5:56–68, 1940.

[WR13] Alfred North Whitehead and Bertrand Russell. Principia Mathemat-
ica. Cambridge University Press, 1910–13. 3 volumes.

LECTURE NOTES TUESDAY, SEPTEMBER 7, 2021


